1
|
Pineau L, Burnashev N. Functional Analysis of NMDAR Subunit Components in Postsynaptic Currents of Identified Cells and Synapses in Brain Slices. Methods Mol Biol 2024; 2799:139-150. [PMID: 38727906 DOI: 10.1007/978-1-0716-3830-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Epilepsy is one of the most represented neurological diseases worldwide. However, in many cases, the precise molecular mechanisms of epileptogenesis and ictiogenesis are unknown. Because of their important role in synaptic function and neuronal excitability, NMDA receptors are implicated in various epileptogenic mechanisms. Most of these are subunit specific and require a precise analysis of the subunit composition of the NMDARs implicated. Here, we describe an express electrophysiological method to analyze the contribution of NMDAR subunits to spontaneous postsynaptic activity in identified cells in brain slices using patch clamp whole cell recordings.
Collapse
Affiliation(s)
- Louison Pineau
- Mediterranean Institute of Neurobiology (INMED), INSERM, Aix-Marseille University, Marseille, France
| | - Nail Burnashev
- Mediterranean Institute of Neurobiology (INMED), INSERM, Aix-Marseille University, Marseille, France.
| |
Collapse
|
2
|
Praticò AD, Falsaperla R, Polizzi A, Ruggieri M. Monogenic Epilepsies: Channelopathies, Synaptopathies, mTorpathies, and Otheropathies. JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:146-154. [DOI: 10.1055/s-0041-1727098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractEpilepsy has been historically defined as the recurrence of two or more seizures, together with typical electroencephalogram (EEG) changes, and significant comorbidities, including cardiac and autonomic changes, injuries, intellectual disability, permanent brain damage, and higher mortality risk. Epilepsy may be the consequence of several causes, including genetic anomalies, structural brain malformations, hypoxic–ischemic encephalopathy, brain tumors, drugs, and all contributing factors to the imbalance between excitatory and inhibitory neurons and modulatory interneurons which in turn provoke abnormal, simultaneous electric discharge(s) involving part, or all the brain. In the pregenetic, pregenomic era, in most cases, the exact cause of such neuronal/interneuronal disequilibrium remained unknown and the term “idiopathic epilepsy” was used to define all the epilepsies without cause. At the same time, some specific epileptic syndromes were indicated by the eponym of the first physician who originally described the condition (e.g., the West syndrome, Dravet syndrome, Ohtahara syndrome, and Lennox–Gastaut syndrome) or by some characteristic clinical features (e.g., nocturnal frontal lobe epilepsy, absence epilepsy, and epilepsy and mental retardation limited to females). In many of these occurrences, the distinct epileptic syndrome was defined mainly by its most relevant clinical feature (e.g., seizure semiology), associated comorbidities, and EEGs patterns. Since the identification of the first epilepsy-associated gene (i.e., CHRNA4 gene: cholinergic receptor neuronal nicotinic α polypeptide 4), one of the genes responsible for autosomal dominant nocturnal frontal lobe epilepsy (currently known as sleep-related hypermotor epilepsy) in 1995, the field of epilepsy and the history of epilepsy gene discoveries have gone through at least three different stages as follows: (1) an early stage of relentless gene discovery in monogenic familial epilepsy syndromes; (2) a relatively quiescent and disappointing period characterized by largely negative genome-wide association candidate gene studies; and (3) a genome-wide era in which large-scale molecular genetic studies have led to the identification of several novel epilepsy genes, especially in sporadic forms of epilepsy. As of 2021, more than 150 epilepsy-associated genes or loci are listed in the Online Mendelian Inheritance in Man database.
Collapse
Affiliation(s)
- Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
3
|
Pabian-Jewuła S, Bragiel-Pieczonka A, Rylski M. Ying Yang 1 engagement in brain pathology. J Neurochem 2022; 161:236-253. [PMID: 35199341 DOI: 10.1111/jnc.15594] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/27/2022]
Abstract
Herein, we discuss data concerning the involvement of transcription factor Yin Yang 1 (YY1) in the development of brain diseases, highlighting mechanisms of its pathological actions. YY1 plays an important role in the developmental and adult pathology of the nervous system. YY1 is essential for neurulation as well as maintenance and differentiation of neuronal progenitor cells and oligodendrocytes regulating both neural and glial tissues of the brain. Lack of a YY1 gene causes many developmental abnormalities and anatomical malformations of the central nervous system (CNS). Once dysregulated, YY1 exerts multiple neuropathological actions being involved in the induction of many brain disorders like stroke, epilepsy, Alzheimer's and Parkinson's diseases, autism spectrum disorder, dystonia, and brain tumors. Better understanding of YY1's dysfunction in the nervous system may lead to the development of novel therapeutic strategies related to YY1's actions.
