1
|
Li L, Liu J, Lu J, Wu J, Zhang X, Ma T, Wu X, Zhu Q, Chen Z, Tai Z. Interventions in cytokine signaling: novel horizons for psoriasis treatment. Front Immunol 2025; 16:1573905. [PMID: 40303401 PMCID: PMC12037536 DOI: 10.3389/fimmu.2025.1573905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/27/2025] [Indexed: 05/02/2025] Open
Abstract
Intricate interactions between immune cells and cytokines define psoriasis, a chronic inflammatory skin condition that is immunological-mediated. Cytokines, including interleukins (ILs), interferons (IFNs), tumor necrosis factors (TNFs), chemokines, and transforming growth factor-β (TGF-β), are essential for controlling cellular activity and immunological responses, maintaining homeostasis and contributing to the pathogenesis of psoriasis. These molecules modulate the immune microenvironment by either promoting or suppressing inflammation, which significantly impacts therapeutic outcomes. Recent research indicates that treatment strategies targeting cytokines and chemokines have significant potential, offering new approaches for regulating the immune system, inhibiting the progression of psoriasis, and reducing adverse effects of traditional therapies. This review consolidates current knowledge on cytokine and chemokine signaling pathways in psoriasis and examines their significance in treatment. Specific attention is given to cytokines like IL-17, IL-23, and TNF-α, underscoring the necessity for innovative therapies to modulate these pathways and address inflammatory processes. This review emphasizes the principal part of cytokines in the -pathological process of psoriasis and explores the challenges and opportunities they present for therapeutic intervention. Furthermore, we examine recent advancements in targeted therapies, with a particular focus on monoclonal antibodies, in ongoing research and clinical trials.
Collapse
Affiliation(s)
- Lisha Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jun Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Jiaye Lu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Junchao Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Tianyou Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Xiying Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Zhao X, Qin R, Li G, Lv G, Zhao D, Kong L, Qi M, Li P. GDF11 Regulates M1 and M2 Polarization of BV2 Microglial Cells via p38 MAPK Signaling Pathway. Mol Neurobiol 2025:10.1007/s12035-025-04837-1. [PMID: 40100492 DOI: 10.1007/s12035-025-04837-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/09/2025] [Indexed: 03/20/2025]
Abstract
Growth differentiation factor 11 (GDF11), a member of the transforming growth factor β (TGF-β) superfamily, exhibits great neurological and mental diseases modulating potential. However, its specific effects on microglia, which are the primary immune cells of the nervous system, remain unclear. To investigate the mechanism by which GDF11 affects BV2 microglial cells in vitro and to elucidate its regulatory mechanisms, we carried out a systematic examination of how GDF11 affects the various functions of lipopolysaccharide (LPS)-induced BV2 microglial cells and found that endogenous GDF11 could significantly inhibit cell proliferation, apoptosis, and migration. Specifically, GDF11 inhibited the polarization of BV2 cells to the proinflammatory M1 phenotype and promoted their polarization to the anti-inflammatory M2 phenotype, precipitating a reduction in the expression of CD86 and nitric oxide synthase 2 (NOS2), and an increase in the expression of CD206 and arginase-1. Additionally, RNA-seq and Western blotting experiments revealed that GDF11 activated the p38 MAPK (mitogen-activated protein kinase) pathway, mediating its effects on BV2 cells. Taken together, GDF11 could crucially regulate microglial responses and promote an anti-inflammatory microglial phenotype through the p38 MAPK signaling axis, which may have potential therapeutic implications in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Xiangyu Zhao
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong, 250012, China
| | - Rui Qin
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong, 250012, China
| | - Guopeng Li
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong, 250012, China
| | - Gaorong Lv
- School of Software, Shandong University, Jinan, Shandong, 250012, China
| | - Di Zhao
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong, 250012, China
| | - Linghua Kong
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong, 250012, China
