1
|
Chen S, Cao Y, Fan Z, Xu L, Pan Z, Gao Y, Wei L, Wei Q, Tian Y, Zhang X, Liu M, Ren F. Depressed TFAM promotes acetaminophen-induced hepatotoxicity regulated by DDX3X-PGC1α-NRF2 signaling pathway. Mol Med 2024; 30:246. [PMID: 39701936 DOI: 10.1186/s10020-024-01017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Acetaminophen (APAP)-induced acute liver injury (AILI) is the most prevalent cause of acute liver failure and mitochondrial dysfunction plays a dominant role in the pathogenesis of AILI. Mitochondrial transcription factor A (TFAM) is an important marker for maintaining mitochondrial functional homeostasis, but its functions in AILI are unclear. This study aimed to investigate the function of TFAM and its regulatory molecular mechanism in the progression of AILI. METHODS The roles of TFAM and DEAD (Asp-Glu-Ala-Asp) box polypeptide 3 X-linked (DDX3X) in AILI were determined with TFAM overexpression and DDX3X knockdown, respectively. RESULTS TFAM expression was suppressed in AILI patients. TFAM overexpression alleviated liver necrosis and mitochondrial dysfunction. Treatment of the AILI mice model with N-acetylcysteine (NAC), a drug used to treat APAP overdose, resulted in significant TFAM activation. In vivo experiments confirmed that TFAM expression was negatively regulated by DDX3X. Mechanistic studies showed that nuclear respiratory factor 2 (NRF-2), a key regulator of TFAM, was selectively activated after DDX3X knockdown via activated peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1α), in vivo and in vitro. CONCLUSIONS This study demonstrates that depressed hepatic TFAM plays a key role in the pathogenesis of AILI, which is regulated by the DDX3X-PGC1α-NRF2 signaling pathway.
Collapse
Affiliation(s)
- Sisi Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, XitouTiao Road, Youwai Street, Fengtai District, Beijing, 100069, China
- Department of Liver Oncology, Beijing Youan Hospital, Capital Medical University, No. 8, Xitou Tiao Road, Youwai Street, Fengtai District, Beijing, 100069, China
| | - Yaling Cao
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, XitouTiao Road, Youwai Street, Fengtai District, Beijing, 100069, China
| | - Zihao Fan
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, XitouTiao Road, Youwai Street, Fengtai District, Beijing, 100069, China
| | - Ling Xu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, XitouTiao Road, Youwai Street, Fengtai District, Beijing, 100069, China
| | - Zhenzhen Pan
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, XitouTiao Road, Youwai Street, Fengtai District, Beijing, 100069, China
| | - Yao Gao
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, XitouTiao Road, Youwai Street, Fengtai District, Beijing, 100069, China
| | - Linlin Wei
- The Second Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Qiaoxin Wei
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, XitouTiao Road, Youwai Street, Fengtai District, Beijing, 100069, China
- Department of Liver Oncology, Beijing Youan Hospital, Capital Medical University, No. 8, Xitou Tiao Road, Youwai Street, Fengtai District, Beijing, 100069, China
| | - Yuan Tian
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, XitouTiao Road, Youwai Street, Fengtai District, Beijing, 100069, China
| | - Xiangying Zhang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, XitouTiao Road, Youwai Street, Fengtai District, Beijing, 100069, China
| | - Mei Liu
- Department of Liver Oncology, Beijing Youan Hospital, Capital Medical University, No. 8, Xitou Tiao Road, Youwai Street, Fengtai District, Beijing, 100069, China.
| | - Feng Ren
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, XitouTiao Road, Youwai Street, Fengtai District, Beijing, 100069, China.
