1
|
Alsayegh A, Alsuwilem Z, Alsalem A, Alanzan A, Alashjaee R, Almuslem M, Raffah O, Almutairi R, Arab K. Global Analysis and Latest Research Hot Spots of Lipoedema/Lipodystrophy Investigation and Management: A Bibliometric Analysis and Visualized Review. Aesthetic Plast Surg 2025:10.1007/s00266-025-04855-3. [PMID: 40295372 DOI: 10.1007/s00266-025-04855-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/22/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Lipodystrophy presents clinical management challenges due to its varied expression and low incidence. Despite the clinical importance, there has been no systematic evaluation of the research output in terms of geographical distribution, institutional contributions, or emerging trends. This study aims to fill that gap by conducting a comprehensive bibliometric analysis of the global research landscape on lipodystrophy. METHODS Utilizing the Web of Science core collection, studies from 2010 to 2024 were analyzed. Bibliometric indicators were processed using VOSviewer to identify trends through graphical co-occurrence mapping. RESULTS A total of 826 studies from 57 countries were included. The USA led with 259 publications (30.51%). The most productive institutions were the National Institute of Diabetes and Digestive and Kidney Diseases with 43 publications (14.98%). Among 166 journals, the Journal of Clinical Endocrinology and Metabolism had the highest publications (43, 25.90%) and citations per publication (58). The most co-cited article was The Diagnosis and Management of Lipodystrophy Syndromes (2016), which was referenced 290 times. CONCLUSION This analysis highlights research trends and collaborative networks, areas for future investigation, and identifies the gaps and emerging trends that will inform future research directions. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Ammar Alsayegh
- College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia.
| | - Ziyad Alsuwilem
- College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | | | - Rasha Alashjaee
- King Abdulaziz Specialist Hospital, Sakaka, Al Jouf, Saudi Arabia
| | - Maryam Almuslem
- College of Medicine, King Faisal University, Al Hofuf, Al Ahsa, Saudi Arabia
| | - Obai Raffah
- College of Medicine, Alrayan Medical Colleges, Medinah, Saudi Arabia
| | - Rahaf Almutairi
- College of Medicine, Imam Mohammad bin Saud Islamic University, Riyadh, Saudi Arabia
| | - Khalid Arab
- Division of Plastic Surgery, Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Zhou Y, Zhai Y. Comment on Foss-Freitas et al. Efficacy and Safety of Glucagon-Like Peptide 1 Agonists in a Retrospective Study of Patients With Familial Partial Lipodystrophy. Diabetes Care 2024;47:653-659. Diabetes Care 2025; 48:e31. [PMID: 39977632 DOI: 10.2337/dc24-1777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 02/22/2025]
Affiliation(s)
- Yimeng Zhou
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yongzhen Zhai
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Fernández-Pombo A, Yildirim Simsir I, Sánchez-Iglesias S, Ozen S, Castro AI, Atik T, Loidi L, Onay H, Prado-Moraña T, Adiyaman C, Díaz-López EJ, Altay C, Ginzo-Villamayor MJ, Akinci B, Araújo-Vilar D. A cohort analysis of familial partial lipodystrophy from two Mediterranean countries. Diabetes Obes Metab 2024; 26:4875-4886. [PMID: 39171574 DOI: 10.1111/dom.15882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024]
Abstract
AIM To assess the disease burden of familial partial lipodystrophy (FPLD) caused by LMNA (FPLD2) and PPARG (FPLD3) variants to augment the knowledge of these rare disorders characterized by selective fat loss and metabolic complications. MATERIALS AND METHODS An observational longitudinal study, including 157 patients (FPLD2: 139 patients, mean age 46 ± 17 years, 70% women; FPLD3: 18 patients, mean age: 44 ± 17 years, 78% women) from 66 independent families in two countries (83 from Turkey and 74 from Spain), was conducted. RESULTS Patients were diagnosed at a mean age of 39 ± 19 years, 20 ± 16 years after the first clinical signs appeared. Men reported symptoms later than women. Symptom onset was earlier in FPLD2. Fat loss was less prominent in FPLD3. In total, 92 subjects (59%) had diabetes (age at diagnosis: 34 ± 1 years). Retinopathy was more commonly detected in FPLD3 (P < .05). Severe hypertriglyceridaemia was more frequent among patients with FPLD3 (44% vs. 17%, P = .01). Hepatic steatosis was detected in 100 subjects (66%) (age at diagnosis: 36 ± 2 years). Coronary artery disease developed in 26 patients (17%) and 17 (11%) suffered from a myocardial infarction. Turkish patients had a lower body mass index, a higher prevalence of hepatic steatosis, greater triglyceride levels and a tendency towards a higher prevalence of coronary artery disease. A total of 17 patients died, with a mean time to death of 75 ± 3 years, which was shorter in the Turkish cohort (68 ± 2 vs. 83 ± 4 years, P = .01). Cardiovascular events were a major cause of death. CONCLUSIONS Our analysis highlights severe organ complications in patients with FPLD, showing differences between genotypes and Mediterranean countries. FPLD3 presents a milder phenotype than FPLD2, but with comparable or even greater severity of metabolic disturbances.