| | - Meiling Qi
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong, 250012, China
| | - Ping Li
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
3
|
Liu T, Zhang L. GDF11 Mitigates Neuropathic Pain via Regulation of Microglial Polarization and Neuroinflammation through TGF-βR1/SMAD2/NF-κB Pathway in Male Mice. J Neuroimmune Pharmacol 2025; 20:20. [PMID: 39939465 DOI: 10.1007/s11481-025-10172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 01/20/2025] [Indexed: 02/14/2025]
Abstract
Spinal microglial activation and the polarization towards the M1 phenotype are implicated in the pathological process of neuropathic pain. Extensive research has elucidated that growth and differentiation factor 11 (GDF11), a constituent of the transforming growth factor-β (TGF-β) superfamily, exerts inhibitory effects on macrophage activation and mitigates inflammatory responses via the activation of TGF-β receptor type I (TGF-βR1). Nonetheless, the influence of GDF11 on spinal microglial polarization and its role in neuropathic pain remains to be ascertained. In the present investigation, a neuropathic pain model was induced via a spared nerve injury (SNI) procedure on the sciatic nerve in male mice. The impact of GDF11 on microglial polarization and neuropathic pain in SNI-subjected mice was evaluated through pain behavior assessments, WB, IF, qRT-PCR, and ELISA. Our findings revealed a significant downregulation of spinal GDF11 and TGF-βR1 expression levels in microglia of mice subjected to SNI. Furthermore, GDF11 treatment notably reversed the mechanical allodynia and thermal hyperalgesia, inhibited M1 microglial polarization, and attenuated neuroinflammatory processes by modulating the SMAD2/NF-κB in SNI mice. However, the analgesic effects of GDF11 on pain hypersensitivity and its modulatory influence on spinal microglial polarization were abrogated by the application of a specific antagonist of TGF-βR1, or the TGF-βR1 siRNA. In summary, GDF11 effectively ameliorated mechanical allodynia and thermal hyperalgesia, suppressed M1 microglial polarization, and alleviated neuroinflammation via the regulation of the TGF-βR1/SMAD2/NF-κB pathway in mice with SNI. These findings suggest that GDF11 holds promise as a therapeutic modality for the management of neuropathic pain.
Collapse
Affiliation(s)
- Tianzhu Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Longqing Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Deng M, Tang R, Xu Y, Xu Y, Chen L. GDF11 promotes osteogenic/odontogenic differentiation of dental pulp stem cells to accelerate dentin restoration via modulating SIRT3/FOXO3-mediated mitophagy. Int Immunopharmacol 2024; 142:113092. [PMID: 39317051 DOI: 10.1016/j.intimp.2024.113092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/23/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Growth differentiation factor 11 (GDF11) is considered to be a potential molecular target for treating pulpitis. However, whether GDF11 regulates osteogenic/odontogenic differentiation of dental pulp stem cells (DPSCs) to mediate pulpitis process remains unclear. METHODS Lipopolysaccharide (LPS) was used to induce inflammation conditions in DPSCs. The levels of GDF11, sirtuin 3 (SIRT3), forkhead box O-3 (FOXO3), osteogenic/odontogenic differentiation-related markers were measured by quantitative real-time PCR (qRT-PCR) and western blot (WB). Immunofluorescence staining was used to measure mitophagy. Mitophagy-related proteins were analyzed by WB, and the levels of inflammation factors were examined using qRT-PCR, ELISA and immunohistochemistry. Alkaline phosphatase activity and alizarin red S intensity were evaluated to assess osteogenic differentiation. Acute pulp (AP) injury rat model was constructed to study the role of oe-GDF11 in vivo. RESULTS GDF11 was downregulated in LPS-induced DPSCs, and LPS suppressed osteogenic/odontogenic differentiation and mitophagy. GDF11 overexpression promoted osteogenic/odontogenic differentiation in DPSCs through the activation of mitophagy. Furthermore, GDF11 upregulated SIRT3 to enhance FOXO3 expression by inhibiting its acetylation. GDF11 ameliorated LPS-induced inflammation and promoted osteogenic/odontogenic differentiation in DPSCs via enhancing SIRT3/FOXO3-mediated mitophagy. Besides, GDF11 overexpression suppressed inflammation and promoted dentin repair in AP rat models. CONCLUSION GDF11 promoted SIRT3/FOXO3-mediated mitophagy to accelerate osteogenic/odontogenic differentiation in DPSCs, providing a novel target for pulpitis treatment.
