1
|
Wang M, Zhao L, Wang Y, Zhang C, Li H. Sugarcane Molasses Polyphenol Extract Attenuates Alcohol-Induced Chronic Liver Damage via Antioxidant, Anti-Inflammatory, and CYP2E1/Keap1/NF-κB Pathway Modulation. Nutrients 2025; 17:1589. [PMID: 40362898 PMCID: PMC12073286 DOI: 10.3390/nu17091589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Revised: 05/01/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND/OBJECTIVE The prevention and treatment of alcoholic liver disease (ALD) urgently require safe and effective nutritional intervention strategies. Polyphenol extracts from sugarcane molasses (SP) show antioxidant and anti-inflammatory potential, yet their protective effects against ALD have not been elucidated. This study explored the therapeutic potential of SP in alcohol-induced chronic liver damage. METHODS A graded alcohol concentration-induced liver damage model was established in C57BL/6J mice to systematically evaluate SP's regulatory effects on liver function markers, lipid metabolism, oxidative stress indicators, inflammatory factors, and related molecular mechanisms through a 10-week nutritional intervention. RESULTS The results demonstrated that SP intervention significantly inhibited the liver index, alanine aminotransferase and aspartate aminotransferase activities, and triglyceride and total cholesterol accumulation in mice. SP enhanced antioxidant enzyme activities in a dose-dependent manner, with the high-dose group increasing catalase activity by 161.19% and superoxide dismutase activity by 22.97%. Furthermore, SP significantly reduced the levels of pro-inflammatory cytokines, including interleukin-1β, interleukin-6, and tumor necrosis factor-α, thereby alleviating hepatic inflammatory infiltration. Mechanistic studies revealed that SP effectively mitigated alcohol-induced oxidative stress and inflammatory injury by inhibiting cytochrome P450 2E1 overexpression, regulating the Kelch-like ECH-associated protein 1 signaling pathway, and suppressing nuclear factor-kappa B pathway activation. CONCLUSIONS The findings reveal that SP mitigates ALD via synergistic antioxidant and anti-inflammatory mechanisms, providing a novel strategy for high-value utilization of sugarcane molasses byproducts in agricultural industries. Future studies should focus on the contribution of the different phenolics in SP and validate their specific hepatoprotective mechanisms.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; (M.W.); (L.Z.); (Y.W.)
| | - Lin Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; (M.W.); (L.Z.); (Y.W.)
| | - Yumei Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; (M.W.); (L.Z.); (Y.W.)
| | | | - He Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; (M.W.); (L.Z.); (Y.W.)
| |
Collapse
|
2
|
Zhang Q, Wang J, Hu X, Lu W, Cao Y, Niu C, Yue H. GLP-1RAs regulate lipid metabolism and induce autophagy through AMPK/SIRT1 pathway to improve NAFLD. Prostaglandins Other Lipid Mediat 2025; 178:106987. [PMID: 40180281 DOI: 10.1016/j.prostaglandins.2025.106987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/13/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a leading cause of cirrhosis and a major risk factor for hepatocellular carcinoma and liver-related death. Diabetes medications have been studied as potential treatments for NAFLD. Glucagon-like peptide-1 agonists (GLP-1RAs) have been rarely reported in the treatment of NAFLD alone as an anti-diabetic drug, and its specific mechanism of action is unknown. We investigated whether the therapeutic effect of liraglutide (LRG, a representative drug of GLP-1RAs) on hepatic steatosis is related to regulating lipid metabolism and enhancing autophagy in the hepatocytes. METHODS We examined the effect of LRG on fat accumulation in fatty hepatocytes, and discussed its