1
|
Shackebaei D, Hesari M, Gorgani S, Vafaeipour Z, Salaramoli S, Yarmohammadi F. The Role of mTOR in the Doxorubicin-Induced Cardiotoxicity: A Systematic Review. Cell Biochem Biophys 2025; 83:43-52. [PMID: 39102090 DOI: 10.1007/s12013-024-01475-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
Doxorubicin (DOX) is a chemotherapy drug known to induce metabolic changes in the heart, leading to potential heart toxicity. These changes impact various cellular functions and pathways such as disrupting the mechanistic target of rapamycin (mTOR) signaling pathway. The study aimed to investigate the effect of DOX on the mTOR pathway through an in vivo systematic review. Databases were searched on September 11, 2023. We finally included 30 in vivo studies that examined the mTOR expression in cardiac tissue samples. The present study has shown that the PI3K/AKT/mTOR, the AMPK/mTOR, the p53/mTOR signaling, the mTOR/TFEB pathway, the p38 MAPK/mTOR, the sestrins/mTOR, and the KLF15/eNOS/mTORC1 signaling pathways play a crucial role in the development of DOX-induced cardiotoxicity. Inhibition or dysregulation of these pathways can lead to increased oxidative stress, apoptosis, and other adverse effects on the heart. Strategies that target and modulate the mTOR pathways, such as the use of mTOR inhibitors like rapamycin, have the potential to enhance the anticancer effects of DOX while also mitigating its cardiotoxic side effects.
Collapse
Affiliation(s)
- Dareuosh Shackebaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahvash Hesari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Gorgani
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zeinab Vafaeipour
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sanaz Salaramoli
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Yarmohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Khan H, Singh A, Singh Y, Sharma D, Dua K, Grewal AK, Singh TG. Pharmacological modulation of PI3K/PTEN/Akt/mTOR/ERK signaling pathways in ischemic injury: a mechanistic perspective. Metab Brain Dis 2025; 40:131. [PMID: 40009091 DOI: 10.1007/s11011-025-01543-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 01/21/2025] [Indexed: 02/27/2025]
Abstract
Ischemia, also known as ischemia, relates to the reduced blood movement to a cells, muscle group, or organ in the body, culminating in an insufficient amount of oxygen required for cellular metabolism and the maintenance of tissue viability. There are different types of stroke (ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage), and different causes of stroke (e.g., cardioembolic, atherothrombotic, lacunar ischemic strokes, aneurysmal subarachnoid hemorrhage). It also includes other disorders affecting the blood vessels in the brain (e.g., vascular malformations, unruptured aneurysms). Each of these conditions has different characteristics in terms of how common they are and how they are managed. Stroke is the primary and catastrophic clinical presentation of all cerebrovascular diseases. In this review we focused about the importance of PI3K/AKT signaling pathways which are important in the onset of ischemia-reperfusion (I/R) injury. In addition, mTOR, a target that is activated by the PI3K/Akt signaling pathway, is both required and capable of providing enough protection to the heart against harm caused by I/R. Moreover, the signaling pathways that involve PI3K/Akt/Erk/PTEN/mTOR play a crucial role in facilitating the proliferation and maintenance of neurons following an ischemic stroke. The current review summarizes the molecular mechanisms of various signaling pathways in ischemic diseases and suggests targeting its receptors as a preventive approach based on pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Punjab, India
| | - Aditi Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Punjab, India
| | - Yashvardhan Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Punjab, India
| | - Diksha Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Punjab, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Punjab, India.
