1
|
Liu D, Liu L, Zhang X, Zhao X, Li X, Che X, Wu G. Decoding driver and phenotypic genes in cancer: Unveiling the essence behind the phenomenon. Mol Aspects Med 2025; 103:101358. [PMID: 40037122 DOI: 10.1016/j.mam.2025.101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/25/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
Gray hair, widely regarded as a hallmark of aging. While gray hair is associated with aging, reversing this trait through gene targeting does not alter the fundamental biological processes of aging. Similarly, certain oncogenes (such as CXCR4, MMP-related genes, etc.) can serve as markers of tumor behavior, such as malignancy or prognosis, but targeting these genes alone may not lead to tumor regression. We pioneered the name of this class of genes as "phenotypic genes". Historically, cancer genetics research has focused on tumor driver genes, while genes influencing cancer phenotypes have been relatively overlooked. This review explores the critical distinction between driver genes and phenotypic genes in cancer, using the MAPK and PI3K/AKT/mTOR pathways as key examples. We also discuss current research techniques for identifying driver and phenotypic genes, such as whole-genome sequencing (WGS), RNA sequencing (RNA-seq), RNA interference (RNAi), CRISPR-Cas9, and other genomic screening methods, alongside the concept of synthetic lethality in driver genes. The development of these technologies will help develop personalized treatment strategies and precision medicine based on the characteristics of relevant genes. By addressing the gap in discussions on phenotypic genes, this review significantly contributes to clarifying the roles of driver and phenotypic genes, aiming at advancing the field of targeted cancer therapy.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Lei Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiaoman Zhang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xinming Zhao
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiaorui Li
- Department of Oncology, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China.
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
2
|
Erin N, Tavşan E, Haksever S, Yerlikaya A, Riganti C. Targeting BMP-1 enhances anti-tumoral effects of doxorubicin in metastatic mammary cancer: common and distinct features of TGF-β inhibition. Breast Cancer Res Treat 2025; 210:563-574. [PMID: 39792296 PMCID: PMC11953206 DOI: 10.1007/s10549-024-07592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025]
Abstract
PURPOSE Mammary carcinoma is comprised heterogeneous groups of cells with different metastatic potential. 4T1 mammary carcinoma cells metastasized to heart (4THM), liver (4TLM) and brain (4TBM) and demonstrate cancer-stem cell phenotype. Using these cancer cells we found thatTGF-β is the top upstream regulator of metastatic process. In addition, secretion of bone morphogenetic protein 1 (BMP-1), which is crucial for the proteolytic release of TGF-β, was markedly high in metastatic mammary cancer cells compared to non-metastatic cells. Although TGF-β inhibitors are in clinical trials, systemic inhibition of TGF-β may produce heavy side effects. We here hypothesize that inhibition of BMP-1 proteolytic activity inhibits TGF-β activity and induces anti-tumoral effects. METHOD AND RESULTS Effects of specific BMP-1 inhibitor on liver and brain metastatic murine mammary cancer cells (4TLM and 4TBM), as well as on human mammary cancer MDA-MB-231 and MCF-7 cells, were examined and compared with the results of TGF-β inhibition. Inhibition of BMP-1 activity markedly suppressed proliferation of cancer cells and enhanced anti-tumoral effects of doxorubicin. Inhibition of BMP-1 activity but not of TGF-β activity decreased colony and spheroid formation. Differential effects of BMP-1 and TGF-β inhibitors on TGF-β secretion was also observed. CONCLUSIONS These results demonstrated for the first time that the inhibition of BMP-1 activity has therapeutic potential for treatment of metastatic mammary cancer and enhances the anti-tumoral effects of doxorubicin.
Collapse
Affiliation(s)
- Nuray Erin
- Department of Medical Pharmacology, Faculty of Medicine, Akdeniz University, Antalya, Turkey.