effects on enzymes related to lipid metabolism and autophagy. Meanwhile, knockdown of SIRT1 in free fatty acids(FFA)-treated cells was used to detected the influence of LRG on lipid metabolism and autophagy by regulating of AMPK/SIRT1 signaling. RESULTS Our findings showed that free fatty acids (FFA) induced hepatocyte steatosis, which was significantly reversed by LRG. Meanwhile, LRG significantly regulated the expression of hepatocyte lipogenesis and cytosolic lipolysis-related proteins (FAS, ACC1, ATGL, HSL, LAL). Furthermore, LRG enhanced FFA-induced suppression of autophagy and SIRT1 expression, reducing intracellular lipid accumulation. It is evident that LRG regulates lipid metabolism and induces autophagy in an (AMPK)-dependent manner. Moreover, SIRT1 knockdown inhibited the autophagy-inducing and lipid-lowering effects of LRG. CONCLUSION GLP-1RAs may lower hepatic steatosis by regulating lipid metabolism and enhancing autophagy in an AMPK/SIRT1-dependent manner, providing a new target for the treatment of NAFLD.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Gastroenterology, Yancheng Third People's Hospital (The Yancheng School of Clinical Medicine of Nanjing Medical University), Yancheng, Jiangsu Province 224000, PR China
| | - Jingyuan Wang
- Department of Rhematology and Immunology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian Province 361000, PR China
| | - Xiaojin Hu
- Department of Radiation Oncology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian Province 361000, PR China
| | - Wei Lu
- Department of Gastroenterology, Yancheng Third People's Hospital (The Yancheng School of Clinical Medicine of Nanjing Medical University), Yancheng, Jiangsu Province 224000, PR China
| | - Yang Cao
- Department of Gastroenterology, Yancheng Third People's Hospital (The Yancheng School of Clinical Medicine of Nanjing Medical University), Yancheng, Jiangsu Province 224000, PR China
| | - Chunyan Niu
- Department of Gastroenterology, Nanjing Lishui People's Hospital (Zhongda Hospital Lishui Branch, Southeast University), Nanjing, Jiangsu Province 210000, PR China.
| | - Hongqin Yue
- Department of Gastroenterology, Yancheng Third People's Hospital (The Yancheng School of Clinical Medicine of Nanjing Medical University), Yancheng, Jiangsu Province 224000, PR China.
| |
Collapse
|
3
|
Ma G, Di Z, Wen Y, Zhang C, Hao H, Li Y, Zhang Y. Future directions in the treatment of pelvic fractures with abdominal organ injury: the potential of combined endovascular embolization and external fixation techniques. Front Med (Lausanne) 2025; 12:1565758. [PMID: 40224636 PMCID: PMC11986864 DOI: 10.3389/fmed.2025.1565758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/11/2025] [Indexed: 04/15/2025] Open
Abstract
Pelvic fractures with abdominal organ injuries are complex and life-threatening conditions that pose significant challenges in trauma care. Current management strategies, including external fixation and interventional radiology techniques such as embolization, have shown promise in stabilizing the pelvis and controlling hemorrhage. However, these approaches face challenges such as the lack of standardized protocols, variability in patient selection, and the need for robust multidisciplinary collaboration. Additionally, the combined use of these modalities may lead to improved outcomes, including reduced mortality and shorter hospital stays, but further research is needed to optimize their application. This review aims to comprehensively explore the potential synergies between endovascular embolization and external fixation in managing these complex injuries. It critically assesses the latest clinical evidence, identifies gaps in current practices, and proposes future directions to enhance treatment effectiveness and patient outcomes.
