1
|
Boals AG, Collier DM, Romero JR, Hillard CJ, Park F. Lack of Cannabinoid Type 2 Promoter Activity in Normal or Injured Kidneys Using a Cnr2-GFP Reporter Mouse. Cannabis Cannabinoid Res 2025; 10:400-408. [PMID: 39381839 DOI: 10.1089/can.2024.0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Introduction: Although cannabinoid type 2 (CB2) receptor activity is known to promote diverse biological functions in the kidney, published data regarding CB2 receptor protein levels and cellular distribution within the kidney is inconsistent. The goal of the present study was to investigate the changes of CB2 in the kidney obtained from mice exposed to various forms of kidney injury using a genetic mouse model expressing green fluorescent protein (GFP) driven by the endogenous cannabinoid receptor 2 (Cnr2) promoter. Materials and Methods: Kidney injury was established in a genetic mouse model expressing green fluorescent protein (GFP) driven by the endogenous Cnr2 promoter. Kidney injury was initiated by either treatment with different chemicals [cisplatin or lipopolysaccharide (LPS)] or by unilateral ureteral obstruction (UUO). Changes in the detection of GFP were used as a proxy for CB2 levels and localization. Histological changes due to the injury stimuli were observed by time-related, morphological changes in kidney cytoarchitecture and blood parameters, such as serum creatinine levels. Cnr2 mRNA levels were detected by reverse transcription coupled to polymerase chain reaction (RT-PCR) while protein changes in the tissue lysates were measured by Western blot analysis. Cellular localization of GFP was detected by fluorescent microscopy. Results: Our data demonstrated that there was no band or a minimally detectable band for GFP using kidney lysates from vehicle- or cisplatin-treated mice. A similar lack of GFP was detected in the UUO kidney versus the contralateral control kidney. This is consistent with the low, albeit detectable levels of Cnr2 mRNA in the kidney samples from control or cisplatin treatment. In frozen kidney sections from vehicle and cisplatin-treated mice, GFP fluorescence was not detectable in tubular epithelia, glomeruli or blood vessels in the cortex. Instead, GFP was detected in rare cells within the interstitial space. A second chemical injury model using LPS found a similar lack of GFP protein levels and an absence of legitimate GFP fluorescence in the main cell types within the kidney. Conclusion: These findings suggest that Cnr2 promoter activity is minimally active in normal or injured kidneys, and that pharmacological manipulation of CB2 receptors may be associated with receptors being expressed in cells recruited to the kidney.
Collapse
MESH Headings
- Animals
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Promoter Regions, Genetic
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Mice
- Cisplatin
- Kidney/metabolism
- Kidney/pathology
- Lipopolysaccharides
- Male
- Mice, Transgenic
- Ureteral Obstruction/metabolism
- RNA, Messenger/metabolism
- Disease Models, Animal
- Genes, Reporter
- Mice, Inbred C57BL
- Acute Kidney Injury/metabolism
Collapse
Affiliation(s)
- Avery G Boals
- University of Tennessee Health Science Center, College of Pharmacy, Memphis, Tennessee, USA
| | - Daniel M Collier
- University of Tennessee Health Science Center, College of Pharmacy, Memphis, Tennessee, USA
| | - Julian R Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | | | - Frank Park
- University of Tennessee Health Science Center, College of Pharmacy, Memphis, Tennessee, USA
| |
Collapse
|
2
|
Ramer R, Hinz B. Effect of cannabinoids on the efficacy and side effects of anticancer therapeutic strategies - Current status of preclinical and clinical research. Pharmacol Ther 2025; 270:108851. [PMID: 40221102 DOI: 10.1016/j.pharmthera.2025.108851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/14/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
Cannabinoids have attracted increasing attention in cancer research in recent decades. A major focus of current preclinical and clinical studies is on the interactions and potential risks when combined with chemotherapeutic agents, targeted therapies and other anticancer strategies. Given the extensive preclinical data on additive, synergistic and, in some cases, antagonistic tumor cell killing effects of chemotherapeutic agents and cannabinoids when co-administered, a critical analysis of these data seems essential. The available data mainly relate to combination treatments for glioblastoma, hematological malignancies and breast cancer, but also for other cancer types. Such an analysis also appears necessary because cannabinoids are used as an option to treat nausea and vomiting caused by chemotherapy, as well as tumor-related pain, and cancer patients sometimes take cannabinoids without a medical prescription. In addition, numerous recent preclinical studies also suggest cannabinoid-mediated relief of other chemotherapy-related side effects such as peripheral neuropathy, nephrotoxicity, cardiotoxicity, cystitis, bladder complications and mucositis. To summarize, the data available to date raise the prospect that cannabinoids may increase the efficacy of chemotherapeutic agents while reducing their side effects. However, preclinical studies on anticancer interactions are mostly limited to cytotoxicity analyses. An equally thorough investigation of the effects of such combinations on the immune system and on the tumorigenic levels of angiogenesis, invasion and metastasis is still pending. On this basis, a comprehensive understanding for the evaluation of a targeted additional treatment of various cancers with cannabinoids could be established.