| |
Collapse
|
3
|
Sirek T, Król-Jatręga K, Borawski P, Zmarzły N, Boroń D, Ossowski P, Nowotny-Czupryna O, Boroń K, Janiszewska-Bil D, Mitka-Krysiak E, Grabarek BO. Distinct mRNA expression profiles and miRNA regulators of the PI3K/AKT/mTOR pathway in breast cancer: insights into tumor progression and therapeutic targets. Front Oncol 2025; 14:1515387. [PMID: 39850811 PMCID: PMC11754234 DOI: 10.3389/fonc.2024.1515387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
Background Breast cancer remains a leading cause of mortality among women, driven by the molecular complexity of its various subtypes. This study aimed to investigate the differential expression of genes and miRNAs involved in the PI3K/AKT/mTOR signaling pathway, a critical regulator of cancer progression. Methods We analyzed tumor tissues from five breast cancer subtypes-luminal A, luminal B HER2-negative, luminal B HER2-positive, HER2-positive, and triple-negative breast cancer (TNBC)-and compared them with non-cancerous tissues. Microarray and qRT-PCR techniques were employed to profile mRNAs and miRNAs, while bioinformatic tools predicted miRNA-mRNA interactions. Statistical analysis was performed with a statistical significance threshold (p) < 0.05. Results We identified several upregulated genes across all subtypes, with TNBC and HER2-positive cancers showing the most significant changes. Key genes such as COL1A1, COL4A1, PIK3CA, PIK3R1, and mTOR were found to be overexpressed, correlating with increased cancer aggressiveness. miRNA analysis revealed that miR-190a-3p, miR-4729, and miR-19a-3p potentially regulate these genes, influencing the PI3K/AKT/mTOR pathway. For instance, reduced expression of miR-190a-3p may contribute to the overexpression of PIK3CA and other pathway components, enhancing metastatic potential. Conclusion Our findings suggest that the PI3K/AKT/mTOR pathway and its miRNA regulators play crucial roles in breast cancer progression, particularly in aggressive subtypes like TNBC. The identified miRNAs and mRNAs hold potential as biomarkers for diagnosis and treatment, but further validation in functional studies is required. This study provides a foundation for targeted therapies aimed at modulating this critical pathway to improve breast cancer outcomes.
Collapse
Affiliation(s)
- Tomasz Sirek
- Department of Plastic Surgery, Faculty of Medicine, Academia of Silesia, Katowice, Poland
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, Bielsko-Biala, Poland
| | - Katarzyna Król-Jatręga
- Department of Plastic Surgery, Faculty of Medicine, Academia of Silesia, Katowice, Poland
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, Bielsko-Biala, Poland
| | | | - Nikola Zmarzły
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, Dabrowa Górnicza, Poland
| | - Dariusz Boroń
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, Dabrowa Górnicza, Poland
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
- Department of Gynecology and Obstetrics, TOMMED Specjalisci od Zdrowia, Katowice, Poland
- University of Economics and Humanities in Warsaw, Warszawa, Poland
| | - Piotr Ossowski
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, Dabrowa Górnicza, Poland
| | - Olga Nowotny-Czupryna
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, Dabrowa Górnicza, Poland
| | - Kacper Boroń
- Department of Plastic Surgery, Faculty of Medicine, Academia of Silesia, Katowice, Poland
| | - Dominika Janiszewska-Bil
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, Dabrowa Górnicza, Poland
| | - Elżbieta Mitka-Krysiak
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, Dabrowa Górnicza, Poland
| | - Beniamin Oskar Grabarek
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, Dabrowa Górnicza, Poland
- Department of Molecular, Biology Gyncentrum Fertility Clinic, Katowice, Poland
| |
Collapse
|
4
|
Martínez-Romero R, González-Chávez SA, Urías-Rubí VR, Gómez-Moreno VM, Blanco-Cantero MF, Bernal-Velázquez HM, Luévano-González A, Pacheco-Tena C. Microarray Analysis of Visceral Adipose Tissue in Obese Women Reveals Common Crossroads Among Inflammation, Metabolism, Addictive Behaviors, and Cancer: AKT3 and MAPK1 Cross Point in Obesity. J Obes 2024; 2024:4541071. [PMID: 39484291 PMCID: PMC11527533 DOI: 10.1155/2024/4541071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/16/2024] [Indexed: 11/03/2024] Open
Abstract
Background: Visceral adipose tissue (VAT) abnormalities are directly associated with obesity-associated disorders. The underlying mechanisms that confer increased pathological risk to VAT in obesity have not been fully described. Methods: A case-control study was conducted that included 10 women with obesity (36.80 ± 7.39 years, BMI ≥ 30 kg/m2) and 10 women of normal weight (32.70 ± 9.45 years, BMI < 24.9 kg/m2). RNA was extracted from greater omentum biopsies, and, using a DNA microarray, differential transcriptomic expression of VAT in women with obesity was evaluated taking as a reference that of women with normal weight. The differentially expressed genes (DEGs) were classified into functional biological processes and signaling pathways; moreover, the protein-protein interaction (PPI) networks were integrated for a deeper analysis of the pathways and genes involved in the central obesity-associated disorders. The expression of TNF-α, MAPK, and AKT proteins was also quantified in VAT. Results: The VAT of women with obesity had 3808 DEGs, mainly associated with the cellular process of inflammation and carbohydrates and lipid metabolism. Overexpressed genes were associated with inflammatory, metabolic, hormonal, neuroendocrine, carcinogenic, and infectious pathways. Cellular processes related to addictive behaviors were notable. MAPK and PI3K-AKT pathways were overexpressed, and Mapk1 and Akt3 genes were common crossing points among obesity-associated disorders' pathways. The increased expression of MAPK, AKT, and TNF proteins was confirmed in the VAT of women with obesity. Conclusion: VAT confers a complex and blended pathogenic transcriptomic profile in obese patients, where abnormal processes are mainly controlled by activating intracellular signaling pathways that exhibit a high degree of redundancy. Identifying shared cross points between those pathways could allow specific targeting treatments to exert a widespread effect over multiple pathogenic processes.