Collapse
Affiliation(s)
- Ge Ma
- Department of Critical Care Medicine, The Third Affiliated Hospital of Gansu University of Chinese Medicine, Baiyin, China
| | - Zhenpeng Di
- Department of Critical Care Medicine, The Third Affiliated Hospital of Gansu University of Chinese Medicine, Baiyin, China
| | - Yonglin Wen
- Department of Critical Care Medicine, The Third Affiliated Hospital of Gansu University of Chinese Medicine, Baiyin, China
| | - Chao Zhang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Gansu University of Chinese Medicine, Baiyin, China
| | - Huaxin Hao
- Department of Vascular Intervention, The Third Affiliated Hospital of Gansu University of Chinese Medicine, Baiyin, China
| | - Yukan Li
- Department of Critical Care Medicine, The Third Affiliated Hospital of Gansu University of Chinese Medicine, Baiyin, China
| | - Yinjun Zhang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Gansu University of Chinese Medicine, Baiyin, China
| |
Collapse
|
4
|
Sultana M, Islam MA, Khairnar R, Kumar S. A guide to pathophysiology, signaling pathways, and preclinical models of liver fibrosis. Mol Cell Endocrinol 2025; 598:112448. [PMID: 39755140 DOI: 10.1016/j.mce.2024.112448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/23/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
Liver fibrosis is potentially a reversible form of liver disease that evolved from the early stage of liver scarring as a consequence of chronic liver injuries. Recurrent injuries in the liver without any appropriate medication cause the injuries to get intense and deeper, which gradually leads to the progression of irreversible cirrhosis or carcinoma. Unfortunately, there are no approved treatment strategies for reversing hepatic fibrosis, making it one of the significant risk factors for developing advanced liver disorders and liver disease-associated mortality. Consequently, the interpretation of the fundamental mechanisms, etiology, and pathogenesis is crucial for identifying the potential therapeutic target as well as evaluating novel anti-fibrotic therapy. However, despite innumerable research, the functional mechanism and disease characteristics are still obscure. To accelerate the understanding of underlying disease pathophysiology, molecular pathways and disease progression mechanism, it is crucial to mimic human liver disease through the formation of precise disease models. Although various in vitro and in vivo liver fibrotic models have emerged and developed already, a perfect clinical model replicating human liver diseases is yet to be established, which is one of the major challenges in discovering proper therapeutics. This review paper will shed light on pathophysiology, signaling pathways, preclinical models of liver fibrosis, and their limitations.
Collapse
Affiliation(s)
- Mehonaz Sultana
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Md Asrarul Islam
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Rhema Khairnar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| |
Collapse
|
5
|
Zhang XJ, Pu YK, Yang PY, Wang MR, Zhang RH, Li XL, Xiao WL. Isolicoflavonol ameliorates acute liver injury via inhibiting NLRP3 inflammasome activation through boosting Nrf2 signaling in vitro and in vivo. Int Immunopharmacol 2024; 143:113233. [PMID: 39366075 DOI: 10.1016/j.intimp.2024.113233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND NOD like receptor pyrin domain containing 3 (NLRP3) inflammasome is involved in innate immunity, and related to liver injury. However, no inflammasome inhibitors are clinically available until now. Our previous research suggests that isolicoflavonol (ILF), isolated from Macaranga indica, is a potent NLRP3 inflammasome inhibitor, but its mechanism is unclear. METHODS Fluorescent imaging and Western blot assay were used to ascertain the effects of ILF on pyroptosis and NLRP3 inflammasome activation in macrophages. Next, Nrf2 signal pathway, its downstream gene transcription and expression were further investigated. ML385, a Nrf2 inhibitor, was used to verify whether ILF targets Nrf2 signaling. A carbon tetrachloride induced liver injury model was introduced to evaluate the liver protection activity of ILF in mice. RESULTS This work revealed that ILF inhibited macrophage LDH release and IL-1β secretion in a dose-dependent manner. ILF had no significant cytotoxic effect on macrophage, it reduced pyroptosis and Gasdermin D N-terminal fragment formation. Moreover, ILF inhibited IL-1β maturation and Caspase-1 cleavage, but did not affect NLRP3, pro-Caspase-1, pro-IL-1β and ASC expression. ILF decreased ASC speck rate and reduced ASC oligomer formation. ILF decreased aggregated JC-1 formation restoring mitochondria membrane potential. In addition, ILF increased Nrf2 expression, extended Nrf2 lifespan and upregulated Nrf2 signaling pathway in macrophages whether the NLRP3 inflammasome was activated or not. Besides, ILF increased Nrf2 nuclear translocation, maintained a high proportion of Nrf2 in the nucleus, and upregulated ARE-related gene transcription and expression. Furthermore, Nrf2 signal inhibition attenuated compound ILF-mediated inhibition of pyroptosis, inflammasome activation and upregulation of Nrf2 signaling. ILF in a liver injury mouse model inhibited NLRP3 inflammasome activation and enhanced Nrf2 signaling. CONCLUSION Our study verified that ILF ameliorates liver injury via inhibiting NLRP3 inflammasome activation through boosting Nrf2 signaling, and highlighted that ILF is a potent anti-inflammatory drug for inflammasome-related liver diseases.
