1
|
Radanovic M, Singulani MP, De Paula VDJR, Talib LL, Forlenza OV. An Overview of the Effects of Lithium on Alzheimer's Disease: A Historical Perspective. Pharmaceuticals (Basel) 2025; 18:532. [PMID: 40283967 PMCID: PMC12030194 DOI: 10.3390/ph18040532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
Lithium was introduced into psychiatric practice in the late nineteenth century and has since become a standard treatment for severe psychiatric disorders, particularly those characterized by psychotic agitation. It remains the most effective agent for managing acute mania and preventing relapses in bipolar disorder. Despite potential adverse effects, lithium's use should be carefully considered relative to other treatment options, as these alternatives may present distinct safety and tolerability profiles. The World Health Organization classifies lithium salts as 'essential' medications for inclusion in global healthcare systems. Over the past two decades, the growing recognition of lithium's efficacy-extending beyond mood stabilization to include reducing suicide risk and inducing neuroprotection-has led to its incorporation into clinical practice guidelines. Current research, particularly from translational models, suggests that lithium's pleiotropic effects benefit not only mental and brain health but also other organs and systems. This supports its potential as a therapeutic candidate for neurological conditions, particularly those associated with neurodegenerative processes. This article will discuss the historical background, discovery, and early experimentation of lithium in psychiatry. We will also review its mechanisms of action and discuss its potential in the treatment and prevention of neurodegenerative disorders, focusing on Alzheimer's disease.
Collapse
Affiliation(s)
- Marcia Radanovic
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo 05403-010, SP, Brazil; (M.R.); (M.P.S.); (V.d.J.R.D.P.); (L.L.T.)
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo 05403-010, SP, Brazil
| | - Monique Patricio Singulani
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo 05403-010, SP, Brazil; (M.R.); (M.P.S.); (V.d.J.R.D.P.); (L.L.T.)
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo 05403-010, SP, Brazil
- Centro de Neurociências Translacionais (CNT), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo 05403-010, SP, Brazil
| | - Vanessa de Jesus R. De Paula
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo 05403-010, SP, Brazil; (M.R.); (M.P.S.); (V.d.J.R.D.P.); (L.L.T.)
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo 05403-010, SP, Brazil
| | - Leda Leme Talib
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo 05403-010, SP, Brazil; (M.R.); (M.P.S.); (V.d.J.R.D.P.); (L.L.T.)
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo 05403-010, SP, Brazil
| | - Orestes Vicente Forlenza
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo 05403-010, SP, Brazil; (M.R.); (M.P.S.); (V.d.J.R.D.P.); (L.L.T.)
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo 05403-010, SP, Brazil
- Centro de Neurociências Translacionais (CNT), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo 05403-010, SP, Brazil
| |
Collapse
|
2
|
Bhuiyan P, Zhang W, Liang G, Jiang B, Vera R, Chae R, Kim K, Louis LS, Wang Y, Liu J, Chuang DM, Wei H. Intranasal Delivery of Lithium Salt Suppresses Inflammatory Pyroptosis in the Brain and Ameliorates Memory Loss and Depression-like Behavior in 5XFAD Mice. J Neuroimmune Pharmacol 2025; 20:26. [PMID: 40095208 PMCID: PMC11914297 DOI: 10.1007/s11481-025-10185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 02/12/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is a devastating neurodegenerative disease (AD) and has no treatment that can cure or halt the disease progression. This study explored the therapeutic potential of lithium salt dissolved in Ryanodex formulation vehicle (RFV) and delivered to the brain by intranasal application. We first compared lithium concentrations in the brain and blood of wild-type mice following intranasal or oral administration of lithium chloride (LiCl) dissolved in either RFV or water. The beneficial and side effects of intranasal versus oral LiCl in RFV in these mice were assessed and potential mechanisms underlying the efficacy of anti-inflammation and anti-pyroptosis in the brains were also investigated in both wild-type and 5XFAD Alzheimer's Disease (AD) mice brains. METHODS For the study of brain versus blood lithium concentrations, wild-type (WT) B6SJLF1/J mice at 2 months of age were treated with intranasal or oral LiCl (3 mmol/kg) dissolved in RFV or in water. Brain and blood lithium concentrations were measured at various times after drugs administration. Brain/blood lithium concentration ratios were then determined. For studying therapeutic efficacy versus side effects and their underlying mechanisms, 5XFAD and WT B6SJLF1/J mice were treated with intranasal LiCl (3 mmol/kg) daily, Monday to Friday each week, in RFV beginning at 2 or 9 months of age