| |
Collapse
|
2
|
Hossen MS, Akter A, Azmal M, Rayhan M, Islam KS, Islam MM, Ahmed S, Abdullah-Al-Shoeb M. Unveiling the molecular basis of paracetamol-induced hepatotoxicity: Interaction of N-acetyl- p-benzoquinone imine with mitochondrial succinate dehydrogenase. Biochem Biophys Rep 2024; 38:101727. [PMID: 38766381 PMCID: PMC11098724 DOI: 10.1016/j.bbrep.2024.101727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/13/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024] Open
Abstract
Background and aim N-acetyl-p-benzoquinoneimine (NAPQI), a toxic byproduct of paracetamol (Acetaminophen, APAP), can accumulate and cause liver damage by depleting glutathione and forming protein adducts in the mitochondria. These adducts disrupt the respiratory chain, increasing superoxide production and reducing ATP. The goal of this study was to provide computational proof that succinate dehydrogenase (SDH), a subunit of complex II in the mitochondrial respiratory chain, is a favorable binding partner for NAPQI in this regard. Method Molecular docking, molecular dynamics simulation, protein-protein interaction networks (PPI), and KEGG metabolic pathway analysis were employed to identify binding characteristics, interaction partners, and their associations with metabolic pathways. A lipid membrane was added to the experimental apparatus to mimic the natural cellular environment of SDH. This modification made it possible to develop a context for investigating the role and interactions of SDH within a cellular ecosystem that was more realistic and biologically relevant. Result The molecular binding affinity score for APAP and NAPQI with SDH was predicted -6.5 and -6.7 kcal/mol, respectively. Furthermore, RMSD, RMSF, and Rog from the molecular dynamics simulations study revealed that NAPQI has slightly higher stability and compactness compared to APAP at 100 ns timeframe with mitochondrial SDH. Conclusion This study serves to predict the mechanistic process of paracetamol toxicity by using different computational approaches. In addition, this study will provide information about the drug target against APAP hepatotoxicity.
Collapse
Affiliation(s)
- Md Sahadot Hossen
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Adiba Akter
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mahir Azmal
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mostakim Rayhan
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Kazi Saiful Islam
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Md Mahmodul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Shamim Ahmed
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mohammad Abdullah-Al-Shoeb
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
3
|
Beţiu AM, Lighezan R, Avram VF, Muntean DM, Elmér E, Petrescu L. Dose-dependent effects of acetaminophen and ibuprofen on mitochondrial respiration of human platelets. Mol Cell Biochem 2024; 479:1501-1512. [PMID: 37486451 DOI: 10.1007/s11010-023-04814-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
Acetaminophen and ibuprofen are widely used over-the-counter medications to reduce fever, pain, and inflammation. Although both drugs are safe in therapeutic concentrations, self-medication is practiced by millions of aged patients with comorbidities that decrease drug metabolism and/or excretion, thus raising the risk of overdosage. Mitochondrial dysfunction has emerged as an important pathomechanism underlying the organ toxicity of both drugs. Assessment of mitochondrial oxygen consumption in peripheral blood cells is a novel research field Cu several applications, including characterization of drug toxicity. The present study, conducted in human platelets isolated from blood donor-derived buffy coat, was aimed at assessing the acute, concentration-dependent effects of each drug on mitochondrial respiration. Using the high-resolution respirometry technique, a concentration-dependent decrease of oxygen consumption in both intact and permeabilized platelets was found for either drug, mainly by inhibiting complex I-supported active respiration. Moreover, ibuprofen significantly decreased the maximal capacity of the electron transport system already from the lowest concentration. In conclusion, platelets from healthy donors represents a population of cells easily available, which can be routinely used in studies assessing mitochondrial drug toxicity. Whether these results can be recapitulated in patients treated with these medications is worth further investigation as potential peripheral biomarker of drug overdose.
Collapse
Affiliation(s)
- Alina Maria Beţiu
- Doctoral School Medicine-Pharmacy, "Victor Babeş" University of Medicine and Pharmacy of Timişoara, Romania, E. Murgu Sq. No. 2, 300041, Timisoara, Romania
- Center for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy of Timişoara, Romania, E. Murgu Sq. No. 2, 300041, Timisoara, Romania
| | - Rodica Lighezan
- Department of Infectious Diseases-Parasitology, "Victor Babeş" University of Medicine and Pharmacy of Timişoara, Romania, E. Murgu Sq. No. 2, 300041, Timisoara, Romania
- Regional Blood Transfusion Center, Timişoara, Str. Martir M. Ciopec No. 1, Timișoara, Romania
| | - Vlad Florian Avram
- Department of Internal Medicine-Diabetes, Nutrition, Metabolic Diseases and Rheumatology, "Victor Babeş" University of Medicine and Pharmacy of Timişoara, Romania, E. Murgu Sq. No. 2, 300041, Timisoara, Romania
| | - Danina Mirela Muntean
- Center for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy of Timişoara, Romania, E. Murgu Sq. No. 2, 300041, Timisoara, Romania.