Collapse
Affiliation(s)
- Sylwia Pabian-Jewuła
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, 99/103 Marymoncka Street, 01-813, Warsaw, Poland
| | - Aneta Bragiel-Pieczonka
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, 99/103 Marymoncka Street, 01-813, Warsaw, Poland
| | - Marcin Rylski
- Department of Radiology, Institute of Psychiatry and Neurology, 9 Sobieski Street, Warsaw, Poland
| |
Collapse
|
4
|
Rozensztrauch A, Kołtuniuk A. The Quality of Life of Children with Epilepsy and the Impact of the Disease on the Family Functioning. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042277. [PMID: 35206465 PMCID: PMC8871959 DOI: 10.3390/ijerph19042277] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 02/15/2022] [Indexed: 11/16/2022]
Abstract
Epilepsy is a neurological chronic disease, which negatively affects physical, psychological and social functioning of children and their families. The main objective of this study was to assess the quality of life (QoL) in children with diagnosed epilepsy and the impact of a child’s disease on the functioning of the family. Method: A cross-sectional survey involved a total of 103 legal guardians of children with diagnosed epilepsy. QoL was measured by PedsQL 4.0, with appropriate forms for specific age groups, the impact of a child’s condition on the functioning of the family was measured by PedsQL 2.0 Family Impact Module, and the authors’ own questionnaire was used to collect sociodemographic and medical data. Results: Subjects reported a decreased level of family daily activities (total score: 32.4 out of 100, SD = 26.5) and relationships (total score: 55.63 out of 100, SD = 24.03). QoL in children aged 5–7 years is lower by an average of 11.956 points as compared with children aged 2–4 years. Comorbidities had a significant impact (p < 0.05) on QoL in all domains. The overall QoL has reported a low score of 46.42 out of 100, respectively (SD ± 20.95), with the highest mean scores reported for the social functioning (total score: 49.4, SD = 27.3) and the physical functioning (total score: 49.4, SD = 28.4) and with the lowest mean score reported for the work/school functioning (total score: 42.3, SD = 27.8). Conclusions: Child’s epilepsy shows a considerable negative impact on the QoL of children and family functioning.
Collapse
Affiliation(s)
- Anna Rozensztrauch
- Department of Nursing and Obstetrics, Division of Family and Pediatric Nursing, Wroclaw Medical University, Poland 1, 51-618 Wrocław, Poland
- Correspondence:
| | - Aleksandra Kołtuniuk
- Department of Nursing and Obstetrics, Division of Internal Medicine Nursing, Wroclaw Medical University, Poland 1, 51-618 Wrocław, Poland;
| |
Collapse
|
5
|
Marini C, Giardino M. Novel treatments in epilepsy guided by genetic diagnosis. Br J Clin Pharmacol 2021; 88:2539-2551. [PMID: 34778987 DOI: 10.1111/bcp.15139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 12/21/2022] Open
Abstract
In recent years, precision medicine has emerged as a new paradigm for improved and more individualized patient care. Its key objective is to provide the right treatment, to the right patient at the right time, by basing medical decisions on individual characteristics, including specific genetic biomarkers. In order to realize this objective researchers and physicians must first identify the underlying genetic cause; over the last 10 years, advances in genetics have made this possible for several monogenic epilepsies. Through next generation techniques, a precise genetic aetiology is attainable in 30-50% of genetic epilepsies beginning in the paediatric age. While committed in such search for novel genes carrying disease-causing variants, progress in the study of experimental models of epilepsy has also provided a better understanding of the mechanisms underlying the condition. Such advances are already being translated into improving care, management and treatment of some patients. Identification of a precise genetic aetiology can already direct physicians to prescribe treatments correcting specific metabolic defects, avoid antiseizure medicines that might aggravate functional consequences of the disease-causing variant or select the drugs that counteract the underlying, genetically determined, functional disturbance. Personalized, tailored treatments should not just focus on how to stop seizures but possibly prevent their onset and cure the disorder, often consisting of seizures and its comorbidities including cognitive, motor and behaviour deficiencies. This review discusses the therapeutic implications following a specific genetic diagnosis and the correlation between genetic findings, pathophysiological mechanisms and tailored seizure treatment, emphasizing the impact on current clinical practice.