with a 12-week treatment duration. Animal behaviors were assessed for depression (tail suspension), cognition (fear conditioning and Y maze), olfaction (buried food test), and motor functions (rotarod) at the age of 5 and 12 months. Blood and brain tissue were harvested from these mice at 13 months. Blood biomarkers for the functions of thyroid (thyroid stimulating hormone, TSH) and kidney (creatinine) were measured using ELISA. Changes in protein expression levels of the endoplasmic reticulum Ca2+ release channels type 1 InsP3 receptors (InsP3R-1), malondialdehyde (MDA)-modified proteins and 4-hydroxy-2-nonenal (4-HNE), pyroptosis regulatory proteins (NLR family pyrin domain containing 3 (NLRP3), cleaved caspase-1, N-terminal of Gasdermin D (GSDMD)), cytotoxic (IL-1β, IL-18, IL-6, TNF-α) and cytoprotective (IL-10) cytokines and synapse proteins (PSD-95, synapsin-1) were determined using immunoblotting. Mouse body weights were monitored regularly. RESULTS Compared to oral LiCl in RFV nanoparticles, intranasal treatment of WT mice with LiCl in RFV markedly decreased blood concentrations at the time range of 30-120 min. The ratio of brain/blood lithium concentration after intranasal lithium chloride in RFV significantly increased, in comparison to those after oral administration lithium chloride in RFV or intranasal administration of lithium chloride in water. Intranasal lithium chloride in RFV inhibited both memory loss and depressive behavior in adult and aged 5XFAD mice. Additionally intranasal treatment of aged 5XFAD mice with LiCl in RFV effectively suppressed the increases in InsP3R-1, intracellular oxidative stress markers (4-HNE-bound and MDA-modified proteins), pyroptosis activation proteins (NLRP3, cleaved caspase-1, N-terminal GSDMD) and cytotoxic cytokines (IL-1β, IL-6, TNF-α), but reversed the down-regulation of cytoprotective cytokine IL-10. Intranasal LiCl in RFV also alleviated the loss of the postsynaptic synapse proteins PSD-95, but not synapsin-1, in aged 5XFAD mice. Blood level of the kidney function marker creatinine was significantly increased in 5XFAD than in WT mice in an age-dependent manner and this elevation was abolished by intranasal delivery of LiCl in RFV. Intranasal LiCl in RFV for 12 weeks in both WT or 5XFAD mice did not affect blood biomarkers for thyroid function, nor did it affect smell or muscle function or body weight. CONCLUSION Intranasal administration of LiCl in RFV significantly decreased lithium blood concentrations and increased brain/blood lithium concentration ratio, in comparison to its oral administration. Intranasal administration of LiCl in RFV robustly protected against both memory loss and depressive-like behavior, while had no side effects concerning thyroid and kidney toxicity in 5XFAD mice. These lithium-induced beneficial effects were strongly associated with lithium's suppression of InsP3R-1 Ca2+ channel receptor increase, pathological neuroinflammation and activation of the pyroptosis pathway, as well as the loss of the synaptic protein PSD-95. Intranasal delivery of lithium salt in RFV could become an effective and potent inhibitor of pathological inflammation/pyroptosis in the CNS and serve as a new treatment for both AD-associated dementia and depression with minimal unwanted side effects including peripheral organ toxicity.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building 3620 Hamilton Walk, Philadelphia, PA, 19104, U.S.A
| | - Wenjia Zhang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building 3620 Hamilton Walk, Philadelphia, PA, 19104, U.S.A
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ge Liang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building 3620 Hamilton Walk, Philadelphia, PA, 19104, U.S.A
| | - Bailin Jiang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building 3620 Hamilton Walk, Philadelphia, PA, 19104, U.S.A
- Department of Anesthesiology, Peking University People's Hospital, Beijing, China
| | - Robert Vera
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building 3620 Hamilton Walk, Philadelphia, PA, 19104, U.S.A
| | - Rebecca Chae
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building 3620 Hamilton Walk, Philadelphia, PA, 19104, U.S.A
| | - Kyulee Kim
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building 3620 Hamilton Walk, Philadelphia, PA, 19104, U.S.A
| | - Lauren St Louis
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building 3620 Hamilton Walk, Philadelphia, PA, 19104, U.S.A
| | - Ying Wang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building 3620 Hamilton Walk, Philadelphia, PA, 19104, U.S.A
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Jia Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building 3620 Hamilton Walk, Philadelphia, PA, 19104, U.S.A
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 26600, People's Republic of China
| | - De-Maw Chuang
- Scientist Emeritus, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building 3620 Hamilton Walk, Philadelphia, PA, 19104, U.S.A..
