1
|
Wang M, Xue J, Liu S, Xu C, Cao Z, Yu H, Nong X, Huang K, Hu S, Guo Y, Han B. Mechanisms of pyroptosis in modulating osteoblast function under simulated microgravity. BMC Musculoskelet Disord 2025; 26:406. [PMID: 40275265 PMCID: PMC12020319 DOI: 10.1186/s12891-025-08629-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Bone mass loss resulting from mechanical unloading in a microgravity environment constitutes a primary impediment to the advancement of space exploration for astronauts. However, the underlying mechanism remains unclear. In this study, we primarily investigated the impact of pyroptosis on osteoblasts under simulated microgravity and its influence on osteoblast functionality. METHODS A rotary cell culture system was employed to establish a simulated microgravity environment. The proliferation of osteoblasts was assessed by cell counting kit-8 (CCK-8) assay. Lactate dehydrogenase (LDH) Release Assay Kit was used to measure cell necrosis. Osteoblast differentiation and mineralization were evaluated using an ALP kit and alizarin red staining. Fluorescence Hoechst/PI double staining and scanning electron microscopy (SEM) were used to detect pyroptosis, and a caspase-1 kit measured caspase-1 activity. The expression of NLRP3, caspase-1, GSDMD, IL-1β, IL-18, OCN, and COL-I was analyzed by qPCR and Western blot. Additionally, ELISA was used to quantify the release of IL-1β and IL-18. RESULTS The PI fluorescence in osteoblasts exhibited significant enhancement under simulated microgravity conditions, accompanied by increased membrane pore formation, decreased cell proliferation, and elevated LDH release. Moreover, the expression levels of NLRP3, caspase-1, GSDMD, IL-1β, and IL-18 were upregulated while caspase-1 activity was increased. Treatment with MCC950 and VX-765 effectively attenuated pyroptosis levels as well as caspase-1 activity while reducing the expression of NLRP3, GSDMD, IL-1β, and IL-18. Notably, this treatment significantly enhanced the expression of OCN and COL-I. CONCLUSION Under simulated microgravity conditions, pyroptosis occurs in osteoblasts and alters their osteogenic differentiation function. Pyroptosis modulates the functionality of osteoblasts and contributes to the mechanical response process, potentially serving as one of the mechanisms underlying mechanical-regulated osteoblast function in a microgravity environment. This finding may offer a novel approach for addressing bone tissue damage and repair under extreme mechanical conditions. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Min Wang
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199, China
| | - Jindong Xue
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199, China
| | - Songsong Liu
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199, China
| | - Congncong Xu
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199, China
| | - Zhen Cao
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199, China
- Key Laboratory of Medical Biotechnology and Translational Medicine, Education Department of Guangxi Zhuang Autonomous Region, Guilin, 541199, China
| | - Haoyang Yu
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199, China
| | - Xiaojuan Nong
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199, China
| | - Kexin Huang
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199, China
| | - Shuling Hu
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199, China
| | - Yong Guo
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199, China.
- Key Laboratory of Medical Biotechnology and Translational Medicine, Education Department of Guangxi Zhuang Autonomous Region, Guilin, 541199, China.
| | - Biao Han
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199, China.
- Key Laboratory of Medical Biotechnology and Translational Medicine, Education Department of Guangxi Zhuang Autonomous Region, Guilin, 541199, China.
| |
Collapse
|
2
|
Jing S, Zhang F, Zhao N, Wu X, Chen R. Enhancing Osteoblast Activity and Accelerating Fracture Healing via miR-656-3p Downregulation: A Novel Targeting Strategy Focused on BMP-2 Expression. Acta Orthop Belg 2024; 90:681-689. [PMID: 39869873 DOI: 10.52628/90.4.13790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Delayed fracture healing (DFH), a common complication of post-fracture surgery, exhibits an incompletely understood pathogenesis. The present study endeavors to investigate the roles and underlying mechanisms of miR-656-3p and Bone Morphogenetic Protein-2 (BMP-2) in DFH. It was recruited 94 patients with normal fracture healing (NFH) and 88 patients with DFH of the femoral neck. Serum miR-656-3p and BMP-2 expressions were quantified using RT-qPCR and the diagnostic potential of them for DFH was evaluated using ROC analysis. Factors influencing fracture healing were identified through logistic regression analysis. Osteogenic differentiation of MC3T3-E1 cells was induced, followed by evaluations of cell proliferation, apoptosis, and differentiation capabilities utilizing CCK-8, flow cytometry, and mRNA expression analysis of osteogenic markers. The targeting relationship between miR-656-3p and BMP-2 was validated through luciferase reporter assays. The levels of miR-656-3p were significantly elevated in DFH patients compared to those with NFH, whereas BMP-2 levels exhibited a decrease, a negative correlation between their expression patterns. Logistic regression analysis revealed that miR-656-3p and BMP-2 serve as influential factors in fracture healing, with their combined assessment exhibiting enhanced predictive value for DFH. Downregulation of miR-656-3p promoted proliferation and differentiation of MC3T3-E1 cells while inhibiting apoptosis. BMP-2, identified as a target of miR-656-3p, negated the effects of miR-656-3p downregulation when BMP-2 expression was inhibited. miR-656-3p modulates osteoblast function by targeting BMP-2, offering novel therapeutic and diagnostic targets for the management of DFH.