Collapse
Affiliation(s)
- Rolando Martínez-Romero
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Susana Aideé González-Chávez
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Victor Roberto Urías-Rubí
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | | | | | | | - Arturo Luévano-González
- Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - César Pacheco-Tena
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| |
Collapse
|
5
|
Hossain MA. Targeting the RAS upstream and downstream signaling pathway for cancer treatment. Eur J Pharmacol 2024; 979:176727. [PMID: 38866361 DOI: 10.1016/j.ejphar.2024.176727] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Cancer often involves the overactivation of RAS/RAF/MEK/ERK (MAPK) and PI3K-Akt-mTOR pathways due to mutations in genes like RAS, RAF, PTEN, and PIK3CA. Various strategies are employed to address the overactivation of these pathways, among which targeted therapy emerges as a promising approach. Directly targeting specific proteins, leads to encouraging results in cancer treatment. For instance, RTK inhibitors such as imatinib and afatinib selectively target these receptors, hindering ligand binding and reducing signaling initiation. These inhibitors have shown potent efficacy against Non-Small Cell Lung Cancer. Other inhibitors, like lonafarnib targeting Farnesyltransferase and GGTI 2418 targeting geranylgeranyl Transferase, disrupt post-translational modifications of proteins. Additionally, inhibition of proteins like SOS, SH2 domain, and Ras demonstrate promising anti-tumor activity both in vivo and in vitro. Targeting downstream components with RAF inhibitors such as vemurafenib, dabrafenib, and sorafenib, along with MEK inhibitors like trametinib and binimetinib, has shown promising outcomes in treating cancers with BRAF-V600E mutations, including myeloma, colorectal, and thyroid cancers. Furthermore, inhibitors of PI3K (e.g., apitolisib, copanlisib), AKT (e.g., ipatasertib, perifosine), and mTOR (e.g., sirolimus, temsirolimus) exhibit promising efficacy against various cancers such as Invasive Breast Cancer, Lymphoma, Neoplasms, and Hematological malignancies. This review offers an overview of small molecule inhibitors targeting specific proteins within the RAS upstream and downstream signaling pathways in cancer.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
6
|
Chowdhury R, Bhuia MS, Al Hasan MS, Hossain Snigdha S, Afrin S, Büsselberg D, Habtemariam S, Sönmez Gürer E, Sharifi‐Rad J, Ahmed Aldahish A, Аkhtayeva N, Islam MT. Anticancer potential of phytochemicals derived from mangrove plants: Comprehensive mechanistic insights. Food Sci Nutr 2024; 12:6174-6205. [PMID: 39554337 PMCID: PMC11561795 DOI: 10.1002/fsn3.4318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 11/19/2024] Open
Abstract
Cancer is a collection of illnesses characterized by aberrant cellular proliferation that can infiltrate or metastasize to distant anatomical sites, posing a notable threat to human well-being due to its substantial morbidity and death rates worldwide. The potential of plant-derived natural compounds as anticancer medicines has been assessed owing to their favorable attributes of few side effects and significant antitumor activity. Mangrove plants and their derived compounds have been scientifically shown to exhibit many significant beneficial biological activities, such as anti-inflammatory, immunomodulatory, antioxidant, neuroprotective, cardioprotective, and hepatoprotective properties. This study summarized mangrove plants and their derived compounds as potential anticancer agents, with an emphasis on the underlying molecular mechanisms. To explore this, we gathered data on the preclinical (in vivo and in vitro) anticancer effects of mangrove plants and their derived compounds from reputable literature spanning 2000 to 2023. We conducted thorough searches in various academic databases, including PubMed, ScienceDirect, Wiley Online, SpringerLink, Google Scholar, Scopus, and the Web of Science. The results demonstrated that mangrove plants and their derived compounds have promising anticancer properties in preclinical pharmacological test systems through various molecular mechanisms, including induction of oxidative stress and mitochondrial dysfunction, cytotoxicity, genotoxicity, cell cycle arrest, apoptosis, autophagy, antiproliferative, antimetastatic, and other miscellaneous actions. Upon thorough observation of the pertinent information, it is suggested that mangrove plants and their derived chemicals may serve as a potential lead in the development of novel drugs for cancer therapy.
