1
|
Li Y, Xiao P, Boadu F, Goldkamp AK, Nirgude S, Cheng J, Hagen DE, Kalish JM, Rivera RM. Beckwith-Wiedemann syndrome and large offspring syndrome involve alterations in methylome, transcriptome, and chromatin configuration. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2023.12.14.23299981. [PMID: 38168424 PMCID: PMC10760283 DOI: 10.1101/2023.12.14.23299981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Beckwith-Wiedemann Syndrome (BWS) is the most common epigenetic overgrowth syndrome, caused by epigenetic alterations on chromosome 11p15. In ∼50% of patients with BWS, the imprinted region KvDMR1 (IC2) is hypomethylated. Nearly all children with BWS develop organ overgrowth and up to 28% develop cancer during childhood. The global epigenetic alterations beyond the 11p15 region in BWS are not currently known. Uncovering these alterations at the methylome, transcriptome, and chromatin architecture levels are necessary steps to improve the diagnosis and understanding of patients with BWS. Here we characterized the complete epigenetic profiles of BWS IC2 individuals together with the animal model of BWS, bovine large offspring syndrome (LOS). A novel finding of this research is the identification of two molecular subgroups of BWS IC2 individuals. Genome-wide alternations were detected for DNA methylation, transcript abundance, alternative splicing events of RNA, chromosome compartments, and topologically associating domains (TADs) in BWS and LOS, with shared alterations identified between species. Altered chromosome compartments and TADs were correlated with differentially expressed genes in BWS and LOS. Together, we highlight genes and genomic regions that have the potential to serve as targets for biomarker development to improve current molecular diagnostic methodologies for BWS.
Collapse
|
2
|
Li Z, Ruan Z, Zhao X, Qin X, Zhang J, Feng Y, Lu J, Shi D, Lu F. RNAi-mediated knockdown of Xist improves development of the female buffalo (Bubalus bubalis) nuclear transfer embryos. Theriogenology 2022; 187:27-33. [PMID: 35500424 DOI: 10.1016/j.theriogenology.2022.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
Xist plays a critical role in the X-chromosome inactivation (XCI), an important epigenetic reprogramming of somatic cell nuclear transfer (SCNT) embryos. Modulation of Xist expression enhanced the developmental ability of mouse cloned embryos. However, the roles of Xist in buffalo SCNT embryos remain unknown. In this study, we investigated the methylation and expression status of Xist in different genders of buffalo donor cells and various stages (two-cell, eight-cell, morula and blastocyst) of in vitro fertilization (IVF) and SCNT embryos. The methylation of Xist in SCNT-♀ and SCNT-♂ embryos was aberrant hypomethylation compared with the buffalo foetal fibroblast (♀-BFF and ♂-BFF), IVF-♀ and IVF-♂ embryos. At the eight-cell stage, Xist expression was significantly higher in SCNT-♀ embryos compared with those in SCNT-♂, IVF-♀ and IVF-♂ embryos (P < 0.05). Meanwhile, no significant difference was found between IVF-♀ and IVF-♂ embryos (P > 0.05). Accordingly, we suppressed Xist expression by RNAi-Xist in SCNT-♀ embryos. Results showed that injection of Xist-shRNA significantly improved the morula and blastocyst rates (P < 0.05). These results indicated that correcting the abnormal expression of the Xist gene contributed to the development of SCNT-♀ embryos.
Collapse
Affiliation(s)
- Zhengda Li
- Aninal Reproduction Institut, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China; Reproductive Medical and Genetic Center, The People's Hospital of Guangxi Zhuang Autonoumous Region, Nanning, Guangxi, 530021, China
| | - Ziyun Ruan
- Aninal Reproduction Institut, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China; School of Basic Medicine, Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi, 530001, China
| | - Xin Zhao
- Aninal Reproduction Institut, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China; Center of Reproductive Medicine, Guangxi Maternal and Child Health Hospital, Nanning, 530003, PR China
| | - Xiling Qin
- Aninal Reproduction Institut, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Jun Zhang
- Aninal Reproduction Institut, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Yun Feng
- Aninal Reproduction Institut, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Jiaka Lu
- Aninal Reproduction Institut, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Deshun Shi
- Aninal Reproduction Institut, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China.