Collapse
Affiliation(s)
- Xing-Jie Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, Yunnan, China
| | - Yu-Kun Pu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, Yunnan, China
| | - Peng-Yun Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, Yunnan, China
| | - Meng-Ru Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, Yunnan, China
| | - Rui-Han Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, Yunnan, China
| | - Xiao-Li Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, Yunnan, China.
| | - Wei-Lie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, Yunnan, China; Southwest United Graduate School, Kunming 650500, Yunnan, China.
| |
Collapse
|
6
|
Hassan NF, El-Ansary MR, El-Ansary AR, El-Saied MA, Zaki OS. Unveiling the protective potential of mirabegron against thioacetamide-induced hepatic encephalopathy in rats: Insights into cAMP/PPAR-γ/p-ERK1/2/p S536 NF-κB p 65 and p-CREB/BDNF/TrkB in parallel with oxidative and apoptotic trajectories. Biochem Pharmacol 2024; 229:116504. [PMID: 39179118 DOI: 10.1016/j.bcp.2024.116504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Hepatic encephalopathy (HE) is one of the most prevalent and severe hepatic and brain disorders in which escalation of the oxidative, inflammatory and apoptotic trajectories pathologically connects acute liver injury with neurological impairment. Mirabegron (Mira) is a beta3 adrenergic receptor agonist with proven antioxidant and anti-inflammatory activities. The current research pointed to exploring Mira's hepato-and neuroprotective impacts against thioacetamide (TAA)-induced HE in rats. Rats were distributed into three experimental groups: the normal control group, the TAA group, received TAA (200 mg/kg/day for three consecutive days) and the Mira-treated group received Mira (10 mg/kg/day; oral gavage) for 15 consecutive days and intoxicated with TAA from the 13th to the 15th day of the experimental period. Mira counteracted hyperammonemia, enhanced rats' locomotor capability and motor coordination. It attenuated hepatic/neurological injuries by its antioxidant, anti-apoptotic as well as anti-inflammatory potentials. Mira predominantly targeted cyclic adenosine monophosphate (cAMP)/phosphorylated extracellular signal-regulated kinase (p-Erk1/2)/peroxisome proliferator-activated receptor gamma (PPARγ) dependent pathways via downregulation of p S536-nuclear factor kappa B p65 (p S536 NF-κB p 65)/tumor necrosis alpha (TNF-α) axis. Meanwhile, it attenuated nuclear factor erythroid 2-related factor (Nrf2) depletion in parallel with restoring of the neuroprotective defensive pathway by upregulation of cerebral cAMP/PPAR-γ/p-ERK1/2 and p-CREB/BDNF/TrkB besides reduction of GFAP immunoreactivity. Mira showed anti-apoptotic activity through inhibition of Bax immunoreactivity and elevation of Bcl2. To summarize, Mira exhibited a hepato-and neuroprotective effect against TAA-induced HE in rats via shielding antioxidant defense and mitigation of the pathological inflammatory and apoptotic axis besides upregulation of neuroprotective signaling pathways.