Collapse
Affiliation(s)
- Raihan Chowdhury
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research CenterGopalganjBangladesh
| | - Md. Shimul Bhuia
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research CenterGopalganjBangladesh
| | - Md. Sakib Al Hasan
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
| | | | - Sadia Afrin
- Pharmacy DisciplineKhulna UniversityKhulnaBangladesh
| | | | | | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of PharmacognosySivas Cumhuriyet UniversitySivasTurkey
| | - Javad Sharifi‐Rad
- Department of Biomedical SciencesCollege of Medicine, Korea UniversitySeoulRepublic of Korea
| | - Afaf Ahmed Aldahish
- Department of Pharmacology, College of PharmacyKing Khalid UniversityAbhaSaudi Arabia
| | - Nursulu Аkhtayeva
- Department of Biodiversity and Bioresources of Al‐Farabi Kazakh National UniversityAlmatyKazakhstan
| | - Muhammad Torequl Islam
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research CenterGopalganjBangladesh
- Pharmacy DisciplineKhulna UniversityKhulnaBangladesh
| |
Collapse
|
7
|
Rauf A, Akram Z, Hafeez N, Khalil AA, Khalid A, Hemeg HA, Aljohani ASM, Al Abdulmonem W, Quradha MM, Qahtan AMF. Anticancer potential of Diospyrin and its analogues: An updated review. Food Sci Nutr 2024; 12:6047-6054. [PMID: 39554340 PMCID: PMC11561790 DOI: 10.1002/fsn3.4237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 11/19/2024] Open
Abstract
Cancer, characterized as one of the leading causes of death owing to its heterogeneity and complexity, hence poses a significant challenge to health care system across the globe. Current therapies for cancer curtailment are considered to have associated side effects, therefore discovery of novel alternative approaches is need of the time. In this context, natural products have attained an essential spot in the scientific community for the development of novel cancer treatments. Among others, Diospyrin, a bis-hydroxy-naphthoquinonoid, is a vital bioactive component present in various Diospyros and Euclea species. The bioactivity associated with Diospyrin's makes it a promising "lead molecule" for new chemotherapy. In this review, biosynthesis of Diospyrin and its analogues along with their anticancer activities has been discussed. Moreover, this review briefly discusses probable modes of action of Diospyrin and its analogues by targeting the molecular signal transduction pathways. This review also highlights the toxicological and clinical implications of diospyrin and its derivatives. Further pharmacological and pharmacogenetic studies are required to better understand the anticancer potential of Diospyrin and its analogues at the molecular and genetic levels.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of ChemistryUniversity of SwabiAnbarKhyber PakhtunkhwaPakistan
| | - Zuneera Akram
- Department of Pharmacology, Faculty of Pharmaceutical SciencesBaqai Medical UniversityKarachiPakistan
| | - Nabia Hafeez
- Center of Biotechnology and MicrobiologyUniversity of PeshawarPeshawarKhyber PakhtunkhwaPakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health SciencesThe University of LahoreLahorePakistan
| | - Ahood Khalid
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health SciencesThe University of LahoreLahorePakistan
| | - Hassan A. Hemeg
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesTaibah UniversityAl‐Medinah Al‐MonawaraSaudi Arabia
| | - Abdullah S. M. Aljohani
- Department of Medical Biosciences, College of Veterinary MedicineQassim UniversityBuraydahSaudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of MedicineQassim UniversityBuraydahSaudi Arabia
| | | | | |
Collapse
|
8
|