| | - Esra Tavşan
- Department of Medical Pharmacology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Seren Haksever
- Department of Medical Pharmacology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Azmi Yerlikaya
- Department of Medical Biology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Chiara Riganti
- Department of Oncology, University of Torino, Via Nizza 44, 10126, Turin, Italy
- Molecular Biotechnology Center "Guido Tarone", Via Nizza 44, 10126, Turin, Italy
- Interdepartmental Center "G.Scansetti" for the Study of Asbestos and Other Toxic Particulates, University of Torino, 10126, Turin, Italy
| |
Collapse
|
3
|
Bao X, Zeng Z, Tang W, Li D, Fan X, Chen K, Wang Y, Ai W, Yang Q, Liu S, Chen T. Bioinformatics Combined With Biological Experiments to Identify the Pathogenetic Link of Type 2 Diabetes for Breast Cancer. Cancer Med 2025; 14:e70759. [PMID: 40202151 PMCID: PMC11979791 DOI: 10.1002/cam4.70759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/19/2025] [Accepted: 02/26/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) constitutes a significant risk factor for breast cancer (BC), with affected women exhibiting a two- to three-fold increased likelihood of developing BC. Furthermore, women diagnosed with both BC and T2DM tend to experience poorer prognoses and exhibit greater resistance to various treatments compared to their non-diabetic counterparts. Consequently, elucidating the comorbidities associated with T2DM and BC is instrumental in enhancing the diagnostic and therapeutic strategies for BC. METHODS A series of bioinformatics methods including weighted gene co-expression network analysis (WGCNA), differentially expressed gene (DEG) analysis, machine learning, and single-cell sequencing analysis were used to identify the pathogenetic molecules of T2DM for BC. Biological experiments including CCK-8, colony formation, wound healing, transwell assay, immunohistochemistry, and immunofluorescence were performed to determine the molecule effect. RESULTS By conducting WGCNA and DEG analysis on the profiles of T2DM (GSE25724 and GSE20966) and the TCGA cohort of BC, we identified a total of 27 common hub genes shared between T2DM and BC. These genes were significantly enriched in pathways related to cell differentiation, cellular developmental processes, focal adhesion, and the MAPK signaling pathway. Notably, among these 27 genes, CCNB2, XRCC2, and CENPI were associated with poor prognosis in BC. Moreover, single-cell RNA sequencing analysis revealed that CCNB2, XRCC2, and CENPI are enriched in cancer cells within BC tissues. Additionally, we observed that CCNB2, XRCC2, and CENPI were elevated in BC tissues provided by patients with a diabetes history and associated with KI67 expression. Hyperglycemia treatment elevated the expression levels of CCNB2, XRCC2, and CENPI in BC cells, which correlated with increased cell proliferation and mobility. Conversely, the knockdown of these genes partially mitigated the pro-proliferative and pro-migratory effects induced by hyperglycemia in BC cells. CONCLUSION Our findings suggested that CCNB2, XRCC2, and CENPI may serve as key pathogenic mediators linking T2DM and BC. Targeting these molecules could potentially attenuate the adverse impacts of T2DM on BC progression.
Collapse
Affiliation(s)
- Xin Bao
- Engineering Research Center of Chronic Disease Diagnosis and Treatment, School of Basic MedicineGuizhou Medical UniversityGuiyangChina
| | - Zhirui Zeng
- Engineering Research Center of Chronic Disease Diagnosis and Treatment, School of Basic MedicineGuizhou Medical UniversityGuiyangChina
| | - Wenjing Tang
- Engineering Research Center of Chronic Disease Diagnosis and Treatment, School of Basic MedicineGuizhou Medical UniversityGuiyangChina
| | - Dahuan Li
- Engineering Research Center of Chronic Disease Diagnosis and Treatment, School of Basic MedicineGuizhou Medical UniversityGuiyangChina
| | - Xianrui Fan
- School of ImagingGuizhou Medical UniversityGuiyangChina
| | - Kang Chen
- Department of Breast SurgeryAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Yongkang Wang
- Department of Breast SurgeryAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Weijie Ai
- Department of Breast SurgeryAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Qian Yang
- Department of Breast SurgeryAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Shu Liu
- Department of Breast SurgeryAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Tengxiang Chen
- Engineering Research Center of Chronic Disease Diagnosis and Treatment, School of Basic MedicineGuizhou Medical UniversityGuiyangChina
| |
Collapse
|
4
|
Dong J, Wang Z, Fei F, Jiang Y, Jiang Y, Guo L, Liu K, Cui L, Meng X, Li J, Wang H. Selenium Enhances the Growth of Bovine Endometrial Stromal Cells by PI3K/AKT/GSK-3β and Wnt/β-Catenin Pathways. Vet Sci 2024; 11:674. [PMID: 39729014 DOI: 10.3390/vetsci11120674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