Collapse
|
3
|
Kong X, Qin Y, Pei W, Zhou G. Recent progresses on space life science research in China. LIFE SCIENCES IN SPACE RESEARCH 2024; 43:35-42. [PMID: 39521492 DOI: 10.1016/j.lssr.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 11/16/2024]
Abstract
In the past decades, China has made significant progress on space life science research. Since completing the construction of the China Space Station (CSS) at the end of 2022, space life science research in China has entered a new era. Through carrying out numerous experiments on space life sciences, space medicine, and space agriculture conducted aboard the Shenzhou series, the CSS, and ground-based space environment simulation platforms, Chinese scientists have uncovered the effects of the space environment on the physiological and molecular mechanisms of live organisms. These findings provide essential theoretical support for long-term manned space exploration. In this article, we review the new discoveries made by Chinese researchers, focusing on the impacts of both actual and simulated space environment on cells, microorganisms, plants, animals, and human health.
Collapse
Affiliation(s)
- Xiangyu Kong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yuhao Qin
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Weiwei Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| |
Collapse
|
4
|
Graf J, Schulz H, Wehland M, Corydon TJ, Sahana J, Abdelfattah F, Wuest SL, Egli M, Krüger M, Kraus A, Wise PM, Infanger M, Grimm D. Omics Studies of Tumor Cells under Microgravity Conditions. Int J Mol Sci 2024; 25:926. [PMID: 38255998 PMCID: PMC10815863 DOI: 10.3390/ijms25020926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer is defined as a group of diseases characterized by abnormal cell growth, expansion, and progression with metastasis. Various signaling pathways are involved in its development. Malignant tumors exhibit a high morbidity and mortality. Cancer research increased our knowledge about some of the underlying mechanisms, but to this day, our understanding of this disease is unclear. High throughput omics technology and bioinformatics were successful in detecting some of the unknown cancer mechanisms. However, novel groundbreaking research and ideas are necessary. A stay in orbit causes biochemical and molecular biological changes in human cancer cells which are first, and above all, due to microgravity (µg). The µg-environment provides conditions that are not reachable on Earth, which allow researchers to focus on signaling pathways controlling cell growth and metastasis. Cancer research in space already demonstrated how cancer cell-exposure to µg influenced several biological processes being involved in cancer. This novel approach has the potential to fight cancer and to develop future cancer strategies. Space research has been shown to impact biological processes in cancer cells like proliferation, apoptosis, cell survival, adhesion, migration, the cytoskeleton, the extracellular matrix, focal adhesion, and growth factors, among others. This concise review focuses on publications related to genetic, transcriptional, epigenetic, proteomic, and metabolomic studies on tumor cells exposed to real space conditions or to simulated µg using simulation devices. We discuss all omics studies investigating different tumor cell types from the brain and hematological system, sarcomas, as well as thyroid, prostate, breast, gynecologic, gastrointestinal, and lung cancers, in order to gain new and innovative ideas for understanding the basic biology of cancer.
Collapse
Affiliation(s)
- Jenny Graf
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
| | - Herbert Schulz
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
| | - Thomas J. Corydon
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; (T.J.C.); (J.S.)
- Department of Ophthalmology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; (T.J.C.); (J.S.)
| | - Fatima Abdelfattah
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
| | - Simon L. Wuest
- Space Biology Group, Institute of Medical Engineering, Lucerne University of Applied Sciences and Arts, 6052 Hergiswil, Switzerland (M.E.)
| | - Marcel Egli
- Space Biology Group, Institute of Medical Engineering, Lucerne University of Applied Sciences and Arts, 6052 Hergiswil, Switzerland (M.E.)
