1
|
Shi S, Feng X, Cao Z, Wang L, Sun M, Zhao Z, Sun W. Screening, Analysis, and Validation of Endoplasmic Reticulum Stress-Related DEGs in Epilepsy. Cell Mol Neurobiol 2025; 45:51. [PMID: 40413658 DOI: 10.1007/s10571-025-01567-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 05/12/2025] [Indexed: 05/27/2025]
Abstract
To investigate the relationship between Endoplasmic Reticulum Stress (ERS) and epilepsy, as well as their biological functions. We downloaded the GSE143272 dataset from the GEO database, identified differentially expressed genes (DEGs), and cross-analyzed them with ERS-related genes from GeneCards and the Molecular Signatures Database (MSigDB). Protein-protein interaction (PPI) networks were constructed, and Hub genes were screened. ROC curve analysis was conducted to assess the diagnostic utility of these genes, followed by qRT-PCR validation. This study identified a total of 83 ERS-related DEGs in epilepsy. PPI network analysis revealed eight feature genes: C-X-C motif chemokine ligand 8 (CXCL8), Toll-like receptor 4 (TLR4), Matrix metalloproteinase 9 (MMP9), Tumor necrosis factor receptor superfamily member 1A (TNFRSF1A), Prostaglandin-endoperoxide synthase 2 (PTGS2), Signal transducer and activator of transcription 1 (STAT1), B-cell lymphoma 2 (BCL2), and RELA proto-oncogene, NF-κB subunit (RELA). ROC curve analysis demonstrated that the combination of these eight feature genes exhibited the highest diagnostic potential. Among them, CXCL8 was the most valuable gene. qRT-PCR analysis showed that CXCL8 mRNA expression was significantly lower in the case group compared to the control group (P < 0.01). The results suggest that ERS is involved in physiological processes such as inflammation and neuronal apoptosis in epilepsy. This provides a bioinformatics evidence for exploring the biological functions and pathology of ERS in epilepsy, as well as serving as a reference for clinical diagnosis and potential therapeutic targets.
Collapse
Affiliation(s)
- Sunyena Shi
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Xu Feng
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Zhan Cao
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Lin Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Mingjian Sun
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Ziyi Zhao
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Wei Sun
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
2
|
Hsu MF, Koike S, Chen CS, Najjar SM, Meng TC, Haj FG. Pharmacological inhibition of the Src homology phosphatase 2 confers partial protection in a mouse model of alcohol-associated liver disease. Biomed Pharmacother 2024; 175:116590. [PMID: 38653109 DOI: 10.1016/j.biopha.2024.116590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Alcohol-associated liver disease (ALD) is a leading factor of liver-related death worldwide. ALD has various manifestations that include steatosis, hepatitis, and cirrhosis and is currently without approved pharmacotherapies. The Src homology phosphatase 2 (Shp2) is a drug target in some cancers due to its positive regulation of Ras-mitogen-activated protein kinase signaling and cell proliferation. Shp2 pharmacological inhibition yields beneficial outcomes in animal disease models, but its impact on ALD remains unexplored. This study aims to investigate the effects of Shp2 inhibition and its validity using a preclinical mouse model of ALD. We report that the administration of SHP099, a potent and selective allosteric inhibitor of Shp2, partially ameliorated ethanol-induced hepatic injury, inflammation, and steatosis in mice. Additionally, Shp2 inhibition was associated with reduced ethanol-evoked activation of extracellular signal-regulated kinase (ERK), oxidative, and endoplasmic reticulum (ER) stress in the liver. Besides the liver, excessive alcohol consumption induces multi-organ injury and dysfunction, including the intestine. Notably, Shp2 inhibition diminished ethanol-induced intestinal inflammation and permeability, abrogated the reduction in tight junction protein expression, and the activation of ERK and stress signaling in the ileum. Collectively, Shp2 pharmacological inhibition mitigates the deleterious effects of ethanol in the liver and intestine in a mouse model of ALD. Given the multifactorial aspects underlying ALD pathogenesis, additional studies are needed to decipher the utility of Shp2 inhibition alone or as a component in a multitherapeutic regimen to combat this deadly malady.
Collapse
Affiliation(s)
- Ming-Fo Hsu
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616, USA.
| | - Shinichiro Koike
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Chang-Shan Chen
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
| | - Sonia M Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Tzu-Ching Meng
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
| | - Fawaz G Haj
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616, USA; Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA.
| |
Collapse
|