Collapse
Affiliation(s)
- Antía Fernández-Pombo
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, Santiago, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, Santiago, Spain
| | - Ilgin Yildirim Simsir
- Division of Endocrinology and Metabolism Disorders, Department of Internal Medicine, Ege University Medical Faculty, Izmir, Turkey
| | - Sofía Sánchez-Iglesias
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, Santiago, Spain
| | - Samim Ozen
- Department of Pediatric Endocrinology, Faculty of Medicine, Ege University, İzmir, Turkey
| | - Ana I Castro
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, Santiago, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Madrid, Spain
| | - Tahir Atik
- Department of Medical Genetics, Ege University Faculty of Medicine, Izmir, Turkey
| | - Lourdes Loidi
- Galician Public Foundation for Genomic Medicine (SERGAS-Xunta de Galicia), Santiago de Compostela, Spain
| | - Huseyin Onay
- Department of Medical Genetics, Ege University Faculty of Medicine, Izmir, Turkey
| | - Teresa Prado-Moraña
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, Santiago, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, Santiago, Spain
| | - Cem Adiyaman
- Division of Endocrinology and Metabolism, Department of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Everardo Josué Díaz-López
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, Santiago, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, Santiago, Spain
| | - Canan Altay
- Department of Radiology, Medical Faculty, Dokuz Eylul University, Izmir, Turkey
| | - Maria José Ginzo-Villamayor
- Department of Estatística, Análise Matemática e Optimización, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Baris Akinci
- Division of Endocrinology and Metabolism, Department of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - David Araújo-Vilar
- UETeM-Molecular Pathology Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, Santiago, Spain
- Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, Santiago, Spain
| |
Collapse
|
4
|
Soares RMV, da Silva MA, Campos JTADM, Lima JG. Familial partial lipodystrophy resulting from loss-of-function PPARγ pathogenic variants: phenotypic, clinical, and genetic features. Front Endocrinol (Lausanne) 2024; 15:1394102. [PMID: 39398333 PMCID: PMC11466747 DOI: 10.3389/fendo.2024.1394102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
The PPARG gene encodes a member of a nuclear receptor superfamily known as peroxisome proliferator-activated gamma (PPARγ). PPARγ plays an essential role in adipogenesis, stimulating the differentiation of preadipocytes into adipocytes. Loss-of-function pathogenic variants in PPARG reduce the activity of the PPARγ receptor and can lead to severe metabolic consequences associated with familial partial lipodystrophy type 3 (FPLD3). This review focuses on recent scientific data related to FPLD3, including the role of PPARγ in adipose tissue metabolism and the phenotypic and clinical consequences of loss-of-function variants in the PPARG gene. The clinical features of 41 PPARG pathogenic variants associated with FPLD3 patients were reviewed, highlighting the genetic and clinical heterogeneity observed among 91 patients. Most of them were female, and the average age at the onset and diagnosis of lipoatrophy was 21 years and 33 years, respectively. Considering the metabolic profile, hypertriglyceridemia (91.9% of cases), diabetes (77%), hypertension (59.5%), polycystic ovary syndrome (58.2% of women), and metabolic-dysfunction-associated fatty liver disease (87,5%). We also discuss the current treatment for FPLD3. This review provides new data concerning the genetic and clinical heterogeneity in FPLD3 and highlights the importance of further understanding the genetics of this rare disease.