| |
Collapse
|
3
|
Lin M, Wang Y, Wang X, Yan L, Wang L, Tian C. Association between alkali and alkaline earth elements in chorionic villus and risk for spontaneous abortion. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117516. [PMID: 39689455 DOI: 10.1016/j.ecoenv.2024.117516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 09/09/2024] [Accepted: 12/08/2024] [Indexed: 12/19/2024]
Abstract
Exposure to specific alkali and alkaline earth elements(AEs/AEEs) has been reported that are linked to an increased risk of spontaneous abortion. However, the direct evidence of exposure in the uterus are absent. Therefore, we collected chorionic villi after spontaneous abortion or induced abortion in Peking University Third Hospital. The concentrations of six alkali and alkaline earth elements in chorionic villi were measured using inductively coupled plasma mass spectrometry (ICP-MS). Through using logistic regression, Bayesian kernel machine regression (BKMR) and Weighted quantile sum regression (WQS) model, we assessed single and mixed exposure effects of alkali and alkaline earth elements on spontaneous abortion. In terms of the individual effect, high concentration group of barium (Ba) increased the risk of spontaneous abortion by 150 % (95 % CI: 1.38-4.51), whereas rubidium (Rb), cesium (Cs) and Magnesium (Mg) all clearly demonstrated dose dependency in reducing the incidence of spontaneous abortion. The BKMR model demonstrated that as the mixed exposure percentile increased, the likelihood of spontaneous abortion decreased almost linearly. For every quartile increasing in the WQS index, the risk of spontaneous abortion decreased (OR: 0.21, 95 % CI: 0.13-0.33), with Mg and Rb having the highest weights at 0.587 and 0.367, respectively. According to our findings, there were negative dose-response relationships between Mg and Rb levels and risk for spontaneous abortion, but exposure to higher concentration of Ba in the chorionic villi was positively associated with the risk of it.
Collapse
Affiliation(s)
- Meng Lin
- Department of Medical Genetics, Center for Medical Genetics, Peking University, Beijing 100191, China; State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Center for Medical Genetics, Peking University, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Yutong Wang
- Department of Medical Genetics, Center for Medical Genetics, Peking University, Beijing 100191, China; State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Center for Medical Genetics, Peking University, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Xiaoye Wang
- Department of Medical Genetics, Center for Medical Genetics, Peking University, Beijing 100191, China; State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Center for Medical Genetics, Peking University, Beijing 100191, China
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, China
| | - Linlin Wang
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China.
| | - Chan Tian
- Department of Medical Genetics, Center for Medical Genetics, Peking University, Beijing 100191, China; State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Center for Medical Genetics, Peking University, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China.