- National Center for Biomedical Research in Space, Innovation Cluster Space and Aviation (UZH Space Hub), University Zurich, 8006 Zurich, Switzerland
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
| | - Armin Kraus
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
- Clinic for Plastic, Aesthetic and Hand Surgery, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Petra M. Wise
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
- The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
| | - Manfred Infanger
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
- Clinic for Plastic, Aesthetic and Hand Surgery, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; (T.J.C.); (J.S.)
| |
Collapse
|
5
|
Zhang X, Wang Y, Xu F, Zhao B, Liang X, Shu J. Downregulation of miR-138-5p alleviates propofol-induced neurotoxicity and autophagy by regulating SIRT1. Hum Exp Toxicol 2024; 43:9603271241269021. [PMID: 39441175 DOI: 10.1177/09603271241269021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
BACKGROUND Propofol, a commonly utilized anesthetic, has been shown to induce neurotoxicity in developing neurons. A previous study showed that microRNA (miR)-138-5p was dysregulated in hippocampus tissue of mice administrated with propofol. The current study aimed to investigate the functions of miR-138-5p and its target gene in propofol-induced neurotoxicity. METHODS SH-SY5Y neuronal cells were treated with increasing doses of propofol for indicated time to identify the optimal concentration and treatment time. MiR-138-5p and SIRT1 expression in SH-SY5Y neuronal cells stimulated with propofol were measured by RT-qPCR. Western blotting was performed to quantify protein levels of SIRT1 and autophagy markers. After interference of miR-138-5p and/or SIRT1 expression, the toxicity of SH-SY5Y neuronal cells was evaluated by cell counting kit-8 (CCK-8) assays and flow cytometry. The formation of autophagosomes was estimated by monodansylcadaverine staining. RESULTS Propofol induced neurotoxicity in a dose- or time-dependent manner. Propofol upregulated miR-138-5p while downregulating SIRT1 in SH-SY5Y neuronal cells. The propofol-stimulated neurotoxicity and autophagy was inhibited by miR-138-5p knockdown. Moreover, miR-138-5p bound to SIRT1 3'untranslated region. SIRT1 overexpression increased cell viability while inhibiting apoptosis and autophagy in the context of propofol. SIRT1 downregulation reversed the ameliorative effect of miR-138-5p inhibition on propofol-induced neurotoxicity and autophagy. CONCLUSION Downregulation of miR-138-5p alleviates propofol-induced neurotoxicity and autophagy via upregulation of SIRT1.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Anesthesiology, Second People's Hospital of Anhui Province, Hefei, China
| | - Yiqiao Wang
- Department of Anesthesiology, Second People's Hospital of Anhui Province, Hefei, China
| | - Feng Xu
- Department of Anesthesiology, Second People's Hospital of Anhui Province, Hefei, China
| | - Binbin Zhao
- Department of Anesthesiology, Second People's Hospital of Anhui Province, Hefei, China
| | - Xiangnan Liang
- Department of Anesthesiology, Second People's Hospital of Anhui Province, Hefei, China
| | - Jianwei Shu
- Department of Anesthesiology, Second People's Hospital of Anhui Province, Hefei, China
| |
Collapse
|
6
|
Brito VGB, Bell-Hensley A, McAlinden A. MicroRNA-138: an emerging regulator of skeletal development, homeostasis, and disease. Am J Physiol Cell Physiol 2023; 325:C1387-C1400. [PMID: 37842749 PMCID: PMC10861148 DOI: 10.1152/ajpcell.00382.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Noncoding microRNAs are powerful epigenetic regulators of cellular processes by their ability to target and suppress expression of numerous protein-coding mRNAs. This multitargeting function is a unique and complex feature of microRNAs. It is now well-described that microRNAs play important roles in regulating the development and homeostasis of many cell/tissue types, including those that make up the skeletal system. In this review, we focus on microRNA-138 (miR-138) and its effects on regulating bone and cartilage cell differentiation and function. In addition to its reported role as a tumor suppressor, miR-138 appears to function as an inhibitor of osteoblast differentiation. This review provides additional information on studies that have attempted to alter miR-138 expression in vivo as a means to dampen ectopic calcification or alter bone mass. However, a review of the published literature on miR-138 in cartilage reveals a number of contradictory and inconclusive findings with respect to regulating chondrogenesis and chondrocyte catabolism. This highlights the need for more research in understanding the role of miR-138 in cartilage biology and disease. Interestingly, a number of studies in other systems have reported miR-138-mediated effects in dampening inflammation and pain responses. Future studies will reveal if a multifunctional role of miR-138 involving suppression of ectopic bone, inflammation, and pain will be beneficial in skeletal conditions such as osteoarthritis and heterotopic ossification.