Collapse
Affiliation(s)
- Reivla Marques Vasconcelos Soares
- Department of Clinical Medicine, Hospital Universitário Onofre Lopes (HUOL), Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Monique Alvares da Silva
- Molecular Biology and Genomics Laboratory, Federal University of Rio Grande do Norte
(UFRN), Natal, RN, Brazil
| | - Julliane Tamara Araújo de Melo Campos
- Molecular Biology and Genomics Laboratory, Federal University of Rio Grande do Norte
(UFRN), Natal, RN, Brazil
- Department of Morphology (DMOR), Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Josivan Gomes Lima
- Department of Clinical Medicine, Hospital Universitário Onofre Lopes (HUOL), Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| |
Collapse
|
5
|
Zhou L, Li S, Ren J, Wang D, Yu R, Zhao Y, Zhang Q, Xiao X. Circulating exosomal circRNA-miRNA-mRNA network in a familial partial lipodystrophy type 3 family with a novel PPARG frameshift mutation c.418dup. Am J Physiol Endocrinol Metab 2024; 327:E357-E370. [PMID: 39017680 DOI: 10.1152/ajpendo.00094.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/18/2024]
Abstract
Familial partial lipodystrophy 3 (FPLD3) is a rare genetic disorder caused by loss-of-function mutations in the PPARG gene, characterized by a selective absence of subcutaneous fat and associated metabolic complications. However, the molecular mechanisms of FPLD3 remain unclear. In this study, we recruited a 17-yr-old Chinese female with FPLD3 and her family, identifying a novel PPARG frameshift mutation (exon 4: c.418dup: p.R140Kfs*7) that truncates the PPARγ protein at the seventh amino acid, significantly expanding the genetic landscape of FPLD3. By performing next-generation sequencing of circular RNAs (circRNAs), microRNAs (miRNAs), and mRNAs in plasma exosomes, we discovered 59 circRNAs, 57 miRNAs, and 299 mRNAs were significantly altered in the mutation carriers compared with the healthy controls. Integration analysis highlighted that the circ_0001597-miR-671-5p pair and 18 mRNAs might be incorporated into the metabolic regulatory networks of the FPLD3 induced by the novel PPARG mutation. Functional annotation suggested that these genes were significantly enriched in glucose- and lipid metabolism-related pathways. Among the circRNA-miRNA-mRNA network, we identified two critical regulators, early growth response-1 (EGR1), a key transcription factor known for its role in insulin signaling pathways and lipid metabolism, and 1-acylglycerol-3-phosphate O-acyltransferase 3 (AGPAT3), which gets involved in the biosynthesis of triglycerides and lipolysis. Circ_0001597 regulates the expression of these genes through miR-671-5p, potentially contributing to the pathophysiology of FPLD3. Overall, this study clarified a circulating exosomal circRNA-miRNA-mRNA network in a FPLD3 family with a novel PPARG mutation, providing evidence for exploring promising biomarkers and developing novel therapeutic strategies for this rare genetic disorder.NEW & NOTEWORTHY Through the establishment of a ceRNA regulatory networks in a novel PPARG frameshift mutation c.418dup-induced FPLD3 pedigree, this study reveals that circ_0001597 may contribute to the pathophysiology of FPLD3 by sequestering miR-671-5p to regulate the expression of EGR1 and AGPAT3, pivotal genes situated in the triglyceride (TG) synthesis and lipolysis pathways. Current findings expand our molecular understanding of adipose tissue dysfunction, providing potential blood biomarkers and therapeutic avenues for lipodystrophy and associated metabolic complications.
Collapse
Affiliation(s)
- Liyuan Zhou
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Shunhua Li
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jing Ren
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Dongmei Wang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Ruiqi Yu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yuxing Zhao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Qian Zhang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
6
|
Zhou Y, Zhang L, Ding Y, Zhai Y. Case report: First Chinese patient with family partial lipodystrophy type 6 due to novel compound heterozygous mutations in the LIPE gene. Front Genet 2024; 15:1417613. [PMID: 39113684 PMCID: PMC11303181 DOI: 10.3389/fgene.2024.1417613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Background Family partial lipodystrophy (FPLD) is a rare autosomal dominant disease characterized by disorders of variable body fat loss associated with metabolic complications. FPLD6 has only been reported in a limited number of cases. Here, we reported a Chinese FPLD6 patient with compound heterozygous mutations in the lipase E, hormone-sensitive type (LIPE) gene. Case presentation A 20-year-old female patient presented with hypertriglyceridemia, diabetes mellitus, hepatomegaly, and hepatic steatosis. Subcutaneous fat was significantly diminished in her face, abdomen, and limbs. The patient was assessed by detailed clinical and biochemical examinations. A liver biopsy showed severe lipodystrophy. In addition, there were retinal changes, peripheral nerve damage, and renal tubular injury. Sequencing was performed on extracted DNA. Genetic analysis revealed that the patient had compound heterozygous mutations in the LIPE gene: c.2497_250ldel (p.Glu833LysfsTer22) and c.2705del (p.Ser902ThrfsTer27) heterozygous mutations. Verification revealed that this mutation was inherited from her father and mother, respectively, and that they formed newly discovered compound heterozygous mutations occurring in the LIPE gene, causing FPLD6. Conclusion We reported the first case of FPLD6 in China. Gene analysis demonstrated compound heterozygous mutations in LIPE in this patient. Our case emphasizes the importance of genetic testing in young patients with severe metabolic syndromes.