| |
Collapse
|
4
|
Bhuiyan P, Zhang W, Liang G, Jiang B, Vera R, Chae R, Kim K, Louis LS, Wang Y, Liu J, Chuang DM, Wei H. Intranasal Delivery of Lithium Salt Suppresses Inflammatory Pyroptosis in the brain and Ameliorates Memory Loss and Depression-like Behavior in 5XFAD mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613794. [PMID: 39345574 PMCID: PMC11430220 DOI: 10.1101/2024.09.18.613794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Background Alzheimer's disease (AD) is a devastating neurodegenerative disease (AD) and has no treatment that can cure or halt the disease progression. This study explored the therapeutic potential of lithium salt dissolved in Ryanodex formulation vehicle (RFV) and delivered to the brain by intranasal application. We first compared lithium concentrations in the brain and blood of wild-type mice following intranasal or oral administration of lithium chloride (LiCl) dissolved in either RFV or water. The beneficial and side effects of intranasal versus oral LiCl in RFV in these mice were assessed and potential mechanisms underlying the efficacy of anti-inflammation and anti-pyroptosis in the brains were also investigated in both wild-type (WT) and 5XFAD Alzheimer's Disease (AD) mice brains. Methods For the study of brain versus blood lithium concentrations, WT B6SJLF1/J mice at 2 months of age were treated with intranasal or oral LiCl (3 mmol/kg) dissolved in RFV or in water. Brain and blood lithium concentrations were measured at various times after drugs administration. Brain/blood lithium concentration ratios were then determined. For studying therapeutic efficacy versus side effects and their underlying mechanisms, 5XFAD and WT B6SJLF1/J mice were treated with intranasal LiCl (3 mmol/kg) daily, Monday to Friday each week, in RFV beginning at 2 or 9 months of age with a 12-week treatment duration. Animal behaviors were assessed for depression (tail suspension), cognition (fear conditioning and Y maze), olfaction (buried food test), and motor functions (rotarod) at the age of 5 and 12 months. Blood and brain tissue were harvested from these mice at 13 months. Blood biomarkers for the functions of thyroid (thyroid stimulating hormone, TSH) and kidney (creatinine) were measured using ELISA. Changes in protein expression levels of the endoplasmic reticulum Ca2+ release channels type 1 InsP3 receptors (InsP3R-1), malondialdehyde (MDA)-modified proteins and 4-hydroxy-2-nonenal (4-HNE), pyroptosis regulatory proteins (NLR family pyrin domain containing 3 (NLRP3), cleaved caspase-1, N-terminal of Gasdermin D (GSDMD)), cytotoxic (IL-1β, IL-18, IL-6, TNF-α) and cytoprotective (IL-10) cytokines and synapse proteins (PSD-95, synapsin-1) were determined using immunoblotting. Mouse body weights were monitored regularly. Results Compared to oral LiCl in RFV nanoparticles, intranasal treatment of WT mice with LiCl in RFV markedly decreased blood concentrations at the time frame of 30-120 minutes. The ratio of brain/blood lithium concentration after Intranasal lithium chloride in RFV significantly increased, in comparison to those after oral administration lithium chloride in RFV or intranasal administration of lithium chloride in water. Intranasal lithium chloride in RFV inhibited both memory loss and depressive behavior in adult and aged 5XFAD mice. Additionally intranasal treatment of aged 5XFAD mice with LiCl in RFV effectively suppressed the increases in InsP3R-1, intracellular oxidative stress markers (4-HNE-bound and MDA-modified proteins), pyroptosis activation proteins (NLRP3, cleaved caspase-1, N-terminal GSDMD) and cytotoxic cytokines (IL-1β, IL-6, TNF-α), but reversed the down-regulation of cytoprotective cytokine IL-10. Intranasal LiCl in RFV also alleviated the loss of the postsynaptic synapse protein PSD-95, but not synapsin-1, in aged 5XFAD mice. Blood level of the kidney function marker creatinine was significantly increased in 5XFAD than in WT mice in an age-dependent manner and this elevation was abolished by intranasal delivery of LiCl in RFV. Intranasal LiCl in RFV for 12 weeks in both WT or 5XFAD mice did not affect blood biomarkers for thyroid function, nor did it affect smell or muscle function or body weight. Conclusion Intranasal administration of LiCl in RFV significantly decreased lithium blood concentrations and increased brain/blood lithium concentration ratio, in comparison to its oral administration. Intranasal administration of LiCl in RFV robustly protected against both memory loss and depressive-like behavior, while had no side effects concerning thyroid and kidney toxicity in 5XFAD mice. These lithium-induced beneficial effects were strongly associated with lithium's suppression of InsP3R-1 Ca2+ channel receptor increase, pathological neuroinflammation and activation of the pyroptosis pathway, as well as the loss of some synaptic proteins. Intranasal delivery of lithium salt in RFV could become an effective and potent inhibitor of pathological inflammation/pyroptosis in the CNS and serve as a new treatment for both AD-associated dementia and depression with minimal unwanted side effects including peripheral organ toxicity.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - Wenjia Zhang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Ge Liang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - Bailin Jiang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
