1
|
Jajosky RP, Zerra PE, Chonat S, Stowell SR, Arthur CM. Harnessing the potential of red blood cells in immunotherapy. Hum Immunol 2024; 85:111084. [PMID: 39255557 PMCID: PMC11808826 DOI: 10.1016/j.humimm.2024.111084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/12/2024]
Abstract
Red blood cell (RBC) transfusion represents one of the earliest and most widespread forms of cellular therapy. While the primary purpose of RBC transfusions is to enhance the oxygen-carrying capacity of the recipient, RBCs also possess unique properties that make them attractive vehicles for inducing antigen-specific immune tolerance. Preclinical studies have demonstrated that RBC transfusion alone, in the absence of inflammatory stimuli, often fails to elicit detectable alloantibody formation against model RBC antigens. Several studies also suggest that RBC transfusion without inflammation may not only fail to generate a detectable alloantibody response but can also induce a state of antigen-specific non-responsiveness, a phenomenon potentially influenced by the density of the corresponding RBC alloantigen. The unique properties of RBCs, including their inability to divide and their stable surface antigen expression, make them attractive platforms for displaying exogenous antigens with the goal of leveraging their ability to induce antigen-specific non-responsiveness. This could facilitate antigen presentation to the host's immune system without triggering innate immune activation, potentially enabling the induction of antigen-specific tolerance for therapeutic applications in autoimmune disorders, preventing immune responses against protein therapeutics, or reducing alloreactivity in the setting of transfusion and transplantation.
Collapse
Affiliation(s)
- Ryan P Jajosky
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Patricia E Zerra
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Satheesh Chonat
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| | - Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
2
|
Jan HM, Wu SC, Stowell CJ, Vallecillo-Zúniga ML, Paul A, Patel KR, Muthusamy S, Lin HY, Ayona D, Jajosky RP, Varadkar SP, Nakahara H, Chan R, Bhave D, Lane WJ, Yeung MY, Hollenhorst MA, Rakoff-Nahoum S, Cummings RD, Arthur CM, Stowell SR. Galectin-4 Antimicrobial Activity Primarily Occurs Through its C-Terminal Domain. Mol Cell Proteomics 2024; 23:100747. [PMID: 38490531 PMCID: PMC11097083 DOI: 10.1016/j.mcpro.2024.100747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/03/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024] Open
Abstract
Although immune tolerance evolved to reduce reactivity with self, it creates a gap in the adaptive immune response against microbes that decorate themselves in self-like antigens. This is particularly apparent with carbohydrate-based blood group antigens, wherein microbes can envelope themselves in blood group structures similar to human cells. In this study, we demonstrate that the innate immune lectin, galectin-4 (Gal-4), exhibits strain-specific binding and killing behavior towards microbes that display blood group-like antigens. Examination of binding preferences using a combination of microarrays populated with ABO(H) glycans and a variety of microbial strains, including those that express blood group-like antigens, demonstrated that Gal-4 binds mammalian and microbial antigens that have features of blood group and mammalian-like structures. Although Gal-4 was thought to exist as a monomer that achieves functional bivalency through its two linked carbohydrate recognition domains, our data demonstrate that Gal-4 forms dimers and that differences in the intrinsic ability of each domain to dimerize likely influences binding affinity. While each Gal-4 domain exhibited blood group-binding activity, the C-terminal domain (Gal-4C) exhibited dimeric properties, while the N-terminal domain (Gal-4N) failed to similarly display dimeric activity. Gal-4C not only exhibited the ability to dimerize but also possessed higher affinity toward ABO(H) blood group antigens and microbes expressing glycans with blood group-like features. Furthermore, when compared to Gal-4N, Gal-4C exhibited more potent antimicrobial activity. Even in the context of the full-length protein, where Gal-4N is functionally bivalent by virtue of Gal-4C dimerization, Gal-4C continued to display higher antimicrobial activity. These results demonstrate that Gal-4 exists as a dimer and exhibits its antimicrobial activity primarily through its C-terminal domain. In doing so, these data provide important insight into key features of Gal-4 responsible for its innate immune activity against molecular mimicry.
Collapse
Affiliation(s)
- Hau-Ming Jan
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Carter J Stowell
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mary L Vallecillo-Zúniga
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anu Paul
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kashyap R Patel
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sasikala Muthusamy
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hsien-Ya Lin
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Diyoly Ayona
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ryan Philip Jajosky
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Samata P Varadkar
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hirotomo Nakahara
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rita Chan
- Infectious Disease Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Devika Bhave
- Infectious Disease Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - William J Lane
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Melissa Y Yeung
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marie A Hollenhorst
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Seth Rakoff-Nahoum
- Infectious Disease Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard D Cummings
- Harvard Glycomics Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Connie M Arthur
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|