| | - Fenghua Lu
- Aninal Reproduction Institut, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
3
|
Li Y, Sena Lopes J, Fuster PC, Rivera RM. Spontaneous and ART-induced large offspring syndrome: similarities and differences in DNA methylome. Epigenetics 2022; 17:1477-1496. [PMID: 35466858 PMCID: PMC9586674 DOI: 10.1080/15592294.2022.2067938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Large/abnormal offspring syndrome (LOS/AOS) is a congenital overgrowth syndrome reported in ruminants produced by assisted reproduction (ART-LOS) which exhibit global disruption of the epigenome and transcriptome. LOS/AOS shares phenotypes and epigenotypes with the human congenital overgrowth condition Beckwith-Wiedemann syndrome. We have reported that LOS occurs spontaneously (SLOS); however, to date, no study has been conducted to determine if SLOS has the same methylome epimutations as ART-LOS. In this study, we performed whole-genome bisulphite sequencing to examine global DNA methylation in bovine SLOS and ART-LOS tissues. We observed unique patterns of global distribution of differentially methylated regions (DMRs) over different genomic contexts, such as promoters, CpG Islands, shores and shelves, as well as at repetitive sequences. In addition, we included data from two previous LOS studies to identify shared vulnerable genomic loci in LOS. Overall, we identified 320 genomic loci in LOS that have alterations in DNA methylation when compared to controls. Specifically, there are 25 highly vulnerable loci that could potentially serve as molecular markers for the diagnosis of LOS, including at the promoters of DMRT2 and TBX18, at the imprinted gene bodies of IGF2R, PRDM8, and BLCAP/NNAT, and at multiple CpG Islands. We also observed tissue-specific DNA methylation patterns between muscle and blood, and conservation of ART-induced DNA methylation changes between muscle and blood. We conclude that as ART-LOS, SLOS is an epigenetic condition. In addition, SLOS and ART-LOS share similarities in methylome epimutations.
Collapse
Affiliation(s)
- Yahan Li
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Jordana Sena Lopes
- Physiology Department. International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Universidad de Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB), Murcia, Spain.,Mediterranean Institute for Agriculture, Environment and Development (MED), University of Évora, Portugal
| | - Pilar Coy Fuster
- Physiology Department. International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Universidad de Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB), Murcia, Spain
| | | |
Collapse
|
4
|
Cloning and Expression Levels of TFAM and TFB2M Genes and their Correlation with Meat and Carcass Quality Traits in Jiaxing Black Pig. ANNALS OF ANIMAL SCIENCE 2019. [DOI: 10.2478/aoas-2018-0056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
The coding sequences (CDS) of TFAM and TFB2M genes from Jiaxing Black Pig (JBP) were first obtained by RT-PCR and DNA-seq in the present study. Sequence analyses showed that the TFAM gene contains a 741-bp CDS region encoding 246 amino acids sharing a 100% homology with the sequence on NCBI, while TFB2M gene contains a CDS region of 1176 bp encoding 391 amino acids with two missense mutations. The results of quantitative Real-Time PCR for TFAM and TFB2M revealed that transcripts of the genes were both presented at the highest levels in spleen tissue followed by liver tissue, while the least levels in longissimus dorsi muscle (LDM), and obviously the higher levels in two adipose tissues than those in LDM tissue (P<0.01). Meanwhile, a total of forty-two JBPs were employed in this experiment to investigate the effect of these two genes on the carcass, meat quality traits and flavor substances such as fatty acids, intramuscular fat (IMF) in LDM. As expected, some strong correlations of gene expression abundance of TFAM and TFB2M mRNA in particular tissues such as liver and LDM with carcass and meat quality traits including marbling score, as well as the content of saturated fatty acid (SFA), in JBP were found.