- Department of Anesthesiology, Peking University People’s Hospital, Beijing, China
| | - Robert Vera
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - Rebecca Chae
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - Kyulee Kim
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - Lauren St. Louis
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - Ying Wang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Jia Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 26600, P. R. China
| | - De-Maw Chuang
- Scientist Emeritus, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| |
Collapse
|
5
|
Shen Y, Zhao M, Zhao P, Meng L, Zhang Y, Zhang G, Taishi Y, Sun L. Molecular mechanisms and therapeutic potential of lithium in Alzheimer's disease: repurposing an old class of drugs. Front Pharmacol 2024; 15:1408462. [PMID: 39055498 PMCID: PMC11269163 DOI: 10.3389/fphar.2024.1408462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and memory loss. Despite advances in understanding the pathophysiological mechanisms of AD, effective treatments remain scarce. Lithium salts, recognized as mood stabilizers in bipolar disorder, have been extensively studied for their neuroprotective effects. Several studies indicate that lithium may be a disease-modifying agent in the treatment of AD. Lithium's neuroprotective properties in AD by acting on multiple neuropathological targets, such as reducing amyloid deposition and tau phosphorylation, enhancing autophagy, neurogenesis, and synaptic plasticity, regulating cholinergic and glucose metabolism, inhibiting neuroinflammation, oxidative stress, and apoptosis, while preserving mitochondrial function. Clinical trials have demonstrated that lithium therapy can improve cognitive function in patients with AD. In particular, meta-analyses have shown that lithium may be a more effective and safer treatment than the recently FDA-approved aducanumab for improving cognitive function in patients with AD. The affordability and therapeutic efficacy of lithium have prompted a reassessment of its use. However, the use of lithium may lead to potential side effects and safety issues, which may limit its clinical application. Currently, several new lithium formulations are undergoing clinical trials to improve safety and efficacy. This review focuses on lithium's mechanism of action in treating AD, highlighting the latest advances in preclinical studies and clinical trials. It also explores the side effects of lithium therapy and coping strategies, offering a potential therapeutic strategy for patients with AD.
Collapse
Affiliation(s)
- Yanxin Shen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Meng Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Panpan Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Lingjie Meng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Yan Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Guimei Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Yezi Taishi
- Department of Cadre Ward, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
6
|
Tian T, Li Q, Liu F, Jiang H, Yang R, Zhao Y, Kong F, Wang Y, Long X, Qiao J. Alkali and alkaline earth elements in follicular fluid and the likelihood of diminished ovarian reserve in reproductive-aged women: a case‒control study. J Ovarian Res 2024; 17:108. [PMID: 38762521 PMCID: PMC11102265 DOI: 10.1186/s13048-024-01414-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/12/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Imbalances in alkali elements (AEs) and alkaline earth elements (AEEs) cause reproductive disorders. However, it remains unclear whether AEs/AEEs in follicular fluid have a relationship with the serious reproductive disorder known as diminished ovarian reserve (DOR). METHODS A nested case‒control study was carried out in China. Follicular fluid samples from 154 DOR patients and 154 controls were collected and assessed for nine AEs/AEE levels. Both the mixed and single effects of the elements on DOR were estimated with a Bayesian kernel machine (BKMR) and logistic regressions. RESULTS The DOR group had higher median concentrations of Li, Na, and K in follicular fluid (all P values < 0.05). The logistic regression showed that compared with their lowest tertile, the high tertiles of K [OR:2.45 (1.67-4.43)], Li [OR: 1.89 (1.06-3.42)], and Cs [OR: 1.97 (1.10-3.54)] were significantly associated with the odds of DOR. The BKMR model reported that the DOR likelihood increased linearly across the 25th through 75th percentiles of the nine-AE/AEE mixture, while the AE group contributed more to the overall effect. CONCLUSION This study revealed an association in which the likelihood of DOR increased with higher overall concentrations of AE/AEEs in follicular fluid. Among the nine detected elements, K, Li, and Cs exhibited significant individual associations with DOR. We provide new clues for the environmental factors on female fertility decline. TRIAL REGISTRATION Retrospectively registered.