The bovine uterus is susceptible to bacterial infections after calving, particularly from Escherichia coli (E. coli), which often results in endometritis. Additionally, postpartum stress in cows can elevate cortisol levels in the body, inhibiting endometrial regeneration and reducing immune function, thereby further increasing the risk of infection. Selenium (Se) is a common feed additive in dairy farming, known for its anti-inflammatory and antioxidant effects. The aim of this study was to investigate the regulatory role of Se in the growth of bovine endometrial stromal cells (BESCs) under the conditions of LPS-induced inflammatory damage at high cortisol levels. BESCs were treated with 1, 2, 4 μM Se in combination with co-treatment of LPS and cortisol. The results indicated that LPS inhibited the cell viability and reduced the mRNA expression of CTGF, TGF-β1, and TGF-β3. Additionally, LPS increased apoptosis, hindered the cell cycle progression by blocking it in the G0/G1 phase, and suppressed the PI3K/AKT/GSK-3β and Wnt/β-catenin signaling pathways. Furthermore, increased concentrations of cortisol can exacerbate the impacts of LPS on cell proliferation and apoptosis. Conversely, the supplementation of Se promoted cell viability, increased the mRNA expression of TGF-β1 and TGF-β3, and enhanced cell cycle progression, while simultaneously repressing cell apoptosis as well as activating the PI3K/AKT/GSK-3β and Wnt/β-catenin signaling pathways. The above findings demonstrated that Se can promote cell proliferation, reduce cell apoptosis, and aid in the growth of BESCs damaged by LPS under high levels of cortisol. The potential mechanisms may be associated with the regulation of the PI3K/AKT/GSK-3β and Wnt/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Junsheng Dong
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Zi Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Fan Fei
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Yeqi Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Yongshuai Jiang
- Guangling College, Yangzhou University, Yangzhou 225009, China
- School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Long Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Kangjun Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Xia Meng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Ke B, Huang Y, Gong Y, Zhong H, Shi L. Overexpression of microRNA-611 inhibits TGF-β-induced epithelial-mesenchymal transition and migration in lung cancer cells through MAPKAP1. Cell Signal 2024; 123:111357. [PMID: 39173858 DOI: 10.1016/j.cellsig.2024.111357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Metastasis is a major cause of death in patients with lung cancer (LC). microRNA-611 (miR-611), a miRNA, has been little studied in cancer. Here, we aimed to further elucidate the roles of miR-611 in epithelial-mesenchymal transition (EMT) and migration induced by transforming growth factor-β (TGF-β) in LC cells and the possible underlying mechanisms. miR-611 and MAPKAP1 expression was first identified in LC tissues from metastatic and nonmetastatic patients, and their expression was associated with overall survival. Gain- and loss-of-function experiments were performed to verify the impacts of miR-611 and MAPKAP1 on pAKT expression, EMT, and migration in LC cells treated with TGF-β. The interaction between miR-611 and MAPKAP1 was also determined with a luciferase reporter assay. In our study, miR-611 was expressed at low levels, and MAPKAP1 was highly expressed in LC tissues, which was associated with metastasis and short overall survival. Functionally, miR-611 inhibition or MAPKAP1 overexpression accelerated EMT and migration and upregulated pAKT in TGF-β-treated A549 and H1299 cells; miR-611 overexpression or MAPKAP1 silencing exerted the opposite effects as miR-611 inhibition or MAPKAP1 overexpression. Mechanistically, miR-611 could target and downregulate MAPKAP1. MAPKAP1 expression was also negatively correlated with miR-611 expression in LC tissues. In addition, miR-611 overexpression reduced the EMT and migration of TGF-β-treated A549 and H1299 cells by targeting MAPKAP1. In conclusion, miR-611 overexpression attenuated EMT and migration by targeting MAPKAP1 in TGF-β-induced LC cells, indicating that miR-611 is a biological target for LC treatment.
Collapse
Affiliation(s)
- Bin Ke
- Department of VIP Ward, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Yuanyuan Huang
- Department of VIP Ward, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Yuxin Gong
- Department of Respiratory Diseases,Zhujiang Hospital of Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Hai Zhong
- Department of Thoracic Surgery,Zhujiang Hospital of Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Lin Shi
- Department of Traditional Chinese Medicine,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China.