- Department of Functional Sciences-Pathophysiology, "Victor Babeş" University of Medicine and Pharmacy of Timişoara, Romania, E. Murgu Sq. No. 2, 300041, Timisoara, Romania.
- Department of Functional Sciences-Pathophysiology, Center for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy of Timişoara, E. Murgu Sq. No. 2, 300041, Timisoara, Romania.
| | - Eskil Elmér
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, BMC A13, 221 84, Lund, Sweden.
- Abliva AB, Medicon Village, 223 81, Lund, Sweden.
| | - Lucian Petrescu
- Doctoral School Medicine-Pharmacy, "Victor Babeş" University of Medicine and Pharmacy of Timişoara, Romania, E. Murgu Sq. No. 2, 300041, Timisoara, Romania
- Center for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy of Timişoara, Romania, E. Murgu Sq. No. 2, 300041, Timisoara, Romania
| |
Collapse
|
4
|
López-Pascual E, Rienda I, Perez-Rojas J, Rapisarda A, Garcia-Llorens G, Jover R, Castell JV. Drug-Induced Fatty Liver Disease (DIFLD): A Comprehensive Analysis of Clinical, Biochemical, and Histopathological Data for Mechanisms Identification and Consistency with Current Adverse Outcome Pathways. Int J Mol Sci 2024; 25:5203. [PMID: 38791241 PMCID: PMC11121209 DOI: 10.3390/ijms25105203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Drug induced fatty liver disease (DIFLD) is a form of drug-induced liver injury (DILI), which can also be included in the more general metabolic dysfunction-associated steatotic liver disease (MASLD), which specifically refers to the accumulation of fat in the liver unrelated to alcohol intake. A bi-directional relationship between DILI and MASLD is likely to exist: while certain drugs can cause MASLD by acting as pro-steatogenic factors, MASLD may make hepatocytes more vulnerable to drugs. Having a pre-existing MASLD significantly heightens the likelihood of experiencing DILI from certain medications. Thus, the prevalence of steatosis within DILI may be biased by pre-existing MASLD, and it can be concluded that the genuine true incidence of DIFLD in the general population remains unknown. In certain individuals, drug-induced steatosis is often accompanied by concomitant injury mechanisms such as oxidative stress, cell death, and inflammation, which leads to the development of drug-induced steatohepatitis (DISH). DISH is much more severe from the clinical point of view, has worse prognosis and outcome, and resembles MASH (metabolic-associated steatohepatitis), as it is associated with inflammation and sometimes with fibrosis. A literature review of clinical case reports allowed us to examine and evaluate the clinical features of DIFLD and their association with specific drugs, enabling us to propose a classification of DIFLD drugs based on clinical outcomes and pathological severity: Group 1, drugs with low intrinsic toxicity (e.g., ibuprofen, naproxen, acetaminophen, irinotecan, methotrexate, and tamoxifen), but expected to promote/aggravate steatosis in patients with pre-existing MASLD; Group 2, drugs associated with steatosis and only occasionally with steatohepatitis (e.g., amiodarone, valproic acid, and tetracycline); and Group 3, drugs with a great tendency to transit to steatohepatitis and further to fibrosis. Different mechanisms may be in play when identifying drug mode of action: (1) inhibition of mitochondrial fatty acid β-oxidation; (2) inhibition of fatty acid transport across mitochondrial membranes; (3) increased de novo lipid synthesis; (4) reduction in lipid export by the inhibition of microsomal triglyceride transfer protein; (5) induction of mitochondrial permeability transition pore opening; (6) dissipation of the mitochondrial transmembrane potential; (7) impairment of the mitochondrial respiratory chain/oxidative phosphorylation; (8) mitochondrial DNA damage, degradation and depletion; and (9) nuclear receptors (NRs)/transcriptomic alterations. Currently, the majority of, if not all, adverse outcome pathways (AOPs) for steatosis in AOP-Wiki highlight the interaction with NRs or transcription factors as the key molecular initiating event (MIE). This perspective suggests that chemical-induced steatosis typically results from the interplay between a chemical and a NR or transcription factors, implying that this interaction represents the primary and pivotal MIE. However, upon conducting this exhaustive literature review, it became evident that the current AOPs tend to overly emphasize this interaction as the sole MIE. Some studies indeed support the involvement of NRs in steatosis, but others demonstrate that such NR interactions alone do not necessarily lead to steatosis. This view, ignoring other mitochondrial-related injury mechanisms, falls short in encapsulating the intricate biological mechanisms involved in chemically induced liver steatosis, necessitating their consideration as part of the AOP's map road as well.