Collapse
Affiliation(s)
| | | | | | - Yongzhen Zhai
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Romano MMD, Sapalo AT, Guidorizzi NR, Moreira HT, Inês PAC, Kalil LC, Foss MC, de Paula FJA. Echocardiographic Alterations of Cardiac Geometry and Function in Patients with Familial Partial Lipodystrophy. Arq Bras Cardiol 2024; 121:e20230442. [PMID: 38922260 PMCID: PMC11216334 DOI: 10.36660/abc.20230442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/06/2024] [Accepted: 03/13/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Cardiomyopathy associated with partial lipodystrophy (PL) has not been well described yet. OBJECTIVE To characterize cardiac morphology and function in PL. METHODS Patients with familial PL and controls were prospectively assessed by transthoracic echocardiography and with speckle-tracking echocardiography (global longitudinal strain, GLS). The relationship between echocardiographic variables and PL diagnosis was tested with regression models, considering the effect of systolic blood pressure (SBP). Significance level of 5% was adopted. RESULTS Twenty-nine patients with PL were compared to 17 controls. They did not differ in age (p=0.94), gender or body mass index (p= 0.05). Patients with PL had statistically higher SBP (p=0.02) than controls. Also, PL patients had higher left atrial dimension (37.3 ± 4.4 vs. 32.1 ± 4.3 mm, p= 0.001) and left atrial (30.2 ± 7.2 vs. 24.9 ± 9.0 mL/m2,p=0.02), left ventricular (LV) mass (79.3 ± 17.4 vs. 67.1 ± 19.4, p=0.02), and reduced diastolic LV parameters (E' lateral, p= 0.001) (E' septal, p= 0.001), (E/E' ratio, p= 0.02). LV ejection fraction (64.7 ± 4.6 vs. 62.2 ± 4.4 %, p= 0.08) and GLS were not statistically different between groups (-17.1 ± 2.7 vs. -18.0 ± 2.0 %, p= 0.25). There was a positive relationship of left atrium (β 5.6, p<0.001), posterior wall thickness, (β 1.3, p=0.011), E' lateral (β -3.5, p=0.002) and E' septal (β -3.2, p<0.001) with PL diagnosis, even after adjusted for SBP. CONCLUSION LP patients have LV hypertrophy, left atrial enlargement, and LV diastolic dysfunction although preserved LVEF and GLS. Echocardiographic parameters are related to PL diagnosis independent of SBP.
Collapse
Affiliation(s)
- Minna Moreira Dias Romano
- Universidade de São PauloCentro de Cardiologia da Faculdade de Medicina de Ribeirão PretoSão PauloBrasilCentro de Cardiologia da Faculdade de Medicina de Ribeirão Preto – Universidade de São Paulo (USP), São Paulo – Brasil
| | - André Timóteo Sapalo
- Universidade de São PauloCentro de Cardiologia da Faculdade de Medicina de Ribeirão PretoSão PauloBrasilCentro de Cardiologia da Faculdade de Medicina de Ribeirão Preto – Universidade de São Paulo (USP), São Paulo – Brasil
| | - Natália Rossin Guidorizzi
- Universidade de São PauloCentro de Cardiologia da Faculdade de Medicina de Ribeirão PretoSão PauloBrasilCentro de Cardiologia da Faculdade de Medicina de Ribeirão Preto – Universidade de São Paulo (USP), São Paulo – Brasil
| | - Henrique Turin Moreira
- Universidade de São PauloCentro de Cardiologia da Faculdade de Medicina de Ribeirão PretoSão PauloBrasilCentro de Cardiologia da Faculdade de Medicina de Ribeirão Preto – Universidade de São Paulo (USP), São Paulo – Brasil
| | - Paula Ananda Chacon Inês
- Universidade de São PauloCentro de Cardiologia da Faculdade de Medicina de Ribeirão PretoSão PauloBrasilCentro de Cardiologia da Faculdade de Medicina de Ribeirão Preto – Universidade de São Paulo (USP), São Paulo – Brasil
| | - Lucas Candelária Kalil
- Universidade de São PauloCentro de Cardiologia da Faculdade de Medicina de Ribeirão PretoSão PauloBrasilCentro de Cardiologia da Faculdade de Medicina de Ribeirão Preto – Universidade de São Paulo (USP), São Paulo – Brasil
| | - Maria Cristina Foss
- Universidade de São PauloDivisão de Endocrinologia da Faculdade de Medicina de Ribeirão PretoSão PauloBrasilDivisão de Endocrinologia da Faculdade de Medicina de Ribeirão Preto – Universidade de São Paulo (USP), São Paulo – Brasil
| | - Francisco José Albuquerque de Paula
- Universidade de São PauloDivisão de Endocrinologia da Faculdade de Medicina de Ribeirão PretoSão PauloBrasilDivisão de Endocrinologia da Faculdade de Medicina de Ribeirão Preto – Universidade de São Paulo (USP), São Paulo – Brasil
| |
Collapse
|
8
|
