1
|
Ma B, Zheng L, Xie B, Ma L, Jia M, Xie C, Hu C, Ulbricht M, Wei Y. Sustainable wastewater treatment and reuse in space. J Environ Sci (China) 2024; 146:237-240. [PMID: 38969451 DOI: 10.1016/j.jes.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 07/07/2024]
Abstract
Exploring the vast extraterrestrial space is an inevitable trend with continuous human development. Water treatment and reuse are crucial in the limited and closed space that is available in spaceships or long-term use space bases that will be established in the foreseeable future. Dedicated water treatment technologies have experienced iterative development for more than 60 years since the first manned spaceflight was successfully launched. Herein, we briefly review the related wastewater characteristics and the history of water treatment in space stations, and we focus on future challenges and perspectives, aiming at providing insights for optimizing wastewater treatment technologies and closing the water cycle in future.
Collapse
Affiliation(s)
- Baiwen Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Libing Zheng
- Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117, Germany
| | - Beizhen Xie
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Lingshan Ma
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Mingsheng Jia
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Chengcheng Xie
- CSD New Concept Environmental Development Yixing Co., Ltd., Yixing 214000, China.
| | - Chengzhi Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117, Germany
| | - Yuansong Wei
- Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
2
|
Yuan C, An T, Li X, Zou J, Lin Z, Gu J, Hu R, Fang Z. Genomic analysis of Ralstonia pickettii reveals the genetic features for potential pathogenicity and adaptive evolution in drinking water. Front Microbiol 2024; 14:1272636. [PMID: 38370577 PMCID: PMC10869594 DOI: 10.3389/fmicb.2023.1272636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/13/2023] [Indexed: 02/20/2024] Open
Abstract
Ralstonia pickettii, the most critical clinical pathogen of the genus Ralstonia, has been identified as a causative agent of numerous harmful infections. Additionally, Ralstonia pickettii demonstrates adaptability to extreme environmental conditions, such as those found in drinking water. In this study, we conducted a comprehensive genomic analysis to investigate the genomic characteristics related to potential pathogenicity and adaptive evolution in drinking water environments of Ralstonia pickettii. Through phylogenetic analysis and population genetic analysis, we divided Ralstonia pickettii into five Groups, two of which were associated with drinking water environments. The open pan-genome with a large and flexible gene repertoire indicated a high genetic plasticity. Significant differences in functional enrichment were observed between the core- and pan-genome of different groups. Diverse mobile genetic elements (MGEs), extensive genomic rearrangements, and horizontal gene transfer (HGT) events played a crucial role in generating genetic diversity. In drinking water environments, Ralstonia pickettii exhibited strong adaptability, and the acquisition of specific adaptive genes was potentially facilitated by genomic islands (GIs) and HGT. Furthermore, environmental pressures drove the adaptive evolution of Ralstonia pickettii, leading to the accumulation of unique mutations in key genes. These mutations may have a significant impact on various physiological functions, particularly carbon metabolism and energy metabolism. The presence of virulence-related elements associated with macromolecular secretion systems, virulence factors, and antimicrobial resistance indicated the potential pathogenicity of Ralstonia pickettii, making it capable of causing multiple nosocomial infections. This study provides comprehensive insights into the potential pathogenicity and adaptive evolution of Ralstonia pickettii in drinking water environments from a genomic perspective.
Collapse
Affiliation(s)
- Chao Yuan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Tianfeng An
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xinlong Li
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jiao Zou
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhan Lin
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jiale Gu
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Ruixia Hu
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhongze Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
- School of Public Health, Tianjin Medical University, Tianjin, China
| |
Collapse
|
3
|
Zhang J, Wei J, Massey IY, Peng T, Yang F. Immobilization of Microbes for Biodegradation of Microcystins: A Mini Review. Toxins (Basel) 2022; 14:toxins14080573. [PMID: 36006234 PMCID: PMC9416196 DOI: 10.3390/toxins14080573] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 12/02/2022] Open
Abstract
Harmful cyanobacterial blooms (HCBs) frequently occur in eutrophic freshwater ecosystems worldwide. Microcystins (MCs) are considered to be the most prominent and toxic metabolites during HCBs. MCs may be harmful to human and animal health through drinking water and recreational water. Biodegradation is eco-friendly, cost-effective and one of the most effective methods to remove MCs. Many novel MC-degrading bacteria and their potential for MCs degradation have been documented. However, it is a challenge to apply the free MC-degrading bacterial cells in natural environments due to the long-term operational instability and difficult recycling. Immobilization is the process of restricting the mobility of bacteria using carriers, which has several advantages as biocatalysts compared to free bacterial cells. Biological water treatment systems with microbial immobilization technology can potentially be utilized to treat MC-polluted wastewater. In this review article, various types of supporting materials and methods for microbial immobilization and the application of bacterial immobilization technology for the treatment of MCs-contaminated water are discussed. This article may further broaden the application of microbial immobilization technology to the bioremediation of MC-polluted environments.
Collapse
Affiliation(s)
- Jiajia Zhang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Jia Wei
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Isaac Yaw Massey
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Tangjian Peng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
- Correspondence: (T.P.); (F.Y.); Tel./Fax: +86-731-8480-5460 (F.Y.)
| | - Fei Yang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
- Correspondence: (T.P.); (F.Y.); Tel./Fax: +86-731-8480-5460 (F.Y.)
| |
Collapse
|
5
|
Performance of Earthworm-Enhanced Horizontal Sub-Surface Flow Filter and Constructed Wetland. WATER 2018. [DOI: 10.3390/w10101309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, the performance of the horizontal sub-surface flow filter (HSSFF) and constructed wetland (HSSFCW) experimental units enhanced with earthworms was investigated for the treatment of construction camp sewage wastewater. All the experimental units (filter and constructed wetland) were filled with the same filler except Eisenia foetida earthworms and Lolium perenne Linn plants. The performance of the earthworm-enhanced filter (EEF) and the earthworm-enhanced constructed wetland (EECW) was compared to that of the blank filter (BF) units. The results revealed that the removal efficiencies for chemical oxygen demand (COD), ammonium-nitrogen (NH4+-N), total nitrogen (TN) and total phosphorus (TP) in EEF were higher than the BF unit. In order to optimize the operating conditions, the experiments were conducted in three different water levels. The results revealed that the removal efficiencies of EEF for these pollutants are the highest in experimental conditions no. 2 (water level ~30 cm; HRT ~3 days; hydraulic load ~4.05 cm/day; and Inflow discharge ~0.27 L/h). Compared to the EEF and BF units, the EECW has higher removal efficiency for COD and TN and has more stable performance than the filters. This work will aid the design and improvement of filters and CWs for treatment of effluent wastewater from construction camps. The selection of appropriate hydraulic parameters and experimental conditions could be very beneficial in achieving the goal of implantation of low impact development (LID).
Collapse
|