Collapse
Affiliation(s)
- Mingsi Deng
- Department of Stomatology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha City, Hunan Province, PR China; Department of Orthodontics, Changsha Stomatological Hospital, Changsha City, Hunan Province, PR China
| | - Ruimin Tang
- Department of Stomatology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha City, Hunan Province, PR China
| | - Yani Xu
- Department of Orthodontics, Changsha Stomatological Hospital, Changsha City, Hunan Province, PR China
| | - Yafen Xu
- Department of Orthodontics, Changsha Stomatological Hospital, Changsha City, Hunan Province, PR China
| | - Liangjian Chen
- Department of Stomatology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha City, Hunan Province, PR China.
| |
Collapse
|
5
|
Basanta S, Stadtmauer DJ, Maziarz JD, McDonough-Goldstein CE, Cole AG, Dagdas G, Wagner GP, Pavličev M. Hallmarks of uterine receptivity predate placental mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621939. [PMID: 39574771 PMCID: PMC11580939 DOI: 10.1101/2024.11.04.621939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
Embryo implantation requires tightly coordinated signaling between the blastocyst and the endometrium, and is crucial for the establishment of a uteroplacental unit that persists until term in eutherian mammals. In contrast, marsupials, with a unique life cycle and short gestation, make only brief fetal-maternal contact and lack implantation. To better understand the evolutionary link between eutherian implantation and its ancestral equivalent in marsupials, we compare single-cell transcriptomes from the receptive and non-receptive endometrium of the mouse and guinea pig with that of the opossum, a marsupial. We identify substantial differences between rodent peri-implantation endometrium and opossum placental attachment, including differences in the diversity and abundance of stromal and epithelial cells which parallel the difference between histotrophic and hemotrophic provisioning strategies. We also identify a window of conserved epithelial gene expression between the opossum shelled blastocyst stage and rodent peri-implantation, including IHH and LIF . We find strong conservation of blastocyst proteases, steroid synthetases, Wnt and BMP signals between eutherians and the opossum despite its lack of implantation. Finally, we show that the signaling repertoire of the maternal uterine epithelium during implantation displays substantial overlap with that of the post-implantation placental trophoblast, suggesting that the fetal trophoblast can compensate for the loss of endometrial epithelium in eutherian invasive placentation. Together, our results suggest that eutherian implantation primarily involved the re-wiring of maternal signaling networks, some of which were already present in the therian ancestor, and points towards an essential role of maternal innovations in the evolution of invasive placentation.