| |
Collapse
|
6
|
Neagu AN, Josan CL, Jayaweera TM, Weraduwage K, Nuru N, Darie CC. Double-Edged Sword Effect of Diet and Nutrition on Carcinogenic Molecular Pathways in Breast Cancer. Int J Mol Sci 2024; 25:11078. [PMID: 39456858 PMCID: PMC11508170 DOI: 10.3390/ijms252011078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Environmental exposure to a mixture of chemical xenobiotics acts as a double-edged sword, promoting or suppressing tumorigenesis and the development of breast cancer (BC). Before anything else, we are what we eat. In this review, we highlight both "the good" and "the bad" sides of the daily human diet and dietary patterns that could influence BC risk (BCR) and incidence. Thus, regularly eating new, diversified, colorful, clean, nutrient-rich, energy-boosting, and raw food, increases apoptosis and autophagy, antioxidation, cell cycle arrest, anti-inflammation, and the immune response against BC cells. Moreover, a healthy diet could lead to a reduction in or the inhibition of genomic instability, BC cell stemness, growth, proliferation, invasion, migration, and distant metastasis. We also emphasize that, in addition to beneficial compounds, our food is more and more contaminated by chemicals with harmful effects, which interact with each other and with endogenous proteins and lipids, resulting in synergistic or antagonistic effects. Thus, a healthy and diverse diet, combined with appropriate nutritional behaviors, can exert anti-carcinogenic effects and improve treatment efficacy, BC patient outcomes, and the overall quality of life of BC patients.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania;
| | - Claudiu-Laurentiu Josan
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania;
| | - Taniya M. Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (K.W.); (N.N.)
| | - Krishan Weraduwage
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (K.W.); (N.N.)
| | - Niyogushima Nuru
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (K.W.); (N.N.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (K.W.); (N.N.)
| |
Collapse
|
7
|
Liu R, Yu Y, Wang Q, Zhao Q, Yao Y, Sun M, Zhuang J, Sun C, Qi Y. Interactions between hedgehog signaling pathway and the complex tumor microenvironment in breast cancer: current knowledge and therapeutic promises. Cell Commun Signal 2024; 22:432. [PMID: 39252010 PMCID: PMC11382420 DOI: 10.1186/s12964-024-01812-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/31/2024] [Indexed: 09/11/2024] Open
Abstract
Breast cancer ranks as one of the most common malignancies among women, with its prognosis and therapeutic efficacy heavily influenced by factors associated with the tumor cell biology, particularly the tumor microenvironment (TME). The diverse elements of the TME are engaged in dynamic bidirectional signaling interactions with various pathways, which together dictate the growth, invasiveness, and metastatic potential of breast cancer. The Hedgehog (Hh) signaling pathway, first identified in Drosophila, has been established as playing a critical role in human development and disease. Notably, the dysregulation of the Hh pathway is recognized as a major driver in the initiation, progression, and metastasis of breast cancer. Consequently, elucidating the mechanisms by which the Hh pathway interacts with the distinct components of the breast cancer TME is essential for comprehensively evaluating the link between Hh pathway activation and breast cancer risk. This understanding is also imperative for devising novel targeted therapeutic strategies and preventive measures against breast cancer. In this review, we delineate the current understanding of the impact of Hh pathway perturbations on the breast cancer TME, including the intricate and complex network of intersecting signaling cascades. Additionally, we focus on the therapeutic promise and clinical challenges of Hh pathway inhibitors that target the TME, providing insights into their potential clinical utility and the obstacles that must be overcome to harness their full therapeutic potential.
Collapse
Affiliation(s)
- Ruijuan Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261000, China
| | - Yang Yu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, 999078, China
| | - Qingyang Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Qianxiang Zhao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yan Yao
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261000, China
| | - Mengxuan Sun
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261000, China.
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261000, China.
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, 261000, China.
| | - Yuanfu Qi
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
8
|
Giarratana AO, Prendergast CM, Salvatore MM, Capaccione KM. TGF-β signaling: critical nexus of fibrogenesis and cancer. J Transl Med 2024; 22:594. [PMID: 38926762 PMCID: PMC11201862 DOI: 10.1186/s12967-024-05411-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The transforming growth factor-beta (TGF-β) signaling pathway is a vital regulator of cell proliferation, differentiation, apoptosis, and extracellular matrix production. It functions through canonical SMAD-mediated processes and noncanonical pathways involving MAPK cascades, PI3K/AKT, Rho-like GTPases, and NF-κB signaling. This intricate signaling system is finely tuned by interactions between canonical and noncanonical pathways and plays key roles in both physiologic and pathologic conditions including tissue homeostasis, fibrosis, and cancer progression. TGF-β signaling is known to have paradoxical actions. Under normal physiologic conditions, TGF-β signaling promotes cell quiescence and apoptosis, acting as a tumor suppressor. In contrast, in pathological states such as inflammation and cancer, it triggers processes that facilitate cancer progression and tissue remodeling, thus promoting tumor development and fibrosis. Here, we detail the role that TGF-β plays in cancer and fibrosis and highlight the potential for future theranostics targeting this pathway.