Collapse
Affiliation(s)
- Carla Marini
- Child Neurology and Psychiatric Unit, Pediatric Hospital G. Salesi, United Hospitals of Ancona, Ancona, Italy
| | - Maria Giardino
- Child Neurology and Psychiatric Unit, Pediatric Hospital G. Salesi, United Hospitals of Ancona, Ancona, Italy
| |
Collapse
|
6
|
Lei S, He Y, Zhu Z, Liu Z, Lin Y, He Y, Du S, Chen X, Xu P, Zhu X. Inhibition of NMDA Receptors Downregulates Astrocytic AQP4 to Suppress Seizures. Cell Mol Neurobiol 2020; 40:1283-1295. [PMID: 32107753 PMCID: PMC11448840 DOI: 10.1007/s10571-020-00813-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 02/14/2020] [Indexed: 01/28/2023]
Abstract
Aquaporin 4 (AQP4), a water-specific channel protein locating on the astrocyte membrane, has been found to be antagonist, agonist and undergone closely related to epilepsy. Our previous study showed that inhibition of an N-methyl-D-aspartate receptor (NMDAR) subunit NR2A can suppress epileptic seizures, suggesting that AQP4 is potentially involved in NR2A-mediated epilepsy treatment. In this study, we aimed to explore the relevance of AQP4 in NR2A-mediated seizures treatment in pentylenetetrazol (PTZ)-induced rat models. We performed electroencephalogram (EEG) recording and examined AQP4 expression at mRNA and protein levels, and the downstream molecules of AQP4 as well. It showed that AQP4 expression was increased after the induction of seizures. Lateral ventricle pretreatment of NR2A inhibitor could mitigate the PTZ-induced seizures severity and counterbalance the increase of AQP4 expression. In contrast, NR2A activator that resulted in seizures aggravation could further augment the seizure-related elevations of AQP4 expression. Pharmacological inhibition of AQP4 alone could also suppress the PTZ-induced seizure activities, with decreased expressions of NF-κB p65, interleukin (IL)-1, IL-6, and tumor necrosis factor (TNF)-α in the brain. The results indicated that increased expression of AQP4 might be an important mechanism involved in NR2A of NMDAR-mediated treatment for epileptic seizures, enlightening a potentially new target for seizures treatment.
Collapse
Affiliation(s)
- Shuisheng Lei
- Department of Physiology, Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Dermatology, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yan He
- Department of Physiology, Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Dermatology, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ziting Zhu
- Department of Physiology, Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Dermatology, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Zhongrui Liu
- Department of Physiology, Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Dermatology, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuwan Lin
- Department of Physiology, Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Dermatology, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yuehua He
- Department of Physiology, Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Dermatology, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Sheng Du
- Department of Physiology, Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Dermatology, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Pingyi Xu
- Department of Physiology, Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Dermatology, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Xiaoqin Zhu
- Department of Physiology, Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Dermatology, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
7
|
Cardoso FC, Lewis RJ. Structure-Function and Therapeutic Potential of Spider Venom-Derived Cysteine Knot Peptides Targeting Sodium Channels. Front Pharmacol 2019; 10:366. [PMID: 31031623 PMCID: PMC6470632 DOI: 10.3389/fphar.2019.00366] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022] Open
Abstract
Spider venom-derived cysteine knot peptides are a mega-diverse class of molecules that exhibit unique pharmacological properties to modulate key membrane protein targets. Voltage-gated sodium channels (NaV) are often targeted by these peptides to allosterically promote opening or closing of the channel by binding to structural domains outside the channel pore. These effects can result in modified pain responses, muscle paralysis, cardiac arrest, priapism, and numbness. Although such effects are often deleterious, subtype selective spider venom peptides are showing potential to treat a range of neurological disorders, including chronic pain and epilepsy. This review examines the structure–activity relationships of cysteine knot peptides from spider venoms that modulate NaV and discusses their potential as leads to novel therapies for neurological disorders.