Collapse
Affiliation(s)
- Robert Ramer
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany.
| |
Collapse
|
3
|
Teke S, Bayrak G, Ak E, Korkmaz AC, Yilmaz ŞN, Delibaş A. Assessment of protective effect of the losartan against cisplatin-induced nephrotoxicity in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04150-7. [PMID: 40317318 DOI: 10.1007/s00210-025-04150-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 04/06/2025] [Indexed: 05/07/2025]
Abstract
Cisplatin is widely used in pediatric oncology but is limited by its dose-dependent nephrotoxicity. The renin-angiotensin-aldosterone system (RAAS) has been implicated in cisplatin-induced renal injury. Losartan, an angiotensin II receptor blocker, may offer renal protection; however, its effects on apoptosis and regeneration in this context remain unclear. This study aimed to investigate the potential protective role of losartan against cisplatin-induced nephrotoxicity, specifically by assessing its impact on apoptosis and tubular regeneration. Fifteen female BALB/c mice were randomly assigned to three groups (n = 5 per group): Control, cisplatin (12.7 mg/kg, i.p., single dose), and cisplatin + losartan (10 mg/kg/day, oral). Losartan was administered for nine consecutive days, starting 4 days before cisplatin exposure. Histopathological examination, active caspase-3 immunostaining (for apoptosis), and 5-bromo-2-deoxyuridine (BrdU) labeling (for cell proliferation) were performed. Glomerular and tubular injury scores, caspase-3 H-scores, and BrdU-positive cell counts were statistically analyzed using the Kruskal-Wallis H and Mann-Whitney U tests. Cisplatin significantly increased glomerular (p = 0.006, p = 0.005, p = 0.006) and tubular injury scores (p = 0.008, p = 0.007, p = 0.007, p = 0.007, p = 0.007), elevated active caspase-3 expression (p = 0.002), and reduced BrdU-positive cell counts (p = 0.009) compared to control. Losartan co-treatment significantly reduced glomerular (p = 0.008, p = 0.005, p = 0.008) and tubular injury (p = 0.008, p = 0.008, p = 0.009, p = 0.008, v) and decreased caspase-3 expression (p = 0.009). Additionally, BrdU-positive cell counts were significantly higher in the cisplatin + losartan group compared to both control and cisplatin groups (p = 0.009), indicating enhanced regeneration. Losartan mitigates cisplatin-induced nephrotoxicity by suppressing apoptosis and promoting tubular regeneration. These findings support the potential therapeutic role of RAAS inhibition in preventing cisplatin-associated renal injury.
Collapse
Affiliation(s)
- Selçuk Teke
- Department of Pediatrics, Faculty of Medicine, Mersin University, Mersin, Turkey.