Collapse
Affiliation(s)
- Noha F Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Mona R El-Ansary
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Amira R El-Ansary
- Department of Internal Medicine, Faculty of Medicine, Misr University for Science and Technology, Giza, Egypt
| | - Mohamed A El-Saied
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Omnia S Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt.
| |
Collapse
|
7
|
Belka M, Gostyńska-Stawna A, Stawny M, Krajka-Kuźniak V. Activation of Nrf2 and FXR via Natural Compounds in Liver Inflammatory Disease. Int J Mol Sci 2024; 25:11213. [PMID: 39456994 PMCID: PMC11508530 DOI: 10.3390/ijms252011213] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Liver inflammation is frequently linked to oxidative stress and dysregulation of bile acid and fatty acid metabolism. This review focuses on the farnesoid X receptor (FXR), a critical regulator of bile acid homeostasis, and its interaction with the nuclear factor erythroid 2-related factor 2 (Nrf2), a key modulator of cellular defense against oxidative stress. The review explores the interplay between FXR and Nrf2 in liver inflammatory diseases, highlighting the potential therapeutic effects of natural FXR agonists. Specifically, compounds such as auraptene, cafestol, curcumin, fargesone A, hesperidin, lycopene, oleanolic acid, resveratrol, rutin, ursolic acid, and withaferin A are reviewed for their ability to modulate both the FXR and Nrf2 pathways. This article discusses their potential to alleviate liver inflammation, oxidative stress, and damage in diseases such as metabolic-associated fatty liver disease (MAFLD), cholestatic liver injury, and viral hepatitis. In addition, we address the molecular mechanisms driving liver inflammation, including oxidative stress, immune responses, and bile acid accumulation, while also summarizing relevant experimental models. This review emphasizes the promising therapeutic potential of targeting both the Nrf2 and FXR pathways using natural compounds, paving the way for future treatments for liver diseases. Finally, the limitations of the clinical application were indicated, and further research directions were proposed.
Collapse
Affiliation(s)
- Marta Belka
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Aleksandra Gostyńska-Stawna
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.G.-S.); (M.S.)
| | - Maciej Stawny
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.G.-S.); (M.S.)
| | - Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| |
Collapse
|
8
|
Chang W, Shi J, Li L, Zhang P, Ren Y, Yan Y, Ge Y. Network pharmacology and molecular docking analysis predict the mechanisms of Huangbai liniment in treating oral lichen planus. Medicine (Baltimore) 2024; 103:e39352. [PMID: 39151530 PMCID: PMC11332744 DOI: 10.1097/md.0000000000039352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/09/2024] [Accepted: 07/26/2024] [Indexed: 08/19/2024] Open
Abstract
This study explored the mechanism of Huangbai liniment (HB) for the treatment of oral lichen planus (OLP) through network pharmacology and molecular docking techniques. The study identified HB' active ingredients, therapeutic targets for OLP, and associated signaling pathways. The chemical composition of HB was screened using the HERB database. The disease targets of OLP were obtained through the GeneCards and OMIM databases. A protein-protein interactions network was constructed with the String platform. Topological analysis was performed using Cytoscape software to identify core targets. Gene ontology and Kyoto encyclopedia of genes and genomes pathway enrichment analysis were performed using the Hiplot database, and the active ingredients and core targets were verified by molecular docking. Date analysis showed that the active composition of HB in the treatment of OLP were quercetin, wogonin, kaempferol, and luteolin. This survey identified 10 potential therapeutic targets, including TNF, CXCL8, IL-6, IL1B, PIK3R1, ESR1, JUN, AKT1, PIK3CA, and CTNNB1. Molecular docking revealed stable interactions between OLP' key targets and HB. These key targets were predominantly involved in the PI3K-Akt signaling pathway, AGE-RAGE signaling pathway, TNF signaling pathway, and HIF-1 signaling pathway. HB plays a crucial role in the treatment of OLP, acting on multiple targets and pathways, particularly the PI3K-Akt signaling pathway. It regulated biological processes like the proliferation of epithelial cells and lymphocytes and mediates the expression of transcription factors, cytokines, and chemokines. Therefore, this study provides a theoretical basis for the clinical trial and application of HB in the therapy of OLP.