Collapse
Affiliation(s)
- Victor Gustavo Balera Brito
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Austin Bell-Hensley
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospital for Children, St. Louis, Missouri, United States
| |
Collapse
|
7
|
Cai M, Chen Y, Lin Y, Hu Z, Li L, Huang H, Lin J. SIRT1 Asn346 sugar chain promoting collagen deacetylation protective effect on osteoblasts under stress. Biochem Biophys Res Commun 2023; 682:148-155. [PMID: 37806254 DOI: 10.1016/j.bbrc.2023.09.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
Silencing type information regulator homolog 1 (SIRT1) is a class of nicotinamide adenine dinucleotide (NAD+) dependent deacetylases, which is the convergence point of important physiological processes in vivo, namely, osteoblast aging, energy metabolism, and bone remodeling. To verify whether the O-acetylglucosamine (O-GlcNAc) modification of SIRT1 in the nucleus of osteoblasts enhances its deacetylase activity under stress and protects osteoblasts through the RANK/RANKL signaling pathway by collagen deacetylation. The R language and online data research identified SIRT1 as being involved in bone metabolism. Enrichment analysis showed that SIRT1 is involved in osteoblast transcription, apoptosis, and deacetylation pathways. Interactive Immuno-blotting and immunofluorescence experiments revealed that SIRT1 and O-glycosylation catalytic enzyme (OGT) were localized in the nucleus. Mass Spectrometry analysis showed that O-glycosylation occurred on the asparagine at the 346th position of SIRT1, and N346th was located in the central domain of SIRT1. Furthermore, the protein structure analysis of PyMol also proved that the OGT binding region was in the central domain of SIRT1. Under physiological conditions, both wtSIRT1 and SIRT1N346R can inhibit RANKL-mediated transcriptional activation. The RT-PCR detection results showed that wtSIRT1 reduced RANKL transcription under the conditions of apoptotic agent treatment. The finding that SIRT1 can regulate the physiological process of bone remodeling through the RANK/RANKL signaling pathway in osteoblasts under stress. The O-glycosylation and deacetylation activity of SIRT1 significantly increased, regulating the balance between osteoblast survival and apoptosis by deacetylation of key proteins such as RANKL.
Collapse
Affiliation(s)
- Min Cai
- Department of Geriatric Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Yaoqi Chen
- Department of Geriatric Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China; Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Yiting Lin
- Department of Geriatric Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China; Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhangjie Hu
- Department of Geriatric Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China; Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Lizhi Li
- Department of Geriatric Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China; Department of Pediatric Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Huping Huang
- Department of Gastroenterology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China.
| | - Jianli Lin
- Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
8
|
Zhang X, Zhang L, Xu L, Li G, Wang K, Xue T, Sun Q, Tang H, Cao X, Hu Z, Zhang S, Shi F. Exosomes from Microvascular Endothelial Cells under Mechanical Unloading Inhibit Osteogenic Differentiation via miR-92b-3p/ELK4 Axis. J Pers Med 2022; 12:2030. [PMID: 36556251 PMCID: PMC9785449 DOI: 10.3390/jpm12122030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Mechanical unloading-related bone loss adversely harms astronauts' health. Nevertheless, the specific molecular basis underlying the phenomenon has not been completely elucidated. Although the bone microvasculature contributes significantly to bone homeostasis, the pathophysiological role of microvascular endothelial cells (MVECs) in bone loss induced by mechanical unloading is not apparent. Here, we discovered that MC3T3-E1 cells could take up exosomes produced by MVECs under clinorotation-unloading conditions (Clino Exos), which then prevented MC3T3-E1 cells from differentiating into mature osteoblasts. Moreover, miR-92b-3p was found to be highly expressed in both unloaded MVECs and derived exosomes. Further experiments demonstrated that miR-92b-3p was transferred into MC3T3-E1 cells by exosomes, resulting in the suppression of osteogenic differentiation, and that encapsulating miR-92b-3p inhibitor into the Clino Exos blocked their inhibitory effects. Furthermore, miR-92b-3p targeted ELK4 and the expression of ELK4 was lessened when cocultured with Clino Exos. The inhibitor-92b-3p-promoted osteoblast differentiation was partially reduced by siRNA-ELK4. Exosomal miR-92b-3p secreted from MVECs under mechanical unloading has been shown for the first time to partially attenuate the function of osteoblasts through downregulation of ELK4, suggesting a potential strategy to protect against the mechanical unloading-induced bone loss and disuse osteoporosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Shu Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi’an 710032, China
| | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi’an 710032, China
| |
Collapse
|