| | - Gülsen Bayrak
- Department of Histology and Embryology, Faculty of Medicine, Uşak University, Uşak, Turkey
| | - Erdem Ak
- Department of Pediatrics, Pediatric Hematology and Oncology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Ali Can Korkmaz
- Department of Anatomy, Gulhane Training and Research Hospital, Ankara, Turkey
| | - Şakir Necat Yilmaz
- Department of Histology and Embryology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Ali Delibaş
- Department of Pediatrics, Pediatric Nephrology, Faculty of Medicine, Mersin University, Mersin, Turkey
| |
Collapse
|
4
|
Valeriano JDP, Andrade-Silva M, Pereira-Dutra F, Seito LN, Bozza PT, Rosas EC, Souza Costa MF, Henriques MG. Cannabinoid receptor type 2 agonist GP1a attenuates macrophage activation induced by M. bovis-BCG by inhibiting NF-κB signaling. J Leukoc Biol 2025; 117:qiae246. [PMID: 39538989 DOI: 10.1093/jleuko/qiae246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024] Open
Abstract
Tuberculosis (TB) is one of the leading causes of death worldwide and a major public health problem. Immune evasion mechanisms and antibiotic resistance highlight the need to better understand this disease and explore alternative treatment approaches. Mycobacterial infection modulates the macrophage response and metabolism to persist and proliferate inside the cell. Cannabinoid receptor type 2 (CB2) is expressed mainly in leukocytes and modulates the course of inflammatory diseases. Therefore, our study aimed to evaluate the effects of the CB2-selective agonist GP1a on irradiated Mycobacterium bovis-BCG (iBCG)-induced J774A.1 macrophage activation. We observed increased expression of CB2 in macrophages after iBCG stimulation. The pretreatment with CB2-agonists, GP1a, JWH-133, and GW-833972A (10 µM), reduced iBCG-induced TNF-α and IL-6 release by these cells. Moreover, the CB2-antagonist AM630 (200 nM) treatment confirmed the activity of GP1a on CB2 by scale down its effect on cytokine production. GP1a pretreatment (10 µM) also inhibited the iBCG-induced production of inflammatory mediators as prostaglandin (PG)E2 and nitric oxide by macrophages. Additionally, GP1a pretreatment also reduced the transcription of proinflammatory genes (inos, il1b, and cox2) and genes related to lipid metabolism (dgat1, acat1, plin2, atgl, and cd36). Indeed, lipid droplet accumulation was reduced by GP1a treatment, which was partially blockade by AM630 pretreatment. Finally, GP1a pretreatment reduced the activation of the NF-κB signaling pathway. In conclusion, the activation of CB2 by GP1a modulated the macrophage response to iBCG by reducing inflammatory mediator levels and metabolic reprogramming.
Collapse
Affiliation(s)
- Jessica Do Prado Valeriano
- Immunobiology Department, Immunobiology of Inflammation Laboratory, IB, Universidade Federal Fluminense, R. Prof. Marcos Waldemar de Freitas Reis - São Domingos, Niterói - RJ 24210-201, Brazil
- Graduate Program in Biosciences-IBRAG IBRAG, Universidade do Estado do Rio de Janeiro, Blvd. 28 de Setembro, 87 - fundos - Vila Isabel, Rio de Janeiro - RJ 20551-030, Brazil
| | - Magaiver Andrade-Silva
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rua Sizenando Nabuco, 100, Manguinhos, Rio de Janeiro - RJ 21041-000, Brazil
| | - Filipe Pereira-Dutra
- Immunopharmacology Laboratory, IOC, Oswaldo Cruz Foundation, Av. Brasil, 4365 - Manguinhos, Rio de Janeiro - RJ 21040-900, Brazil
| | - Leonardo Noboru Seito
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rua Sizenando Nabuco, 100, Manguinhos, Rio de Janeiro - RJ 21041-000, Brazil
| | - Patricia Torres Bozza
- Immunopharmacology Laboratory, IOC, Oswaldo Cruz Foundation, Av. Brasil, 4365 - Manguinhos, Rio de Janeiro - RJ 21040-900, Brazil
| | - Elaine Cruz Rosas
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rua Sizenando Nabuco, 100, Manguinhos, Rio de Janeiro - RJ 21041-000, Brazil
| | - Maria Fernanda Souza Costa
- Immunobiology Department, Immunobiology of Inflammation Laboratory, IB, Universidade Federal Fluminense, R. Prof. Marcos Waldemar de Freitas Reis - São Domingos, Niterói - RJ 24210-201, Brazil
| | - Maria G Henriques
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rua Sizenando Nabuco, 100, Manguinhos, Rio de Janeiro - RJ 21041-000, Brazil
| |
Collapse
|
5
|
Chen C, Wang W, Poklis JL, Li PL, Lichtman AH, Gewirtz DA, Li N. Mitigation of cisplatin-induced acute kidney injury through oral administration of fatty acid amide hydrolase inhibitor PF-04457845. J Pharmacol Exp Ther 2025; 392:100032. [PMID: 40023608 DOI: 10.1124/jpet.124.002282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024] Open
Abstract