Collapse
Affiliation(s)
- Ernesto López-Pascual
- Department of Biochemistry and Molecular Biology, University of Valencia, 46010 Valencia, Spain
- Joint Research Unit in Experimental Hepatology, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Ivan Rienda
- Pathology Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Judith Perez-Rojas
- Pathology Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Anna Rapisarda
- Department of Biochemistry and Molecular Biology, University of Valencia, 46010 Valencia, Spain
- Joint Research Unit in Experimental Hepatology, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Guillem Garcia-Llorens
- Joint Research Unit in Experimental Hepatology, Health Research Institute La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ramiro Jover
- Department of Biochemistry and Molecular Biology, University of Valencia, 46010 Valencia, Spain
- Joint Research Unit in Experimental Hepatology, Health Research Institute La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José V. Castell
- Department of Biochemistry and Molecular Biology, University of Valencia, 46010 Valencia, Spain
- Joint Research Unit in Experimental Hepatology, Health Research Institute La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
5
|
Perananthan V, Shihana F, Chiew AL, George J, Dawson A, Buckley NA. Intestinal injury in paracetamol overdose (ATOM-8). J Gastroenterol Hepatol 2024; 39:920-926. [PMID: 38149309 DOI: 10.1111/jgh.16450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND AND AIM Paracetamol, a widely used medication, is known for its delayed hepatotoxicity in cases of overdose. However, the potential for intestinal toxicity resulting from very high paracetamol concentrations during absorption is not well explored. This study aims to investigate the presence of intestinal toxicity and its correlation with observations in early and late paracetamol toxicity. METHODS Serial samples of 30 patients with acute paracetamol overdose (> 10 g or 200 mg/kg) were prospectively tested. Markers of enterocyte damage, including plasma intestinal fatty acid binding protein (IFABP) and selected gut-related microRNAs (miR-21, miR-122, miR-194, and miR-215), were analyzed. Sub-analysis was performed on patients presenting with hyperlactatemia defined as a lactate greater than 2 mmol/L within 12 h post ingestion. RESULTS In paracetamol overdose patients, median plasma IFABP was significantly elevated compared with healthy controls (720 μg/L [interquartile range, IQR, 533-1644] vs 270 μg/L [IQR 153-558], P < 0.001). Four patients had early hyperlactatemia and had significantly higher median plasma IFABP compared with those without early hyperlactatemia (3028 μg/L [IQR 1399-3556] vs 574 μg/L [IQR 526-943], P = 0.007). Furthermore, two microRNAs (miR-122 and miR-215) were downregulated in early hyperlactatemia (P = 0.019 and P = 0.006, respectively). Plasma IFABP concentrations correlated with paracetamol concentration (Spearman's r = 0.55) and lactate (r = 0.60). CONCLUSIONS Paracetamol overdose causes concentration-related intestinal toxicity, and this is a possible explanation for the early hyperlactatemia syndrome. Intestinal toxicity has potential impacts on pharmacokinetics of other agents ingested and on the evolution of hepatotoxicity. Further studies are required to explore the mechanisms and prognostic implications of intestinal toxicity.
Collapse
Affiliation(s)
- Varan Perananthan
- Edith Collins Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Clinical Pharmacology and Toxicology Research Group, Biomedical Informatics and Digital Health, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Fathima Shihana
- Edith Collins Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Clinical Pharmacology and Toxicology Research Group, Biomedical Informatics and Digital Health, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Angela L Chiew
- Clinical Pharmacology and Toxicology Research Group, Biomedical Informatics and Digital Health, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Emergency Department and Clinical Toxicology, Prince of Wales Hospital and Community Health Services, Sydney, New South Wales, Australia
- NSW Poisons Information Centre, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital, Sydney, New South Wales, Australia
| | - Andrew Dawson
- Edith Collins Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Clinical Pharmacology and Toxicology Research Group, Biomedical Informatics and Digital Health, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- NSW Poisons Information Centre, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Nicholas A Buckley
- Edith Collins Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Clinical Pharmacology and Toxicology Research Group, Biomedical Informatics and Digital Health, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- NSW Poisons Information Centre, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| |
Collapse
|