Collapse
Affiliation(s)
- Silvia Basanta
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Daniel J. Stadtmauer
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Jamie D. Maziarz
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Caitlin E. McDonough-Goldstein
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- Department of Integrative Biology, University of Wisconsin-Madison, WI, USA
| | - Alison G. Cole
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Gülay Dagdas
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Günter P. Wagner
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Mihaela Pavličev
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- Complexity Science Hub Vienna, Vienna, Austria
| |
Collapse
|
6
|
Xing Y, Ma X, Zhai R, Chen W, Yan H. GDF11 improves hippocampal neurogenesis and cognitive abilities in diabetic mice by reducing neural inflammation. Brain Behav Immun 2024; 120:21-31. [PMID: 38777287 DOI: 10.1016/j.bbi.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/02/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The cognitive decline associated with type 2 diabetes (T2D) is often attributed to compromised hippocampal neurogenesis and exacerbated neural inflammation. This study investigates the therapeutic potential of growth differentiation factor 11 (GDF11) in reversing these neurodegenerative processes in diabetic mice. RESULT We utilized a murine model of T2D and examined the effects of GDF11 on learning, memory, neurogenesis, and neuroinflammatory markers. Our results indicate that diabetic mice exhibit significant deficits in cognitive function, mirrored by reduced hippocampal neurogenesis and increased neuroinflammation. Chronic administration of GDF11 was observed to significantly enhance cognitive abilities, as evidenced by improved performance in learning and memory tasks. Concurrently, GDF11 treatment restored neural activity and promoted the regeneration of new neurons within the hippocampus. Inflammatory profiling revealed a reduction in neuroinflammatory markers, which was further supported by reduced microglia numbers. To delineate the role of neuroinflammation, we pharmacologically depleted microglia, leading to a restoration of neurogenesis and cognitive functions in diabetic mice. CONCLUSION These findings endorse the hypothesis that GDF11 exerts its beneficial effects by modulating neuroinflammatory pathways. Consequently, GDF11 represents a promising intervention to ameliorate diabetes-induced cognitive impairments and neural degeneration through its anti-inflammatory properties.
Collapse
Affiliation(s)
- Yao Xing
- School of Information Science and Technology, Fudan University, Shanghai 200433, PR China; Wuhan United Imaging Life Science Instrument Co., Ltd., Wuhan 430206, PR China
| | - Xiaoyi Ma
- Department of Geriatrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Renkuan Zhai
- Wuhan United Imaging Life Science Instrument Co., Ltd., Wuhan 430206, PR China
| | - Wei Chen
- School of Information Science and Technology, Fudan University, Shanghai 200433, PR China; Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai 201203, PR China.
| | - Huanhuan Yan
- Shenzhen United Imaging Research Institute of Innovative Medical Equipment, Shenzhen 518048, PR China.
| |
Collapse
|
7
|
Wu Z, Zhang Q, Wang H, Zhou S, Fu B, Fang L, Cheng JC, Sun YP. Growth differentiation factor-11 upregulates matrix metalloproteinase 2 expression by inducing Snail in human extravillous trophoblast cells. Mol Cell Endocrinol 2024; 585:112190. [PMID: 38369181 DOI: 10.1016/j.mce.2024.112190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
The human extravillous trophoblast (EVT) cell invasion is an important process during placentation. Although the placenta is normal tissue, the EVT cells exhibit some features common to cancer cells, including high migratory and invasive properties. Snail and Slug are transcription factors that mediate the epithelial-mesenchymal transition (EMT), a crucial event for cancer cell migration and invasion. It has been shown that GDF-11-induced matrix metalloproteinase 2 (MMP2) expression is required for EVT cell invasion. Whether GDF-11 can regulate Snail and Slug expression in human EVT cells remains unknown. If it does, the involvement of Snail and Slug in GDF-11-induced MMP2 expression and EVT cell invasion must also be defined. In the present study, using the immortalized human EVT cell line, HTR-8/SVneo, and primary cultures of human EVT cells as experimental models, our results show that GDF-11 upregulates Snail and Slug expression. ALK4 and ALK5 mediate the stimulatory effects of GDF-11 on Snail and Slug expression. In addition, we demonstrate that SMAD2 and SMAD3 are required for the GDF-11-upregulated Snail expression, while only SMAD3 is involved in GDF-11-induced Slug expression. Moreover, our results reveal that Snail mediates GDF-11-induced MMP2 expression and cell invasion but not Slug. This study increases our understanding of the biological function of GDF-11 in human EVT cells and provides a novel mechanism for regulating MMP2 and EVT cell invasion.