Collapse
Affiliation(s)
- Fernanda C Cardoso
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Richard J Lewis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
8
|
Balciuniene J, DeChene ET, Akgumus G, Romasko EJ, Cao K, Dubbs HA, Mulchandani S, Spinner NB, Conlin LK, Marsh ED, Goldberg E, Helbig I, Sarmady M, Abou Tayoun A. Use of a Dynamic Genetic Testing Approach for Childhood-Onset Epilepsy. JAMA Netw Open 2019; 2:e192129. [PMID: 30977854 PMCID: PMC6481455 DOI: 10.1001/jamanetworkopen.2019.2129] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IMPORTANCE Although genetic testing is important for bringing precision medicine to children with epilepsy, it is unclear what genetic testing strategy is best in maximizing diagnostic yield. OBJECTIVES To evaluate the diagnostic yield of an exome-based gene panel for childhood epilepsy and discuss the value of follow-up testing. DESIGN, SETTING, AND PARTICIPANTS A case series study was conducted on data from clinical genetic testing at Children's Hospital of Philadelphia was conducted from September 26, 2016, to January 8, 2018. Initial testing targeted 100 curated epilepsy genes for sequence and copy number analysis in 151 children with idiopathic epilepsy referred consecutively by neurologists. Additional genetic testing options were offered afterward. EXPOSURES Clinical genetic testing. MAIN OUTCOMES AND MEASURES Molecular diagnostic findings. RESULTS Of 151 patients (84 boys [55.6%]; median age, 4.2 years [interquartile range, 1.4-8.7 years]), 16 children (10.6%; 95% CI, 6%-16%) received a diagnosis after initial panel analysis. Parental testing for 15 probands with inconclusive results revealed de novo variants in 7 individuals (46.7%), resulting in an overall diagnostic yield of 15.3% (23 of 151; 95% CI, 9%-21%). Twelve probands with nondiagnostic panel findings were reflexed to exome sequencing, and 4 were diagnostic (33.3%; 95% CI, 6%-61%), raising the overall diagnostic yield to 17.9% (27 of 151; 95% CI, 12%-24%). The yield was highest (17 of 44 [38.6%; 95% CI, 24%-53%]) among probands with epilepsy onset in infancy (age, 1-12 months). Panel diagnostic findings involved 16 genes: SCN1A (n = 4), PRRT2 (n = 3), STXBP1 (n = 2), IQSEC2 (n = 2), ATP1A2, ATP1A3, CACNA1A, GABRA1, KCNQ2, KCNT1, SCN2A, SCN8A, DEPDC5, TPP1, PCDH19, and UBE3A (all n = 1). Exome sequencing analysis identified 4 genes: SMC1A, SETBP1, NR2F1, and TRIT1. For the remaining 124 patients, analysis of 13 additional genes implicated in epilepsy since the panel was launched in 2016 revealed promising findings in 6 patients. CONCLUSIONS AND RELEVANCE Exome-based targeted panels appear to enable rapid analysis of a preselected set of genes while retaining flexibility in gene content. Successive genetic workup should include parental testing of select probands with inconclusive results and reflex to whole-exome trio analysis for the remaining nondiagnostic cases. Periodic reanalysis is needed to capture information in newly identified disease genes.
Collapse
Affiliation(s)
- Jorune Balciuniene
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elizabeth T. DeChene
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Gozde Akgumus
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Edward J. Romasko
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kajia Cao
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Holly A. Dubbs
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Surabhi Mulchandani
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Nancy B. Spinner
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Laura K. Conlin
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Eric D. Marsh
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Ethan Goldberg
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Ingo Helbig
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Mahdi Sarmady
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Ahmad Abou Tayoun
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- now with Department of Genomics, Al Jalila Children’s Specialty Hospital, Dubai, United Arab Emirates
| |
Collapse
|
9
|
|