Fatty acid amide hydrolase (FAAH) serves as the primary enzyme responsible for degrading the endocannabinoid anandamide. Inhibition of FAAH, either through pharmacological means or genetic manipulation, can effectively reduce inflammation in various organs, including the brain, colon, heart, and kidneys. Infusion of a FAAH inhibitor into the kidney medulla induces diuretic and natriuretic effects. Moreover, FAAH knockout mice show protection against both post renal ischemia/reperfusion injury and cisplatin-induced acute kidney injury (AKI), although through distinct mechanisms. This study tested the hypothesis that pharmacological inhibition of FAAH activity mitigates cisplatin-induced AKI, thus, exploring potential renoprotective mechanism. Male wild-type C57BL/6J were administered an oral gavage of a FAAH inhibitor (PF-04457845, 5 mg/kg) or vehicle (10% PEG200+5% Tween 80+normal saline) at 72, 48, 24, and 2 hours before and 24 and 48 hours after a single intraperitoneal injection of cisplatin (25 mg/kg). Mice were euthanized 72 hours after cisplatin treatment. Compared with vehicle-treated mice, PF-04457845-treated mice showed a decrease of cisplatin-induced plasma creatinine, blood urea nitrogen levels, kidney injury biomarkers (neutrophil gelatinase-associated lipocalin and kidney injury molecule-1) and renal tubular damage. The renal protection from oral gavage of PF-04457845 against cisplatin-induced nephrotoxicity was associated with an enhanced endocannabinoid anandamide tone and reduced levels of DNA damage response biomarkers p53 and p21. Our work demonstrated that PF-04457845 effectively alleviates cisplatin-induced nephrotoxicity in mice, underscoring the potential of oral administration of a FAAH inhibitor as a novel strategy to prevent cisplatin nephrotoxicity. SIGNIFICANCE STATEMENT: Oral administration of the fatty acid amide hydrolase (FAAH) inhibitor, PF-04457845, reduced cisplatin-induced DNA damage response, tubular damage, and kidney dysfunction. Inhibition of FAAH represents a promising approach to prevent cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Chaoling Chen
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Weili Wang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Justin L Poklis
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Ningjun Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
6
|
Ewees MGED, Mostafa-Hadeab G, Saber S, El-Meguid EAA, Sree HTA, Abdel Rahman FEZS, Mahmoud NI. Linagliptin mitigates cisplatin-induced kidney impairment via mitophagy regulation in rats, with emphasis on SIRT-3/PGC-1α, PINK-1 and Parkin-2. Toxicol Appl Pharmacol 2024; 491:117048. [PMID: 39102946 DOI: 10.1016/j.taap.2024.117048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Cisplatin (CDDP) often leads to kidney impairment, limiting its effectiveness in cancer treatment. The lack of mitophagy in proximal tubules exacerbates this issue. Hence, targeting SIRT-3 and PGC1-α shows promise in mitigating CDDP-induced kidney damage. The potential renoprotective effects of linagliptin, however, remain poorly understood. This study represents the first exploration of linagliptin's impact on CDDP-induced kidney impairment in rats, emphasizing its potential role in mitophagic pathways. The experiment involved four rat groups: Group (I) received saline only, Group (II) received a single intraperitoneal injection of CDDP at 6 mg/kg. Groups (III) and (IV) received linagliptin at 6 and 10 mg/kg p.o., respectively, seven days before CDDP administration, continuing for an additional four days. Various parameters, including renal function tests, oxidative stress, TNF-α, IL-1β, IL-6, PGC-1α, FOXO-3a, p-ERK1, and the gene expression of SIRT-3 and P62 in renal tissue, were assessed. Linagliptin improved renal function, increased antioxidant enzyme activity, and decreased IL-1β, TNF-α, and IL-6 expression. Additionally, linagliptin significantly upregulated PGC-1α and PINK-1/Parkin-2 expression while downregulating P62 expression. Moreover, linagliptin activated FOXO-3a and SIRT-3, suggesting a potential enhancement of mitophagy. Linagliptin demonstrated a positive impact on various factors related to kidney health in the context of CDDP-induced impairment. These findings suggest a potential role for linagliptin in improving cancer treatment outcomes. Clinical trials are warranted to further investigate and validate its efficacy in a clinical setting.
Collapse
Affiliation(s)
- Mohamed Gamal El-Din Ewees
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 11787, Egypt.
| | - Gomaa Mostafa-Hadeab
- Department of Pharmacology, Medical College, Jouf University, Sakaka 11564, Saudi Arabia.