Collapse
Affiliation(s)
- Ze Wu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qian Zhang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hailong Wang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shenghui Zhou
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bingxin Fu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jung-Chien Cheng
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Ying-Pu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
8
|
Chen CC, Lee TL, Tsai IT, Hsuan CF, Hsu CC, Wang CP, Lu YC, Lee CH, Chung FM, Lee YJ, Wei CT. Tissue Expression of Growth Differentiation Factor 11 in Patients with Breast Cancer. Diagnostics (Basel) 2024; 14:701. [PMID: 38611614 PMCID: PMC11011301 DOI: 10.3390/diagnostics14070701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/09/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Protein growth differentiation factor 11 (GDF11) plays crucial roles in cellular processes, including differentiation and development; however, its clinical relevance in breast cancer patients is poorly understood. We enrolled 68 breast cancer patients who underwent surgery at our hospital and assessed the expression of GDF11 in tumorous, ductal carcinoma in situ (DCIS), and non-tumorous tissues using immunohistochemical staining, with interpretation based on histochemical scoring (H-score). Our results indicated higher GDF11 expressions in DCIS and normal tissues compared to tumorous tissues. In addition, the GDF11 H-score was lower in the patients with a tumor size ≥ 2 cm, pathologic T3 + T4 stages, AJCC III-IV stages, Ki67 ≥ 14% status, HER2-negative, and specific molecular tumor subtypes. Notably, the patients with triple-negative breast cancer exhibited a loss of GDF11 expression. Spearman correlation analysis revealed associations between GDF11 expression and various clinicopathological characteristics, including tumor size, stage, Ki67, and molecular subtypes. Furthermore, GDF11 expression was positively correlated with mean corpuscular hemoglobin concentration and negatively correlated with neutrophil count, as well as standard deviation and coefficient of variation of red cell distribution width. These findings suggest that a decreased GDF11 expression may play a role in breast cancer pathogenesis.
Collapse
Affiliation(s)
- Chia-Chi Chen
- Department of Pathology, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (C.-C.C.); (C.-H.L.)
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (I.-T.T.); (C.-F.H.)
- Department of Physical Therapy, I-Shou University, Kaohsiung 82445, Taiwan
- Department of Occupational Therapy, I-Shou University, Kaohsiung 82445, Taiwan
| | - Thung-Lip Lee
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (T.-L.L.); (C.-P.W.); (F.-M.C.)
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - I-Ting Tsai
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (I.-T.T.); (C.-F.H.)
- Department of Emergency, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| | - Chin-Feng Hsuan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (I.-T.T.); (C.-F.H.)
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (T.-L.L.); (C.-P.W.); (F.-M.C.)
- Division of Cardiology, Department of Internal Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung 80794, Taiwan
| | - Chia-Chang Hsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan;
- Health Examination Center, E-Da Dachang Hospital, I-Shou University, Kaohsiung 80794, Taiwan
- The School of Chinese Medicine for Post Baccalaureate, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Chao-Ping Wang
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (T.-L.L.); (C.-P.W.); (F.-M.C.)
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Yung-Chuan Lu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan;
| | - Chien-Hsun Lee
- Department of Pathology, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (C.-C.C.); (C.-H.L.)
| | - Fu-Mei Chung
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (T.-L.L.); (C.-P.W.); (F.-M.C.)