Collapse
|
5
|
Zhao X, Ruan Z, Qin X, Feng Y, Yu Q, Xu J, Deng Y, Shen P, Shi D, Lu F. The Role of 5-aza-2'-Deoxycytidine on Methylation Status of Xist Gene in Different Genders of Buffalo (Bubalus bubalis) Bone Marrow Mesenchymal Stem Cells. Cell Reprogram 2019; 21:89-98. [PMID: 30785778 DOI: 10.1089/cell.2018.0040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Previous studies have demonstrated that proper concentration of 5-aza-2'-deoxycytidine (5-aza-CdR) treatment was advantageous to decrease DNA methylation level, but the relationships between 5-aza-CdR treatment and methylation status of imprinted genes are seldom detected. The aim of this study was to investigate the effect of low concentration 5-aza-CdR treatment on the methylation status of imprinted gene Xist in different genders of buffalo bone marrow mesenchymal stem cells (BMSCs). BMSCs were isolated and the cell gender was identified through polymerase chain reaction (PCR). Then different concentrations of 5-aza-CdR (0, 0.02, 0.1 μM) were applied for the treatment. The results showed cellular morphology, growth, Xist gene expression pattern, and adherent ability were not significantly affected with the treatment of 5-aza-CdR for 24 hours. Meanwhile, immunofluorescence analysis indicated that the expression of 5-methylcytosine (5-mC) was also not influenced after the treatment. However, bisulfite sequence PCR (BS-PCR) analysis revealed that the methylation level of Xist differentially methylated region (DMR) decreased significantly when the concentration of 5-aza-CdR increased to 0.1 μM in the ♀BMSCs group (p < 0.05), while there was no significant difference among the ♂BMSCs-treated groups. Our results implied that low concentrations of 5-aza-CdR treatment had little impacts on cellular morphology, growth Xist gene expression pattern, adherent ability, and global DNA methylation level of BMSCs in both genders, but the treatment could significantly decrease the methylation level of Xist DMR in ♀BMSCs. Thus, we conclude 5-aza-CdR treatment can affect the methylation status of Xist DMR, furthermore, the influence is also related to sex differences.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Ziyun Ruan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Xiling Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Yun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Qing Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Jie Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Penglei Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| |
Collapse
|
6
|
Ruan Z, Zhao X, Qin X, Luo C, Liu X, Deng Y, Zhu P, Li Z, Huang B, Shi D, Lu F. DNA methylation and expression of imprinted genes are associated with the viability of different sexual cloned buffaloes. Reprod Domest Anim 2017; 53:203-212. [PMID: 29076549 DOI: 10.1111/rda.13093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/07/2017] [Indexed: 01/09/2023]
Abstract
The DNA methylation of imprinted genes is an important way to regulate epigenetic reprogramming of donor cells in somatic cell nuclear transfer (SCNT). However, the effects of sexual distinction on the DNA methylation of imprinted genes in cloned animals have seldom been reported. In this study, we analysed the DNA methylation status of three imprinted genes (Xist, IGF2 and H19) from liveborn cloned buffaloes (L group, three female and three male), stillborn cloned buffaloes (S group, three female and three male) and natural reproduction buffaloes (N group, three female and three male), using bisulphite sequencing polymerase chain reaction (BS-PCR). The expression levels of these imprinted genes were also investigated by quantitative real-time PCR (QRT-PCR). The DNA methylation levels of H19 were not significantly different among the groups. However, the Xist in female and IGF2 in male of the S group were found to be significantly hypomethylated in comparison with the same sexual buffaloes in L group and N group (p < .05). Furthermore, the expression levels of Xist, IGF2 and H19 in the stillborn female cloned buffaloes of S group were significantly higher than that of the female buffaloes in the L group and N group (p < .05). The expression levels of IGF2 and H19 in the stillborn male cloned buffaloes in the S group were significantly higher than that of the male buffaloes in the L group and N group (p < .05). These results indicate that Xist may be associated with the viability of female cloned buffaloes, and IGF2 may also be related to the viability of male cloned buffaloes.