Wei T, Cheng J, Ji Y, Cao X, Ding S, Liu Q, Wang Z. Baculovirus-mediated endostatin and angiostatin activation of autophagy through the AMPK/AKT/mTOR pathway inhibits angiogenesis in hepatocellular carcinoma. Open Life Sci 2024; 19:20220914. [PMID: 39091624 PMCID: PMC11291770 DOI: 10.1515/biol-2022-0914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 08/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly vascularized carcinoma, and targeting its neovascularization represents an effective therapeutic approach. Our previous study demonstrated that the baculovirus-mediated endostatin and angiostatin fusion protein (BDS-hEA) effectively inhibits the angiogenesis of vascular endothelial cells and the growth of HCC tumors. However, the mechanism underlying its anti-angiogenic effect remains unclear. Increasing evidence suggests that autophagy has a significant impact on the function of vascular endothelial cells and response to cancer therapy. Hence, the objective of this research was to investigate the correlation between BDS-hEA-induced angiogenesis inhibition and autophagy, along with potential regulatory mechanisms. Our results demonstrated that BDS-hEA induced autophagy in EA.hy926 cells, as evidenced by the increasing number of autophagosomes and reactive oxygen species, accompanied by an upregulation of Beclin-1, LC3-II/LC3-I, and p62 protein expression. Suppression of autophagy using 3-methyladenine attenuated the functions of BDS-hEA-induced EA.hy926 cells, including the viability, proliferation, invasion, migration, and angiogenesis. Moreover, BDS-hEA induced autophagy by downregulating the expression of CD31, VEGF, and VEGFR2, as well as phosphorylated protein kinase B (p-AKT) and phosphorylated mammalian target of rapamycin (p-mTOR), while concurrently upregulating phosphorylated AMP-activated protein kinase (p-AMPK). The in vivo results further indicated that inhibition of autophagy by chloroquine significantly impeded the ability of BDS-hEA to suppress HCC tumor growth in mice. Mechanistically, BDS-hEA prominently facilitated autophagic apoptosis in tumor tissues and decreased the levels of ki67, CD31, VEGF, MMP-9, p-AKT, and p-mTOR while simultaneously enhancing the p-AMPK expression. In conclusion, our findings suggest that BDS-hEA induces autophagy as a cytotoxic response by modulating the AMPK/AKT/mTOR signaling pathway, thereby exerting anti-angiogenic effects against HCC.
Collapse
Affiliation(s)
- Tingting Wei
- Department of Oncology, General Hospital of Ningxia Medical University, Ningxia Hui Autonomous Region, Yinchuan, 750001, P.R. China
| | - Jiajie Cheng
- School of Pharmacy, Ningxia Medical University, Ningxia Hui Autonomous Region, Yinchuan, 750004, P. R. China
| | - Yonggan Ji
- School of Pharmacy, Ningxia Medical University, Ningxia Hui Autonomous Region, Yinchuan, 750004, P. R. China
| | - Xue Cao
- Department of Oncology, General Hospital of Ningxia Medical University, Ningxia Hui Autonomous Region, Yinchuan, 750001, P.R. China
| | - Shuqin Ding
- School of Inspection, Ningxia Medical University, Ningxia Hui Autonomous Region, Yinchuan, 750004, P.R. China
| | - Quanxia Liu
- Department of Oncology, General Hospital of Ningxia Medical University, Ningxia Hui Autonomous Region, Yinchuan, 750001, P.R. China
| | - Zhisheng Wang
- School of Inspection, Ningxia Medical University, Ningxia Hui Autonomous Region, Yinchuan, 750004, P.R. China
| |
Collapse
|
9
|
Fu J, Lin J, Dai Z, Lin B, Zhang J. Hypoxia-associated autophagy flux dysregulation in human cancers. Cancer Lett 2024; 590:216823. [PMID: 38521197 DOI: 10.1016/j.canlet.2024.216823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/09/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
A general feature of cancer is hypoxia, determined as low oxygen levels. Low oxygen levels may cause cells to alter in ways that contribute to tumor growth and resistance to treatment. Hypoxia leads to variations in cancer cell metabolism, angiogenesis and metastasis. Furthermore, a hypoxic tumor microenvironment might induce immunosuppression. Moreover, hypoxia has the potential to impact cellular processes, such as autophagy. Autophagy refers to the catabolic process by which damaged organelles and toxic macromolecules are broken down. The abnormal activation of autophagy has been extensively recorded in human tumors and it serves as a regulator of cell growth, spread to other parts of the body, and resistance to treatment. There is a correlation between hypoxia and autophagy in human malignancies. Hypoxia can