Fourman LT, Lima JG, Simha V, Cappa M, Alyaarubi S, Montenegro R, Akinci B, Santini F. A rapid action plan to improve diagnosis and management of lipodystrophy syndromes. Front Endocrinol (Lausanne) 2024; 15:1383318. [PMID: 38952397 PMCID: PMC11215967 DOI: 10.3389/fendo.2024.1383318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/13/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction Lipodystrophy syndromes are rare diseases that can present with a broad range of symptoms. Delays in diagnosis are common, which in turn, may predispose to the development of severe metabolic complications and end-organ damage. Many patients with lipodystrophy syndromes are only diagnosed after significant metabolic abnormalities arise. Prompt action by clinical teams may improve disease outcomes in lipodystrophy syndromes. The aim of the Rapid Action Plan is to serve as a set of recommendations from experts that can support clinicians with limited experience in lipodystrophy syndromes. Methods The Rapid Action Plan was developed using insights gathered through a series of advisory meetings with clinical experts in lipodystrophy syndromes. A skeleton template was used to facilitate interviews. A consensus document was developed, reviewed, and approved by all experts. Results Lipodystrophy is a clinical diagnosis. The Rapid Action Plan discusses tools that can help diagnose lipodystrophy syndromes. The roles of clinical and family history, physical exam, patient and family member photos, routine blood tests, leptin levels, skinfold measurements, imaging studies, and genetic testing are explored. Additional topics such as communicating the diagnosis to the patients/families and patient referrals are covered. A set of recommendations regarding screening and monitoring for metabolic diseases and end-organ abnormalities is presented. Finally, the treatment of lipodystrophy syndromes is reviewed. Discussion The Rapid Action Plan may assist clinical teams with the prompt diagnosis and holistic work-up and management of patients with lipodystrophy syndromes, which may improve outcomes for patients with this rare disease.
Collapse
Affiliation(s)
- Lindsay T. Fourman
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Josivan Gomes Lima
- Hospital Universitário Onofre Lopes, Departamento de Clinica Medica, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Vinaya Simha
- Division of Endocrinology, Mayo Clinic, Rochester, MN, United States
| | - Marco Cappa
- Research Area for Innovative Therapies in Endocrinopathies Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Saif Alyaarubi
- Pediatric Endocrinology, Oman Medical Specialty Board, Muscat, Oman
| | - Renan Montenegro
- Brazilian Group for the Study of Inherited and Acquired Lipodystrophies (BRAZLIPO), Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará/Ebserh, Fortaleza, Brazil
| | - Baris Akinci
- Dokuz Eylul University Health Campus Technopark (DEPARK), Dokuz Eylul University, Izmir, Türkiye
- Department of Research Programs, Technological Research, Izmir Biomedicine and Genome Center (IBG), Izmir, Türkiye
| | - Ferruccio Santini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
9
|
Clinical Spectrum of LMNA-Associated Type 2 Familial Partial Lipodystrophy: A Systematic Review. Cells 2023; 12:cells12050725. [PMID: 36899861 PMCID: PMC10000975 DOI: 10.3390/cells12050725] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
Type 2 familial partial lipodystrophy (FPLD2) is a laminopathic lipodystrophy due to pathogenic variants in the LMNA gene. Its rarity implies that it is not well-known. The aim of this review was to explore the published data regarding the clinical characterisation of this syndrome in order to better describe FPLD2. For this purpose, a systematic review through a search on PubMed until December 2022 was conducted and the references of the retrieved articles were also screened. A total of 113 articles were included. FPLD2 is characterised by the loss of fat starting around puberty in women, affecting limbs and trunk, and its accumulation in the face, neck and abdominal viscera. This adipose tissue dysfunction conditions the development of metabolic complications associated with insulin resistance, such as diabetes, dyslipidaemia, fatty liver disease, cardiovascular disease, and reproductive disorders. However, a great degree of phenotypical variability has been described. Therapeutic approaches are directed towards the associated comorbidities, and recent treatment modalities have been explored. A comprehensive comparison between FPLD2 and other FPLD subtypes can also be found in the present review. This review aimed to contribute towards augmenting knowledge of the natural history of FPLD2 by bringing together the main clinical research in this field.