Collapse
Affiliation(s)
- Tian Tian
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, China
| | - Qin Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, China
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China
| | - Fang Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, China
| | - Huahua Jiang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, China
| | - Rui Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, China
| | - Yue Zhao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, China
| | - Fei Kong
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, China
| | - Yuanyuan Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, China
| | - Xiaoyu Long
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, China.
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, China.
- Beijing Advanced Innovation Center for Genomics, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
7
|
Taskaeva I, Kasatova A, Razumov I, Bgatova N, Taskaev S. Lithium salts cytotoxicity and accumulation in melanoma cells in vitro. J Appl Toxicol 2024; 44:712-719. [PMID: 38146629 DOI: 10.1002/jat.4576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/29/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023]
Abstract
Boron neutron capture therapy is a perspective selective technology for the destruction of cancer cells, while the use of lithium instead of boron may represent a new and promising vector for the development of neutron capture therapy (NCT). The aim of the study was a comparative assessment of the cytotoxicity of various lithium salts, as well as an analysis of the accumulation of lithium in tumor cells in vitro to determine the possibility of using lithium in NCT. The cytotoxicity of lithium salts was determined using MTT-test and colony forming assay on human fibroblasts BJ-5ta, human skin melanoma SK-Mel-28, and mouse skin melanoma B16 cell lines. An assessment of lithium concentration in cells was performed using inductively coupled plasma atomic emission spectrometry. Our results showed that three different lithium salts at a concentration of 40 μg/ml are not toxic for both tumor and normal cells. The highest uptake values were obtained on murine melanoma B16 cells when exposed to lithium carbonate (0.8 μg/106 cells); however, human melanoma SK-Mel-28 cells effectively accumulated both lithium carbonate and lithium citrate (about 0.46 μg/106 cells for two salts). Thus, our results demonstrate a range of non-toxic doses of lithium salts and a high uptake of lithium by tumor cells, which indicates the possibility to use the lithium in NCT.
Collapse
Affiliation(s)
- Iuliia Taskaeva
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology-Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
| | - Anna Kasatova
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
| | - Ivan Razumov
- Center for Genetic Resources of Laboratory Animals, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nataliya Bgatova
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology-Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey Taskaev
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
| |
Collapse
|
8
|
Iordache AM, Voica C, Roba C, Nechita C. Lithium Content and Its Nutritional Beneficence, Dietary Intake, and Impact on Human Health in Edibles from the Romanian Market. Foods 2024; 13:592. [PMID: 38397569 PMCID: PMC10888284 DOI: 10.3390/foods13040592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Lithium (Li) is present in human nutrition based on food intake, and several studies recommend it for treating mood disorders, even if the biological proprieties and biochemical mechanisms represent the basis for its use as an essential element. The Li content was evaluated using the inductively coupled plasma mass spectrometry technique (ICP-MS) in 1071 food and beverage samples from the Romanian market. The results show that Li had a decreasing mean concentration in the food samples as follows: vegetables leafy > bulbous > fructose > leguminous > egg whites > root vegetables > milk products > egg yolks > meats. Approximately a quarter of all data from each dataset category was extreme values (range between the third quartile and maximum value), with only 10% below the detection limit. Mean Li concentration indicated higher values in red wine, white wines, beers, and fruit juice and lower in ciders and bottled waters. A particular interest was addressed to plants for teas and coffee seeds, which showed narrow amounts of Li. For both food and beverages, two similar matrices, including egg whites and yolks and white and red wines, were found to have significant differences, which explains the high variability of Li uptake in various matrices. For 99.65% of the analyzed samples, the estimated daily intake of Li was below the provisional subchronic and chronic reference dose (2 µg/kgbw/day) for adverse effects in several organs and systems. Even so, a risk occurs in consuming bulbous vegetables (Li > 13.47 mg/kg) and fructose solano vegetables (Li > 11.33 mg/kg). The present study's findings indicate that ingesting most of the analyzed beverages and food samples could be considered safe, even if future studies regarding Li content, nutritional aspects, and human cohort diseases must be conducted.