regulate the activity of AMPK, mTOR, Beclin-1, and ATGs to govern autophagy in human malignancies. Furthermore, HIF-1α, serving as an indicator of low oxygen levels, controls the process of autophagy. Hypoxia-induced autophagy has a crucial role in regulating the growth, spread, and resistance to treatment in human malignancies. Hypoxia-induced regulation of autophagy can impact other mechanisms of cell death, such as apoptosis. Chemoresistance and radioresistance have become significant challenges in recent years. Hypoxia-mediated autophagy plays a crucial role in determining the response to these therapeutic treatments.
Collapse
Affiliation(s)
- Jiding Fu
- Department of Intensive Care Unit, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China
| | - Jie Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China
| | - Zili Dai
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China
| | - Baisheng Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China
| | - Jian Zhang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, 510095, China.
| |
Collapse
|
10
|
Kahkesh S, Khoshnazar SM, Gholinezhad Y, Esmailzadeh S, Hosseini SA, Alimohammadi M, Mafi A. The potential role of circular RNAs -regulated PI3K signaling in non-small cell lung cancer: Molecular insights and clinical perspective. Pathol Res Pract 2024; 257:155316. [PMID: 38692125 DOI: 10.1016/j.prp.2024.155316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
Non-small cell lung cancer (NSCLC), accounting for more than 80% of all cases, is the predominant form of lung cancer and the leading cause of cancer-related deaths worldwide. Significant progress has been made in diagnostic techniques, surgical interventions, chemotherapy protocols, and targeted therapies at the molecular level, leading to enhanced treatment outcomes in patients with NSCLC. Extensive evidence supports the use of circular RNAs (circRNAs), a specific category of naturally occurring non-coding small RNAs (ncRNAs), for the diagnosis, monitoring of treatment efficacy, and assessment of survival in NSCLC. CircRNAs have been identified to play significant roles in various aspects of cancer formation, either as tumor suppressors or tumor promoters, contributing to cancer development through several signaling pathways, including the phosphoinositide 3-kinases (PI3Ks) pathway. This pathway is well-established because of its regulatory role in essential cellular processes. CircRNAs regulate the PI3K/AKT pathway by targeting diverse cellular elements. This review aims to provide insight into the involvement of several circRNAs linked to the PI3K/AKT pathway in NSCLC.
Collapse
Affiliation(s)
- Samaneh Kahkesh
- Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Yasaman Gholinezhad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shakiba Esmailzadeh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Hosseini
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
11
|
Abu-Hdaib B, Nsairat H, El-Tanani M, Al-Deeb I, Hasasna N. In vivo evaluation of mebendazole and Ran GTPase inhibition in breast cancer model system. Nanomedicine (Lond) 2024; 19:1087-1101. [PMID: 38661720 PMCID: PMC11225501 DOI: 10.2217/nnm-2023-0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/19/2024] [Indexed: 04/26/2024] Open
Abstract
Aim: To investigate the therapeutic potential of mebendazole (MBZ)-loaded nanostructured lipid carriers (NLCs). Methodology: NLC-MBZ was prepared and characterized to evaluate the in vitro and in vivo anticancer effects and the inhibitory effect on RanGTP and its potential as an antimetastatic treatment in vivo. Results: NLC-MBZ exhibited a size and charge of 155 ± 20 nm and -27 ± 0.5 mV, respectively, with 90.7% encapsulation. Free MBZ and NLC-MBZ had a 50% inhibitory concentration of 610 and 305 nM, respectively, against MDA-MB-231 cell lines. NLC-MBZ decreased tumor size, suppressed tumor lung metastases, and lowered the expression of CDC25A, SKP2, RbX1 and Cullin1 while boosting the Rb proteins. Conclusion: NLC-MBZ displayed antiangiogenic potential and resulted in a reduced rate of lung metastasis in vivo.