Collapse
Affiliation(s)
- Wei Chang
- Department of Stomatology, Changzhi Second People’s Hospital Affiliated to Changzhi Medical College, Changzhi, PR China
| | - Jing Shi
- Department of Stomatology, Shanxi Provincial People’s Hospital, Taiyuan, PR China
| | - Lingzhi Li
- Department of Stomatology, Changzhi Second People’s Hospital Affiliated to Changzhi Medical College, Changzhi, PR China
| | - Ping Zhang
- Department of Stomatology, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, PR China
| | - Yanrong Ren
- Department of Stomatology, Changzhi Second People’s Hospital Affiliated to Changzhi Medical College, Changzhi, PR China
| | - Yan Yan
- Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Yana Ge
- Department of Stomatology, Changzhi Second People’s Hospital Affiliated to Changzhi Medical College, Changzhi, PR China
| |
Collapse
|
9
|
Zargar S, Wani TA, Alamery S, Yaseen F. Olmutinib Reverses Thioacetamide-Induced Cell Cycle Gene Alterations in Mice Liver and Kidney Tissues, While Wheat Germ Treatment Exhibits Limited Efficacy at Gene Level. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:639. [PMID: 38674285 PMCID: PMC11052166 DOI: 10.3390/medicina60040639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024]
Abstract
Background and Objectives: TAA is potent hepatic/renal toxicant. Conversely, WGO is a potent dietary supplement with impressive antioxidant properties. Olmutinib is an apoptotic chemotherapy drug that does not harm the liver or kidney. This study investigated the impact of olmutinib and wheat germ oil (WGO) on Thioacetamide (TAA)-induced gene alterations in mice liver and kidney tissues. Materials and Methods: Adult male C57BL/6 mice were exposed to 0.3% TAA in drinking water for 14 days, followed by the oral administration of olmutinib (30 mg/kg) and WGO (1400 mg/kg) for 5 consecutive days. Treatment groups included the following: groups I (control), II (TAA-exposed), III (TAA + olmutinib), IV (TAA + WGO), and V (TAA + olmutinib + WGO). Results: The findings revealed that TAA exposure increased MKi67 and CDKN3 gene expression in liver and kidney tissues. Olmutinib treatment effectively reversed these TAA-induced effects, significantly restoring MKi67 and CDKN3 gene expression. WGO also reversed MKi67 effects in the liver but exhibited limited efficacy in reversing CDKN3 gene alterations induced by TAA exposures in both the liver and kidney. TAA exposure showed the tissue-specific expression of TP53, with decreased expression in the liver and increased expression in the kidney. Olmutinib effectively reversed these tissue-specific alterations in TP53 expression. While WGO treatment alone could not reverse the gene alterations induced by TAA exposure, the co-administration of olmutinib and WGO exhibited a remarkable potentiation of therapeutic effects in both the liver and kidney. The gene interaction analysis revealed 77.4% of physical interactions and co-localization between MKi67, CDKN3, and TP53 expressions. Protein-protein interaction networks also demonstrated physical interactions between MKi67, TP53, and CDKN3, forming complexes or signaling cascades. Conclusions: It was predicted that the increased expression of the MKi67 gene by TAA leads to the increase in TP53, which negatively regulates the cell cycle via increased CDKN3 expression in kidneys and the restoration of TP53 levels in the liver. These findings contribute to our understanding of the effects of olmutinib and WGO on TAA-induced gene expression changes and highlight their contrasting effects based on cell cycle alterations.
Collapse
Affiliation(s)
- Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia; (S.A.); (F.Y.)
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Salman Alamery
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia; (S.A.); (F.Y.)
| | - Fatimah Yaseen
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia; (S.A.); (F.Y.)
| |
Collapse
|