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | - Eman Ali Abd El-Meguid
- Department of Anatomy and Embryology, Faculty of Medicine, Fayoum University, Fayoum 63511, Egypt.
| | - Haidy Tamer Abo Sree
- Department of Basic Sciences, Biochemistry, Faculty of Oral and Dental Medicine, Nahda University, Beni-Suef 11787, Egypt.
| | | | - Nesreen Ishak Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 11787, Egypt
| |
Collapse
|
7
|
Wang J, Ma G, Zhang P, Ma C, Shao J, Wang L, Ma C. Mechanism of Huaiqihuang in treatment of diabetic kidney disease based on network pharmacology, molecular docking and in vitro experiment. Medicine (Baltimore) 2023; 102:e36177. [PMID: 38115276 PMCID: PMC10727674 DOI: 10.1097/md.0000000000036177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND This study aimed to investigate the active components, key targets, and potential molecular mechanisms Huaiqihuang (HQH) in the treatment of diabetic kidney disease (DKD) through network pharmacology, molecular docking, and in vitro experiments. METHODS The active components and potential targets of HQH were obtained from the TCMSP and HERB databases. The potential targets of DKD were obtained from the GeneCards, OMIM, DrugBank, and TTD databases. Protein interaction relationships were obtained from the STRING database, and a protein interaction network was constructed using Cytoscape software. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis was performed using the Metascape database. Molecular docking was performed using AutoDock software to verify the binding between key compounds and core target genes. In vitro experiments were conducted using human renal proximal tubular epithelial cells and various methods, such as CCK8, RT-PCR, immunofluorescence, and western blot, to evaluate the effects of HQH on inflammatory factors, key targets, and pathways. RESULTS A total of 48 active ingredients, 168 potential targets of HQH, and 1073 potential targets of DKD were obtained. A total of 118 potential targets, 438 biological processes, and 187 signal pathways were identified for the treatment of DKD. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis indicated that HQH may exert its therapeutic effects on DKD by regulating the expression of inflammatory factors through the nuclear factor kappa B (NF-κB) signaling pathway. The molecular docking results showed that β-sitosterol and baicalein had the highest binding affinity with key targets such as AKT1, IL6, TNF, PTGS2, IL1B, and CASP3, suggesting that they may be the most effective active ingredients of HQH in the treatment of DKD. In vitro experimental results demonstrated that HQH could enhance the viability of human renal proximal tubular epithelial cells inhibited by high glucose, decrease the levels of AKT1, TNF, IL6, PTGS2, IL1B, and CASP3, reduce the expression of NF-κB-P65 (P < .01), inhibit NF-κB-p65 nuclear translocation, and decrease chemokine expression (P < .01). CONCLUSION HQH may exert its therapeutic effects on DKD by inhibiting the NF-κB signaling pathway, reducing the level of pro-inflammatory cytokines, and alleviating the high glucose-induced injury of renal tubular epithelial cells.
Collapse
Affiliation(s)
- Junwei Wang
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, PR China
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People’s Hospital, Taiyuan, PR China
| | - Guiqiao Ma
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, PR China
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People’s Hospital, Taiyuan, PR China
| | - Peipei Zhang
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People’s Hospital, Taiyuan, PR China
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University, Fifth Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Chaojing Ma
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People’s Hospital, Taiyuan, PR China
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University, Fifth Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Jing Shao
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People’s Hospital, Taiyuan, PR China
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University, Fifth Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Liping Wang
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People’s Hospital, Taiyuan, PR China
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University, Fifth Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Chanjuan Ma
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, PR China
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People’s Hospital, Taiyuan, PR China
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University, Fifth Hospital of Shanxi Medical University, Taiyuan, PR China
- Department of Nephrology, Shanxi Provincial People’s Hospital, Taiyuan, PR China
| |
Collapse
|
8
|
Abdallah DM, Kamal MM, Aly NES, El-Abhar HS. Anandamide modulates WNT-5A/BCL-2, IP3/NFATc1, and HMGB1/NF-κB trajectories to protect against mercuric chloride-induced acute kidney injury. Sci Rep 2023; 13:11899. [PMID: 37488162 PMCID: PMC10366223 DOI: 10.1038/s41598-023-38659-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/12/2023] [Indexed: 07/26/2023] Open