Collapse
Affiliation(s)
- Balqis Abu-Hdaib
- Pharmacological & Diagnostic Research Center, Faculty
of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Hamdi Nsairat
- Pharmacological & Diagnostic Research Center, Faculty
of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Mohamed El-Tanani
- Pharmacological & Diagnostic Research Center, Faculty
of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
- College of Pharmacy, Ras Al Khaimah Medical & Health
Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Ibrahim Al-Deeb
- Pharmacological & Diagnostic Research Center, Faculty
of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Nabil Hasasna
- Department of Cell Therapy & Applied Genomics, King
Hussein Cancer Center (KHCC), P.O. Box: 1269, Amman, 11941, Jordan
| |
Collapse
|
12
|
El-Tanani M, Nsairat H, Aljabali AA, Matalka II, Alkilany AM, Tambuwala MM. Dual-loaded liposomal carriers to combat chemotherapeutic resistance in breast cancer. Expert Opin Drug Deliv 2024; 21:309-324. [PMID: 38284386 DOI: 10.1080/17425247.2024.2311812] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
INTRODUCTION The resistance to chemotherapy is a significant hurdle in breast cancer treatment, prompting the exploration of innovative strategies. This review discusses the potential of dual-loaded liposomal carriers to combat chemoresistance and improve outcomes for breast cancer patients. AREAS COVERED This review discusses breast cancer chemotherapy resistance and dual-loaded liposomal carriers. Drug efflux pumps, DNA repair pathways, and signaling alterations are discussed as chemoresistance mechanisms. Liposomes can encapsulate several medicines and cargo kinds, according to the review. It examines how these carriers improve medication delivery, cancer cell targeting, and tumor microenvironment regulation. Also examined are dual-loaded liposomal carrier improvement challenges and techniques. EXPERT OPINION The use of dual-loaded liposomal carriers represents a promising and innovative strategy in the battle against chemotherapy resistance in breast cancer. This article has explored the various mechanisms of chemoresistance in breast cancer, emphasizing the potential of dual-loaded liposomal carriers to overcome these challenges. These carriers offer versatility, enabling the encapsulation and precise targeting of multiple drugs with different modes of action, a crucial advantage when dealing with the complexity of breast cancer treatment.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah, United Arab Emirates
- Pharmacological and Diagnostic Research Center, Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Pharmacy, Yarmouk University, Irbid, Jordan
| | - Ismail I Matalka
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
- Department of Pathology and Microbiology, Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | | | | |
Collapse
|
13
|
Rajendrasozhan S, Ahmad I, Obaidur Rab S, Alshahrani MY, Abdullah Almuqri E, Ahmad Siddiqui J, Mushtaque M. In-silico investigation of RPS6KB1 associated cancer inhibitor: a drug repurposing study. J Biomol Struct Dyn 2024:1-8. [DOI: 10.1080/07391102.2024.2304679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/07/2024] [Indexed: 01/05/2025]
Affiliation(s)
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Eman Abdullah Almuqri
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | | | - Md Mushtaque
- Department of Chemistry, Millat College (A constituent college of Lalit Narayan Mithila University), Darbhanga, Bihar, India
| |
Collapse
|
14
|
Panwar V, Singh A, Bhatt M, Tonk RK, Azizov S, Raza AS, Sengupta S, Kumar D, Garg M. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct Target Ther 2023; 8:375. [PMID: 37779156 PMCID: PMC10543444 DOI: 10.1038/s41392-023-01608-z] [Citation(s) in RCA: 299] [Impact Index Per Article: 149.