Collapse
|
10
|
Adiyaman SC, Altay C, Kamisli BY, Avci ER, Basara I, Simsir IY, Atik T, Secil M, Oral EA, Akinci B. Pelvis magnetic resonance imaging to diagnose familial partial lipodystrophy. J Clin Endocrinol Metab 2023:7049389. [PMID: 36808247 DOI: 10.1210/clinem/dgad063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/23/2023]
Abstract
CONTEXT The diagnosis of familial partial lipodystrophy (FPLD) is currently made based on clinical judgement. OBJECTIVE There is a need for objective diagnostic tools that can diagnose FPLD accurately. METHODS We have developed a new method that used measurements from pelvic magnetic resonance imaging (MRI) at the pubis level. We evaluated measurements from a lipodystrophy cohort (n = 59; median age [25-75 percentiles]: 32 [24-44]; 48 females and 11 males) and age- and gender-matched controls (n = 29). Another dataset included MRIs from 289 consecutive patients. RESULTS Receiver operating characteristic curve (ROC) analysis revealed a potential cut-point of ≤ 13 mm gluteal fat thickness for the diagnosis of FPLD. A combination of gluteal fat thickness ≤ 13 mm and pubic/gluteal fat ratio ≥ 2.5 (based on a ROC) provided 96.67% (95% Confidence Interval [CI]: 82.78-99.92%) sensitivity and 91.38% (95% CI: 81.02-97.14%) specificity in the overall cohort and 100.00% (95% CI: 87.23-100.00%) sensitivity and 90.00% (95% CI: 76.34-97.21%) specificity in females for the diagnosis of FPLD. When this approach was tested in a larger dataset of random patients, FPLD was differentiated from subjects without lipodystrophy with 96.67% (95% CI: 82.78-99.92%) sensitivity and 100.00% (95% CI: 98.73-100.00%) specificity. When only women were analyzed, the sensitivity and the specificity was 100.00% (95%CI: 87.23-100.00% and 97.95-100.00%, respectively). The performance of gluteal fat thickness and pubic/gluteal fat thickness ratio was comparable to readouts performed by radiologists with expertise in lipodystrophy. CONCLUSION The combined use of gluteal fat thickness and pubic/gluteal fat ratio from pelvic MRI is a promising method to diagnose FPLD that can reliably identify FPLD in women. Our findings need to be tested in larger populations and prospectively.
Collapse
Affiliation(s)
- Suleyman Cem Adiyaman
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Canan Altay
- Department of Radiology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Berfu Y Kamisli
- Department of Internal Medicine, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Emre Ruhat Avci
- Department of Radiology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Isil Basara
- Department of Radiology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Ilgin Yildirim Simsir
- Division of Endocrinology, Department of Internal Medicine, Ege University School of Medicine, Izmir, Turkey
| | - Tahir Atik
- Department of Pediatric Genetics, Ege University School of Medicine, Izmir, Turkey
| | - Mustafa Secil
- Department of Radiology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Elif A Oral
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, USA
| | | |
Collapse
|
11
|
Algieri C, Bernardini C, Trombetti F, Schena E, Zannoni A, Forni M, Nesci S. Cellular Metabolism and Bioenergetic Function in Human Fibroblasts and Preadipocytes of Type 2 Familial Partial Lipodystrophy. Int J Mol Sci 2022; 23:8659. [PMID: 35955791 PMCID: PMC9368940 DOI: 10.3390/ijms23158659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023] Open
Abstract
LMNA mutation is associated with type-2 familial partial lipodystrophy (FPLD2). The disease causes a disorder characterized by anomalous accumulation of body fat in humans. The dysfunction at the molecular level is triggered by a lamin A/C mutation, impairing the cell metabolism. In human fibroblasts and preadipocytes, a trend for ATP production, mainly supported by mitochondrial oxidative metabolism, is detected. Moreover, primary cell lines with FPLD2 mutation decrease the mitochondrial ATP production if compared with the control, even if no differences are observed in the oxygen consumption rate of bioenergetic parameters (i.e., basal and maximal respiration, spare respiratory capacity, and ATP turnover). Conversely, glycolysis is only inhibited in FPLD2 fibroblast cell lines. We notice that the amount of ATP produced in the fibroblasts is higher than in the preadipocytes, and likewise in the control, with respect to FPLD2, due to a more active oxidative phosphorylation (OXPHOS) and glycolysis. Moreover, the proton leak parameter, which characterizes the transformation of white adipose tissue to brown/beige adipose tissue, is unaffected by FPLD2 mutation. The metabolic profile of fibroblasts and preadipocytes is confirmed by the ability of these cell lines to increase the metabolic potential of both OXPHOS and glycolysis under energy required independently by the FPLD2 mutation.