Collapse
Affiliation(s)
- Andreea Maria Iordache
- National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI Ramnicu Valcea, 4 Uzinei Street, 240050 Ramnicu Valcea, Romania;
| | - Cezara Voica
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat St., 400293 Cluj-Napoca, Romania
| | - Carmen Roba
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, 30 Fântânele Street, 400294 400535 Cluj-Napoca, Romania;
| | - Constantin Nechita
- National Research and Development Institute for Forestry “Marin Drăcea”—INCDS, 128 Boulvard Eroilor, 077190 Voluntari, Romania
| |
Collapse
|
9
|
Kakhki S, Goodarzi M, Abbaszade-Cheragheali A, Rajabi M, Masoumipour AH, Khatibi SR, Beheshti F. Folic acid supplementation improved cognitive deficits associated with lithium administration during pregnancy in rat offspring. Int J Dev Neurosci 2023; 83:615-630. [PMID: 37582655 DOI: 10.1002/jdn.10289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 08/17/2023] Open
Abstract
INTRODUCTION The present study aimed to analyse both neurobehavioural and biochemical results of neonates born of mothers exposed to different doses of lithium along with the groups that received lithium at the highest dose with folic acid as a preventive treatment. MATERIALS AND METHODS Male and female rats were mated in separate cages, and pregnant rats were divided into eight first group as (1) vehicle; (2) propylthiouracil (PTU)-induced hypothyroidism; (3-4) received two different doses of lithium carbonate (15 and 30 mg/kg); (5-7) the highest doses of lithium (30 mg/kg) plus three different doses of folic acid (5, 10 and 15 mg/kg); and (8) received just folic acid (15 mg/kg). All treatments were dissolved in drinking water and continued until delivery, followed by returning to a regular diet without treatment. RESULTS Lithium (30 mg/kg) disrupts both behavioural and biochemical markers, including TSH, T3 and T4 as measuring indicators to assess thyroid function, IL-10 and TNF-α as anti-inflammatory and inflammatory agents, respectively, malondialdehyde as an oxidative stress marker, alongside SOD, and catalase activity as antioxidant indicators. Besides, folic acid, almost at the highest dose (15 mg/kg), attenuated memory impairement and anxiety-like behaviour caused by lithium. Moreover, the groups treated with folic acid alone in comparison with vehicles demonstrated higher levels of antioxidant and anti-inflammatory indicators. CONCLUSION According to the results, prenatal exposure to a high dose of lithium (30 mg/kg) leads to foetal neurodevelopmental disorder and growth restriction through various mechanisms more likely attributed to hypothyroidism, which means it should be either prohibited or prescribed cautiously during pregnancy.
Collapse
Affiliation(s)
- Samaneh Kakhki
- Department of Clinical Biochemistry, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mehrnoush Goodarzi
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Ali Abbaszade-Cheragheali
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mojgan Rajabi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Hossein Masoumipour
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Seyed Reza Khatibi
- Department of Public Health, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Departments of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| |
Collapse
|
10
|
Guilliot S, Gauthier S, Touchon J, Soto ME. Lithium, a Treatment Option for Alzheimer's Disease? A Review of Existing Evidence and Discussion on Future Perspectives. J Alzheimers Dis 2023; 96:473-482. [PMID: 37781804 DOI: 10.3233/jad-230568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
After over 50 years of use, lithium-salts remain the first-line therapy for the management of bipolar disorder. Throughout this period, the potential for lithium salts has been extensively studied and numerous data favor its use in the treatment of neurodegenerative disorders such as Alzheimer's disease (AD). We reviewed existing evidence gathered from clinical case reports and studies on the effect of lithium on neuropsychological symptoms of AD and as a disease-modifying treatment acting on cognitive symptoms. The review summarizes the molecular pathways, involving GSK-3β inhibition and neuroprotection, through which lithium is proposed to exert its effect. Limitations to its current use in AD are discussed and future perspectives as a potential treatment option for AD are considered in regard to ongoing clinical trials using different forms of lithium.
Collapse
Affiliation(s)
| | - Serge Gauthier
- Neurology and Psychiatry, McGill University, Montréal, Canada
| | | | - Maria E Soto
- Equipe AGING, axe MAINTAIN du CERPOP, UMR 1295, Research and Clinical Alzheimer's Disease Center, CMRR Gérontopôle, CHU Toulouse, Toulouse, France
| |
Collapse
|