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is a protein kinase that controls cellular metabolism, catabolism, immune responses, autophagy, survival, proliferation, and migration, to maintain cellular homeostasis. The mTOR signaling cascade consists of two distinct multi-subunit complexes named mTOR complex 1/2 (mTORC1/2). mTOR catalyzes the phosphorylation of several critical proteins like AKT, protein kinase C, insulin growth factor receptor (IGF-1R), 4E binding protein 1 (4E-BP1), ribosomal protein S6 kinase (S6K), transcription factor EB (TFEB), sterol-responsive element-binding proteins (SREBPs), Lipin-1, and Unc-51-like autophagy-activating kinases. mTOR signaling plays a central role in regulating translation, lipid synthesis, nucleotide synthesis, biogenesis of lysosomes, nutrient sensing, and growth factor signaling. The emerging pieces of evidence have revealed that the constitutive activation of the mTOR pathway due to mutations/amplification/deletion in either mTOR and its complexes (mTORC1 and mTORC2) or upstream targets is responsible for aging, neurological diseases, and human malignancies. Here, we provide the detailed structure of mTOR, its complexes, and the comprehensive role of upstream regulators, as well as downstream effectors of mTOR signaling cascades in the metabolism, biogenesis of biomolecules, immune responses, and autophagy. Additionally, we summarize the potential of long noncoding RNAs (lncRNAs) as an important modulator of mTOR signaling. Importantly, we have highlighted the potential of mTOR signaling in aging, neurological disorders, human cancers, cancer stem cells, and drug resistance. Here, we discuss the developments for the therapeutic targeting of mTOR signaling with improved anticancer efficacy for the benefit of cancer patients in clinics.
Collapse
Affiliation(s)
- Vivek Panwar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Aishwarya Singh
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Manini Bhatt
- Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab, 140001, India
| | - Rajiv K Tonk
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Shavkatjon Azizov
- Laboratory of Biological Active Macromolecular Systems, Institute of Bioorganic Chemistry, Academy of Sciences Uzbekistan, Tashkent, 100125, Uzbekistan
- Faculty of Life Sciences, Pharmaceutical Technical University, 100084, Tashkent, Uzbekistan
| | - Agha Saquib Raza
- Rajive Gandhi Super Speciality Hospital, Tahirpur, New Delhi, 110093, India
| | - Shinjinee Sengupta
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India.
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
15
|
Chang X, Feng X, Du M, Li S, Wang J, Wang Y, Liu P. Pharmacological effects and mechanisms of paeonol on antitumor and prevention of side effects of cancer therapy. Front Pharmacol 2023; 14:1194861. [PMID: 37408762 PMCID: PMC10318156 DOI: 10.3389/fphar.2023.1194861] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/08/2023] [Indexed: 07/07/2023] Open
Abstract
Cancer represents one of the leading causes of mortality worldwide. Conventional clinical treatments include radiation therapy, chemotherapy, immunotherapy, and targeted therapy. However, these treatments have inherent limitations, such as multidrug resistance and the induction of short- and long-term multiple organ damage, ultimately leading to a significant decrease in cancer survivors' quality of life and life expectancy. Paeonol, a nature active compound derived from the root bark of the medicinal plant Paeonia suffruticosa, exhibits various pharmacological activities. Extensive research has demonstrated that paeonol exhibits substantial anticancer effects in various cancer, both in vitro and in vivo. Its underlying mechanisms involve the induction of apoptosis, the inhibition of cell proliferation, invasion and migration, angiogenesis, cell cycle arrest, autophagy, regulating tumor immunity and enhanced radiosensitivity, as well as the modulation of multiple signaling pathways, such as the PI3K/AKT and NF-κB signaling pathways. Additionally, paeonol can prevent adverse effects on the heart, liver, and kidneys induced by anticancer therapy. Despite numerous studies exploring paeonol's therapeutic potential in cancer, no specific reviews have been conducted. Therefore, this review provides a systematic summary and analysis of paeonol's anticancer effects, prevention of side effects, and the underlying mechanisms involved. This review aims to establish a theoretical basis for the adjunctive strategy of paeonol in cancer treatment, ultimately improving the survival rate and enhancing the quality of life for cancer patients.
Collapse
Affiliation(s)
- Xindi Chang
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoteng Feng
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Du
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sijin Li
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiarou Wang
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiru Wang
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Liu
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|