Collapse
Affiliation(s)
- Z Ruan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - X Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - X Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - C Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - X Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - Y Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - P Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - Z Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - B Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - D Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - F Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
7
|
Zuo Y, Su G, Cheng L, Liu K, Feng Y, Wei Z, Bai C, Cao G, Li G. Coexpression analysis identifies nuclear reprogramming barriers of somatic cell nuclear transfer embryos. Oncotarget 2017; 8:65847-65859. [PMID: 29029477 PMCID: PMC5630377 DOI: 10.18632/oncotarget.19504] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 06/30/2017] [Indexed: 11/25/2022] Open
Abstract
The success of cloned animal "Dolly Sheep" demonstrated the somatic cell nuclear transfer (SCNT) technique holds huge potentials for mammalian asexual reproduction. However, the extremely poor development of SCNT embryos indicates their molecular mechanism remain largely unexplored. Deciphering the spatiotemporal patterns of gene expression in SCNT embryos is a crucial step toward understanding the mechanisms associated with nuclear reprogramming. In this study, a valuable transcriptome recourse of SCNT embryos was firstly established, which derived from different inter-/intra donor cells. The gene co-expression analysis identified 26 cell-specific modules, and a series of regulatory pathways related to reprogramming barriers were further enriched. Compared to the intra-SCNT embryos, the inter-SCNT embryos underwent only complete partially reprogramming. As master genome trigger genes, the transcripts related to TFIID subunit, RNA polymerase and mediators were incomplete activated in inter-SCNT embryos. The inter-SCNT embryos only wasted the stored maternal mRNA of master regulators, but failed to activate their self-sustained pathway of RNA polymerases. The KDM family of epigenetic regulator also seriously delayed in inter-SCNT embryo reprogramming process. Our study provided new insight into understanding of the mechanisms of nuclear reprogramming.
Collapse
Affiliation(s)
- Yongchun Zuo
- The Research Center for Laboratory Animal Science, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China.,College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Guanghua Su
- The Research Center for Laboratory Animal Science, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Lei Cheng
- The Research Center for Laboratory Animal Science, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Kun Liu
- The Research Center for Laboratory Animal Science, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Yu Feng
- The Research Center for Laboratory Animal Science, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Zhuying Wei
- The Research Center for Laboratory Animal Science, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Chunling Bai
- The Research Center for Laboratory Animal Science, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Guifang Cao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Guangpeng Li
- The Research Center for Laboratory Animal Science, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
8
|
Perinatal Diseases. Vet Med (Auckl) 2017. [PMCID: PMC7150149 DOI: 10.1016/b978-0-7020-5246-0.00019-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Su J, Wang Y, Xing X, Zhang L, Sun H, Zhang Y. Melatonin significantly improves the developmental competence of bovine somatic cell nuclear transfer embryos. J Pineal Res 2015; 59:455-68. [PMID: 26331949 DOI: 10.1111/jpi.12275] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/28/2015] [Indexed: 01/08/2023]
Abstract
Somatic cell nuclear transfer (SCNT) is a promising technology, but its application is hampered by its low efficiency. Hence, the majority of SCNT embryos fail to develop to term. In this study, the antioxidant melatonin reduced apoptosis and reactive oxygen species (ROS) in bovine SCNT embryos. It also increased cell number, inner cell mass (ICM) cell numbers, and the ratio of ICM to total cells while improving the development of bovine SCNT embryos in vitro and in vivo. Gene expression analysis showed that melatonin suppressed the expression of the pro-apoptotic genes p53 and Bax and stimulated the expression of the antioxidant genes SOD1 and Gpx4, the anti-apoptotic gene BCL2L1, and the pluripotency-related gene SOX2 in SCNT blastocysts. We also analyzed the epigenetic modifications in bovine in vitro fertilization, melatonin-treated, and untreated SCNT embryos. The global H3K9ac levels of melatonin-treated SCNT embryos at the four-cell stage were higher than those of the untreated SCNT embryos. We conclude that exogenous melatonin affects the expression of genes related to apoptosis, antioxidant function, and development. Moreover, melatonin reduced apoptosis and ROS in bovine SCNT embryos and enhanced blastocyst quality, thereby ultimately improving bovine cloning efficiency.