Abstract
Endocannabinoid anandamide (AEA) has a physiological role in regulating renal blood flow, whereas its analogs ameliorated renal ischemia/reperfusion injury. Nonetheless, the role of AEA against mercuric chloride (HgCl2)-induced renal toxicity has not been unraveled. Rats were allocated into control, HgCl2, and HgCl2/AEA treated groups. The administration of AEA quelled the HgCl2-mediated increase in inositol trisphosphate (IP3) and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1). The endocannabinoid also signified its anti-inflammatory potential by turning off the inflammatory cascade evidenced by the suppression of high mobility group box protein-1 (HMGB1), receptor of glycated end products (RAGE), nuclear factor-κB p65 (NF-κB), and unexpectedly PPAR-γ. Additionally, the aptitude of AEA to inhibit malondialdehyde and boost glutathione points to its antioxidant capacity. Moreover, AEA by enhancing the depleted renal WNT-5A and reducing cystatin-C and KIM-1 (two kidney function parameters) partly verified its anti-apoptotic capacity, confirmed by inhibiting caspase-3 and increasing B-cell lymphoma-2 (BCL-2). The beneficial effect of AEA was mirrored by the improved architecture and kidney function evidenced by the reduction in cystatin-C, KIM-1, creatinine, BUN, and caspase1-induced activated IL-18. In conclusion, our results verify the reno-protective potential of AEA against HgCl2-induced kidney injury by its anti-inflammatory, antioxidant, and anti-apoptotic capacities by modulating WNT-5A/BCL-2, IP3/NFATC1, HMGB-1/RAGE/NF-κB, caspase-1/IL-18, and caspase-3/BCL-2 cues.
Collapse
Affiliation(s)
- Dalaal M Abdallah
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Mahmoud M Kamal
- Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes, Cairo, Egypt
| | - Nour Eldin S Aly
- Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes, Cairo, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo, 11835, Egypt
| |
Collapse
|
9
|
Li X, Chang H, Bouma J, de Paus LV, Mukhopadhyay P, Paloczi J, Mustafa M, van der Horst C, Kumar SS, Wu L, Yu Y, van den Berg RJBHN, Janssen APA, Lichtman A, Liu ZJ, Pacher P, van der Stelt M, Heitman LH, Hua T. Structural basis of selective cannabinoid CB 2 receptor activation. Nat Commun 2023; 14:1447. [PMID: 36922494 PMCID: PMC10017709 DOI: 10.1038/s41467-023-37112-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
Cannabinoid CB2 receptor (CB2R) agonists are investigated as therapeutic agents in the clinic. However, their molecular mode-of-action is not fully understood. Here, we report the discovery of LEI-102, a CB2R agonist, used in conjunction with three other CBR ligands (APD371, HU308, and CP55,940) to investigate the selective CB2R activation by binding kinetics, site-directed mutagenesis, and cryo-EM studies. We identify key residues for CB2R activation. Highly lipophilic HU308 and the endocannabinoids, but not the more polar LEI-102, APD371, and CP55,940, reach the binding pocket through a membrane channel in TM1-TM7. Favorable physico-chemical properties of LEI-102 enable oral efficacy in a chemotherapy-induced nephropathy model. This study delineates the molecular mechanism of CB2R activation by selective agonists and highlights the role of lipophilicity in CB2R engagement. This may have implications for GPCR drug design and sheds light on their activation by endogenous ligands.
Collapse
Affiliation(s)
- Xiaoting Li
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Hao Chang
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jara Bouma
- Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden University, Oncode Institute, Leiden, the Netherlands
| | - Laura V de Paus
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Oncode Institute, Leiden, the Netherlands
| | - Partha Mukhopadhyay
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute of Health/National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, USA
| | - Janos Paloczi
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute of Health/National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, USA
| | - Mohammed Mustafa
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Cas van der Horst
- Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden University, Oncode Institute, Leiden, the Netherlands
| | - Sanjay Sunil Kumar
- Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden University, Oncode Institute, Leiden, the Netherlands
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yanan Yu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Richard J B H N van den Berg
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Oncode Institute, Leiden, the Netherlands
| | - Antonius P A Janssen
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Oncode Institute, Leiden, the Netherlands
| | - Aron Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute of Health/National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, USA.
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Oncode Institute, Leiden, the Netherlands.
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden University, Oncode Institute, Leiden, the Netherlands.
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|