| | - Yau-Jiunn Lee
- Lee’s Endocrinologic Clinic, Pingtung 90000, Taiwan;
| | - Ching-Ting Wei
- The School of Chinese Medicine for Post Baccalaureate, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
- Division of General Surgery, Department of Surgery, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| |
Collapse
|
9
|
Yalçın MB, Bora ES, Erbaş O. The Effect of Liraglutide on Axon Regeneration and Functional Recovery after Peripheral Nerve Lesion. Curr Issues Mol Biol 2024; 46:327-339. [PMID: 38248323 PMCID: PMC10814355 DOI: 10.3390/cimb46010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Peripheral nerve injuries inflict severe consequences, necessitating innovative therapeutic strategies. This study investigates the potential of liraglutide, a glucagon-like peptide-1 receptor agonist, in mitigating the consequences of peripheral nerve injury. The existing treatment methods for such injuries underscore the importance of ongoing translational research efforts. Thirty adult Wistar rats underwent sciatic nerve dissection and repair surgery. The nerves were surgically transected using micro scissors at a precise location located 1.5 cm proximal to the trifurcation site. The study included a control group and two experimental groups, one treated with saline (placebo group) and the other with liraglutide (experimental group) for 12 weeks. Motor function, electromyography (EMG), and biochemical and histopathological analyses were performed after 12 weeks of treatment. Electrophysiological assessments revealed that liraglutide improved the compound muscle action potential (CMAP) amplitude and motor function compared to the saline-treated group. Histological and immunohistochemical analyses demonstrated increased NGF expression, total axon number, and diameter and reduced fibrosis in the liraglutide group. Biochemical analyses illustrated liraglutide's antioxidative properties, evidenced by reduced malondialdehyde (MDA) levels. Galectin-3 levels were suppressed and GDF-11 levels were modulated by liraglutide, indicating anti-inflammatory and anti-apoptotic effects. Liraglutide is a promising therapeutic intervention for peripheral nerve injuries, promoting functional recovery and histopathological improvement. Its multifaceted positive impact, beyond glycemic control, suggests constructive effects on the acute and chronic inflammatory processes associated with peripheral neuropathy. These findings warrant further research to elucidate molecular mechanisms and facilitate clinical translation. The study contributes valuable insights to the growing understanding of GLP-1 receptor agonists' neuroprotective properties in the context of peripheral nerve injuries.
Collapse
Affiliation(s)
- Mehmet Burak Yalçın
- Department of Orthopedics and Traumatology, Bahcelievler Memorial Hospital, Istanbul 34180, Türkiye;
| | - Ejder Saylav Bora
- Department of Emergency Medicine, Izmir Atatürk Research and Training Hospital, Izmir 35360, Türkiye
| | - Oytun Erbaş
- Department of Physiology, Demiroğlu Bilim University, Istanbul 34180, Türkiye;
| |
Collapse
|
10
|
Zhou R, Li S, Wang Q, Bi Y, Li X, Wang Q. Silencing of GDF11 suppresses hepatocyte apoptosis to relieve LPS/D-GalN acute liver failure. J Biochem Mol Toxicol 2024; 38:e23577. [PMID: 37934488 DOI: 10.1002/jbt.23577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 08/29/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
In this paper, we generated a short hairpin RNA growth differentiation factor-11 (sh-GDF11) and evaluated the effects of sh-GDF11 on the pathogenesis of acute liver failure (ALF) in vitro and in vivo. Through bioinformatics study, the key gene related to ALF was assayed. Lipopolysaccharide (LPS) and D-galactoamine (D-GalN) were applied to establish the mouse model of LPS/D-GalN-induced liver injury, and TNF-α and D-Gal were used to construct an in vitro cell model, followed by treatment of sh-GDF11 for analysis of liver cell proliferation. Bioinformatics analysis showed that the protective effect of sh-GDF11 on ALF may be mediated by phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway. The results of in vitro study found that sh-GDF11 could promote cell proliferation and inhibit death by blocking the PI3K/Akt/mTOR signaling pathway. In vivo animal experiments further confirmed that sh-GDF11 could suppress hepatocyte apoptosis by inhibiting the PI3K/Akt/mTOR signaling pathway. sh-GDF11 relieved LPS/D-GalN-induced ALF by blocking the PI3K/Akt/mTOR signaling pathway, emphasizing its critical role in LPS/D-GalN-induced ALF treatment.
Collapse
Affiliation(s)
- Rongsheng Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuang Li
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qun Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Bi
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaogang Li
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiang Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|