Collapse
Affiliation(s)
- Cristina Algieri
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Italy
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Italy
| | - Elisa Schena
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, 40126 Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Italy
| |
Collapse
|
12
|
Mosbah H, Vantyghem M, Nobécourt E, Andreelli F, Archambeaud F, Bismuth E, Briet C, Cartigny M, Chevalier B, Donadille B, Daguenel A, Fichet M, Gautier J, Janmaat S, Jéru I, Legagneur C, Leguier L, Maitre J, Mongeois E, Poitou C, Renard E, Reznik Y, Spiteri A, Travert F, Vergès B, Zammouri J, Vigouroux C, Vatier C. Therapeutic indications and metabolic effects of metreleptin in patients with lipodystrophy syndromes: Real-life experience from a national reference network. Diabetes Obes Metab 2022; 24:1565-1577. [PMID: 35445532 PMCID: PMC9541305 DOI: 10.1111/dom.14726] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/05/2022] [Accepted: 04/18/2022] [Indexed: 12/01/2022]
Abstract
AIM To describe baseline characteristics and follow-up data in patients with lipodystrophy syndromes treated with metreleptin in a national reference network, in a real-life setting. PATIENTS AND METHODS Clinical and metabolic data from patients receiving metreleptin in France were retrospectively collected, at baseline, at 1 year and at the latest follow-up during treatment. RESULTS Forty-seven patients with lipodystrophy including generalized lipodystrophy (GLD; n = 28) and partial lipodystrophy (PLD; n = 19) received metreleptin over the last decade. At baseline, the median (interquartile range [IQR]) patient age was 29.3 (16.6-47.6) years, body mass index was 23.8 (21.2-25.7) kg/m2 and serum leptin was 3.2 (1.0-4.9) ng/mL, 94% of patients had diabetes (66% insulin-treated), 53% had hypertension and 87% had dyslipidaemia. Metreleptin therapy, administered for a median (IQR) of 31.7 (14.2-76.0) months, was ongoing in 77% of patients at the latest follow-up. In patients with GLD, glycated haemoglobin (HbA1c) and fasting triglyceride levels significantly decreased from baseline to 1 year of metreleptin treatment, from 8.4 (6.5-9.9)% [68 (48-85) mmol/mol] to 6.8 (5.6-7.4)% [51(38-57) mmol/mol], and 3.6 (1.7-8.5) mmol/L to 2.2 (1.1-3.7) mmol/L, respectively (P < 0.001), with sustained efficacy thereafter. In patients with PLD, HbA1c was not significantly modified (7.7 [7.1-9.1]% [61 (54-76) mmol/mol] at baseline vs. 7.7 [7.4-9.5]% [61(57-80) mmol/mol] at 1 year), and the decrease in fasting triglycerides (from 3.3 [1.9-9.9] mmol/L to 2.5 [1.6-5.3] mmol/L; P < 0.01) was not confirmed at the latest assessment (5.2 [2.2-11.3] mmol/L). However, among PLD patients, at 1 year, 61% were responders regarding glucose homeostasis, with lower baseline leptin levels compared to nonresponders, and 61% were responders regarding triglyceridaemia. Liver enzymes significantly decreased only in the GLD group. CONCLUSIONS In this real-life setting study, metabolic outcomes are improved by metreleptin therapy in patients with GLD. The therapeutic indication for metreleptin needs to be clarified in patients with PLD.
Collapse
Affiliation(s)
- Héléna Mosbah
- Endocrinology DepartmentAssistance Publique–Hôpitaux de Paris (AP‐HP), Saint–Antoine University Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS)ParisFrance
- Sorbonne University, Inserm UMR_S 938, Saint–Antoine Research CentreCardiometabolism and Nutrition University Hospital Institute (ICAN)ParisFrance
| | - Marie‐Christine Vantyghem
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital; University of Lille, INSERM U1190European Genomic Institute for DiabetesLilleFrance
| | - Estelle Nobécourt
- Department of Endocrinology, Diabetology and MetabolismLa Réunion University HospitalSaint Pierre de la RéunionFrance
| | - Fabrizio Andreelli
- AP‐HP, Pitié‐Salpêtrière University Hospital, Department of Diabetology; Sorbonne University, INSERMNutrition and Obesity: systemic approaches « NutriOmics »ParisFrance
| | - Francoise Archambeaud
- Department of Endocrinology, Diabetology and MetabolismDupuytren University HospitalLimogesFrance
| | - Elise Bismuth
- AP‐HP, Robert‐Debré University Hospital, Department of Paediatric Endocrinology, Diabetology and MetabolismUniversity of ParisParisFrance
| | - Claire Briet
- Department of EndocrinologyDiabetology and Metabolism, Angers University Hospital, Laboratory MITOVASC, UMR CNRS 6015, INSERM 1083AngersFrance
| | - Maryse Cartigny