Collapse
Affiliation(s)
- Anna O Giarratana
- Northwell Health - Peconic Bay Medical Center, 1 Heroes Way, Riverhead, NY, 11901, USA.
| | | | - Mary M Salvatore
- Department of Radiology, Columbia University, New York, NY, 11032, USA
| | | |
Collapse
|
9
|
Cheng Y, Zou J, He M, Hou X, Wang H, Xu J, Yuan Z, Lan M, Yang Y, Chen X, Gao F. Spatiotemporally controlled Pseudomonas exotoxin transgene system combined with multifunctional nanoparticles for breast cancer antimetastatic therapy. J Control Release 2024; 367:167-183. [PMID: 37562556 DOI: 10.1016/j.jconrel.2023.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
The tumor microenvironment is a barrier to breast cancer therapy. Cancer-associated fibroblast cells (CAFs) can support tumor proliferation, metastasis, and drug resistance by secreting various cytokines and growth factors. Abnormal angiogenesis provides sufficient nutrients for tumor proliferation. Considering that CAFs express the sigma receptor (which recognizes anisamide, AA), we developed a CAFs and breast cancer cells dual-targeting nano drug delivery system to transport the LightOn gene express system, a spatiotemporal controlled gene expression consisting of a light-sensitive transcription factor and a specific minimal promoter. We adopted RGD (Arg-Gly-Asp) to selectively bind to the αvβ3 integrin on activated vascular endothelial cells and tumor cells. After the LightOn system has reached the tumor site, LightOn gene express system can spatiotemporal controllably express toxic Pseudomonas exotoxin An under blue light irradiation. The LightOn gene express system, combined with multifunctional nanoparticles, achieved high targeting delivery efficiency both in vitro and in vivo. It also displayed strong tumor and CAFs inhibition, anti-angiogenesis ability and anti-metastasis ability, with good safety. Moreover, it improved survival rate, survival time, and lung metastasis rate in a mouse breast cancer model. This study proves the efficacy of combining the LightOn system with targeted multifunctional nanoparticles in tumor and anti-metastatic therapy and provides new insights into tumor microenvironment regulation.
Collapse
Affiliation(s)
- Yi Cheng
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiafeng Zou
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Muye He
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyu Hou
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hongtao Wang
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiajun Xu
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zeting Yuan
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Yang
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Xianjun Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Feng Gao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
10
|
Lin J, Feng D, Liu J, Yang Y, Wei X, Lin W, Lin Q. Construction of stemness gene score by bulk and single-cell transcriptome to characterize the prognosis of breast cancer. Aging (Albany NY) 2023; 15:8185-8203. [PMID: 37602872 PMCID: PMC10496995 DOI: 10.18632/aging.204963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023]
Abstract
Breast cancer (BC) is a heterogeneous disease characterized by significant differences in prognosis and therapy response. Numerous prognostic tools have been developed for breast cancer. Usually these tools are based on bulk RNA-sequencing (RNA-Seq) and ignore tumor heterogeneity. Consequently, the goal of this study was to construct a single-cell level tool for predicting the prognosis of BC patients. In this study, we constructed a stemness-risk gene score (SGS) model based on single-sample gene set enrichment analysis (ssGSEA). Patients were divided into two groups based on the median SGS. Patients with a high SGS scores had a significantly worse prognosis than those with a low SGS, and these groups exhibited differences in several tumor characteristics, such as immune infiltration, gene mutations, and copy number variants. Our results indicate that the SGS is a reliable tool for predicting prognosis and response to immunotherapy in BC patients.
Collapse
Affiliation(s)
- Jun Lin
- Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Anesthesiology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Deyi Feng
- Xiamen University, Xiamen 361100, China
| | - Jie Liu
- Department of Endoscopy, Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| | - Ye Yang
- The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Xujin Wei
- The Graduate School of Fujian Medical University, Fuzhou 350001, China
| | - Wenqian Lin
- Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Anesthesiology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Qun Lin
- Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Anesthesiology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|