Collapse
Affiliation(s)
- Jianmin Su
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, China
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, China
| | - Xupeng Xing
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, China
| | - Lei Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, China
| | - Hongzheng Sun
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province, China
| |
Collapse
|
10
|
Su J, Wang Y, Xing X, Liu J, Zhang Y. Genome-wide analysis of DNA methylation in bovine placentas. BMC Genomics 2014; 15:12. [PMID: 24397284 PMCID: PMC3893433 DOI: 10.1186/1471-2164-15-12] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 12/11/2013] [Indexed: 01/07/2023] Open
Abstract
Background DNA methylation is an important epigenetic modification that is essential for epigenetic gene regulation in development and disease. To date, the genome-wide DNA methylation maps of many organisms have been reported, but the methylation pattern of cattle remains unknown. Results We showed the genome-wide DNA methylation map in placental tissues using methylated DNA immunoprecipitation combined with high-throughput sequencing (MeDIP-seq). In cattle, the methylation levels in the gene body are relatively high, whereas the promoter remains hypomethylated. We obtained thousands of highly methylated regions (HMRs), methylated CpG islands, and methylated genes from bovine placenta. DNA methylation levels around the transcription start sites of genes are negatively correlated with the gene expression level. However, the relationship between gene-body DNA methylation and gene expression is non-monotonic. Moderately expressed genes generally have the highest levels of gene-body DNA methylation, whereas the highly, and lowly expressed genes, as well as silent genes, show moderate DNA methylation levels. Genes with the highest expression show the lowest DNA methylation levels. Conclusions We have generated the genome-wide mapping of DNA methylation in cattle for the first time, and our results can be used for future studies on epigenetic gene regulation in cattle. This study contributes to the knowledge on epigenetics in cattle.
Collapse
Affiliation(s)
| | | | | | | | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China.
| |
Collapse
|
11
|
Su J, Wang Y, Li R, Peng H, Hua S, Li Q, Quan F, Guo Z, Zhang Y. Oocytes selected using BCB staining enhance nuclear reprogramming and the in vivo development of SCNT embryos in cattle. PLoS One 2012; 7:e36181. [PMID: 22558373 PMCID: PMC3338625 DOI: 10.1371/journal.pone.0036181] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/28/2012] [Indexed: 11/18/2022] Open
Abstract
The selection of good quality oocytes is crucial for in vitro fertilization and somatic cloning. Brilliant cresyl blue (BCB) staining has been used for selection of oocytes from several mammalian species. However, the effects of differential oocyte selection by BCB staining on nuclear reprogramming and in vivo development of SCNT embryos are not well understood. Immature compact cumulus-oocyte complexes (COCs) were divided into control (not exposed to BCB), BCB+ (blue cytoplasm) and BCB- (colorless cytoplasm) groups. We found that BCB+ oocytes yielded a significantly higher somatic cell nuclear transfer (SCNT) blastocyst rate and full term development rate of bovine SCNT embryos than the BCB- and control oocytes. BCB+ embryos (embryos developed from BCB+ oocytes) showed increased acetylation levels of histone H3 at K9 and K18 (AcH3K9, AcH3K18), and methylation levels of histone H3 at K4 (H3K4me2) than BCB- embryos (embryos developed from BCB- oocytes) at the two-cell stage. Furthermore, BCB+ embryos generated more total cells, trophectoderm (TE) cells, and inner cell mass (ICM) cells, and fewer apoptotic cells than BCB- embryos. The expression of SOX2, CDX2, and anti-apoptotic microRNA-21 were up-regulated in the BCB+ blastocysts compared with BCB- blastocysts, whereas the expression of pro-apoptotic gene Bax was down-regulated in BCB+ blastocysts. These results strongly suggest that BCB+ oocytes have a higher nuclear reprogramming capacity, and that BCB staining can be used to select developmentally competent oocytes for nuclear transfer.
Collapse
Affiliation(s)
- Jianmin Su
- College of Veterinary Medicine, Northwest A & F University, Key Laboratory of Animal Reproductive Physiology & Embryo Technology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A & F University, Key Laboratory of Animal Reproductive Physiology & Embryo Technology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Ruizhe Li
- College of Veterinary Medicine, Northwest A & F University, Key Laboratory of Animal Reproductive Physiology & Embryo Technology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Hui Peng
- College of Veterinary Medicine, Northwest A & F University, Key Laboratory of Animal Reproductive Physiology & Embryo Technology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Song Hua
- College of Veterinary Medicine, Northwest A & F University, Key Laboratory of Animal Reproductive Physiology & Embryo Technology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Qian Li
- College of Veterinary Medicine, Northwest A & F University, Key Laboratory of Animal Reproductive Physiology & Embryo Technology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A & F University, Key Laboratory of Animal Reproductive Physiology & Embryo Technology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Zekun Guo
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, People's Republic of China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A & F University, Key Laboratory of Animal Reproductive Physiology & Embryo Technology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
- * E-mail:
| |
Collapse
|