- Reference Centre for Rare Diseases of Genital Development DEVGEN, Endocrinology Unit, Diabetology and Paediatric Gynecology DepartmentLille University HospitalLilleFrance
| | - Benjamin Chevalier
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital; University of Lille, INSERM U1190European Genomic Institute for DiabetesLilleFrance
| | - Bruno Donadille
- Endocrinology DepartmentAssistance Publique–Hôpitaux de Paris (AP‐HP), Saint–Antoine University Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS)ParisFrance
- Sorbonne University, Inserm UMR_S 938, Saint–Antoine Research CentreCardiometabolism and Nutrition University Hospital Institute (ICAN)ParisFrance
| | - Anne Daguenel
- Department of PharmacyAP‐HP, Saint–Antoine University HospitalParisFrance
| | - Mathilde Fichet
- Department of Endocrinology, Diabetology and MetabolismRennes University HospitalRennesFrance
| | - Jean‐François Gautier
- Department of Endocrinology, Diabetology and MetabolismAP‐HP, Lariboisière University HospitalParisFrance
| | - Sonja Janmaat
- Endocrinology DepartmentAssistance Publique–Hôpitaux de Paris (AP‐HP), Saint–Antoine University Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS)ParisFrance
- Sorbonne University, Inserm UMR_S 938, Saint–Antoine Research CentreCardiometabolism and Nutrition University Hospital Institute (ICAN)ParisFrance
| | - Isabelle Jéru
- Endocrinology DepartmentAssistance Publique–Hôpitaux de Paris (AP‐HP), Saint–Antoine University Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS)ParisFrance
- Sorbonne University, Inserm UMR_S 938, Saint–Antoine Research CentreCardiometabolism and Nutrition University Hospital Institute (ICAN)ParisFrance
| | - Carole Legagneur
- Department of Paediatric Endocrinology, Diabetology and MetabolismUniversity Hospital Brabois‐Vandoeuvre lès NancyVandoeuvre lès NancyFrance
| | - Lysiane Leguier
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital; University of Lille, INSERM U1190European Genomic Institute for DiabetesLilleFrance
| | - Julie Maitre
- Department of Paediatrics and Endocrinology, Diabetology and MetabolismOrléans HospitalOrléansFrance
| | - Elise Mongeois
- Department of Paediatrics and Endocrinology, Diabetology and MetabolismOrléans HospitalOrléansFrance
| | - Christine Poitou
- Nutrition Department, Sorbonne University/INSERM, Research Unit: Nutrition and Obesity; Systemic Approaches (NutriOmics)AP‐HP, Pitié‐Salpêtrière University Hospital, Reference Centre for Rare Diseases PRADORT (PRADer‐Willi Syndrome and other Rare Obesities with Eating Disorders)ParisFrance
| | - Eric Renard
- Department of Endocrinology, Diabetes and Nutrition, Montpellier University Hospital; Clinical Investigation Centre INSERM1411; Institute of Functional Genomics, CNRS, INSERMUniversity of MontpellierMontpellierFrance
| | - Yves Reznik
- Department of Endocrinology, Diabetology and MetabolismCôte de Nacre University HospitalCaenFrance
| | - Anne Spiteri
- Department of Endocrinology, Diabetology and MetabolismGrenoble University HospitalGrenobleFrance
| | - Florence Travert
- Department of Diabetology and MetabolismAP‐HP, Bichat University HospitalParisFrance
| | - Bruno Vergès
- Department of Endocrinology, Diabetology and MetabolismBocage University HospitalDijonFrance
| | - Jamila Zammouri
- Sorbonne University, Inserm UMR_S 938, Saint–Antoine Research CentreCardiometabolism and Nutrition University Hospital Institute (ICAN)ParisFrance
- AP‐HP, Robert‐Debré University Hospital, Department of Paediatric Endocrinology, Diabetology and MetabolismUniversity of ParisParisFrance
| | - Corinne Vigouroux
- Endocrinology DepartmentAssistance Publique–Hôpitaux de Paris (AP‐HP), Saint–Antoine University Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS)ParisFrance
- Sorbonne University, Inserm UMR_S 938, Saint–Antoine Research CentreCardiometabolism and Nutrition University Hospital Institute (ICAN)ParisFrance
| | - Camille Vatier
- Endocrinology DepartmentAssistance Publique–Hôpitaux de Paris (AP‐HP), Saint–Antoine University Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS)ParisFrance
- Sorbonne University, Inserm UMR_S 938, Saint–Antoine Research CentreCardiometabolism and Nutrition University Hospital Institute (ICAN)ParisFrance
| |
Collapse
|
13
|
Campos JTADM, Oliveira MSD, Soares LP, Medeiros KAD, Campos LRDS, Lima JG. DNA repair-related genes and adipogenesis: Lessons from congenital lipodystrophies. Genet Mol Biol 2022; 45:e20220086. [DOI: 10.1590/1678-4685-gmb-2022-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022] Open
|