1
|
Suman S. Integrative Analysis of Radiation-Induced Senescence-Associated Secretory Phenotype Factors in Kidney Cancer Progression. Genes (Basel) 2025; 16:85. [PMID: 39858632 PMCID: PMC11765417 DOI: 10.3390/genes16010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Ionizing radiation (IR) is a well-known inducer of cellular senescence and the senescence-associated secretory phenotype (SASP). SASP factors play dual roles in cancer, either promoting or inhibiting its development. This study investigates IR-induced SASP factors specifically secreted by renal cortical epithelial (RCE) cells and their role in promoting renal cell carcinoma (RCC) progression. METHODS Proteomic data from the SASP Atlas were analyzed to identify IR-induced factors unique to RCE cells, with subsequent evaluations performed at both the gene and protein levels. Thirty-seven proteins were identified as exclusively upregulated and secreted by senescent RCE cells. Gene expression analysis of these RCE-specific SASP factors was conducted using the Gene Expression database of Normal and Tumor tissues (GENT2) and The Cancer Genome Atlas (TCGA). To assess their prognostic relevance in RCC, the corresponding proteins were further analyzed using the Human Protein Atlas (HPA), emphasizing the relationship between SASP factor expression and RCC progression. RESULTS ALDH18A1 and ASPH emerged as key RCE-specific SASP factors with significant upregulation at both the gene and protein levels (Log2 ratio > 1.15, p < 0.05). These proteins are implicated in pro-cancer activities and are strongly associated with poor prognostic outcomes in RCC. Their critical roles in RCC progression underscore their potential as promising therapeutic targets for the prevention and treatment of the disease. CONCLUSIONS This study provides novel insights into the role of IR-induced SASP in renal carcinogenesis, marking the first identification of ALDH18A1 and ASPH as specific secreted proteins associated with tumor progression in RCC. This study suggests that ALDH18A1 and ASPH hold promise as early biomarkers for RCC and as therapeutic targets for disease prevention and treatment.
Collapse
Affiliation(s)
- Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
2
|
Kumar K, Moon BH, Kumar S, Angdisen J, Kallakury BV, Fornace AJ, Suman S. Senolytic agent ABT-263 mitigates low- and high-LET radiation-induced gastrointestinal cancer development in Apc1638N/+ mice. Aging (Albany NY) 2025; 17:97-115. [PMID: 39792466 PMCID: PMC11810060 DOI: 10.18632/aging.206183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025]
Abstract
Exposure to ionizing radiation (IR), both low-LET (e.g., X-rays, γ rays) and high-LET (e.g., heavy ions), increases the risk of gastrointestinal (GI) cancer. Previous studies have linked IR-induced GI cancer to cellular senescence associated secretory phenotype (SASP) signaling. This study explores the potential of senolytic therapy to mitigate IR-induced GI carcinogenesis. Male Apc1638N/+ mice were exposed to γ and 28Si-ions (69 keV/μm) IR. Two months later, they were treated with the senolytic agent ABT-263 orally for 5 days/week until euthanasia, followed by tumor counting and biospecimen collection at five months post-exposure. Tumors were classified as adenoma or carcinoma by a pathologist. Serum cytokine levels were measured, and the markers of senescence (p16), SASP (IL6), and oncogenic β-catenin signaling were assessed using in-situ immunostaining of intestinal tissue. Both low- and high-LET radiation exposure led to an increased frequency of adenoma and carcinoma in Apc1638N/+ mice, accompanied by increased cellular senescence, acquisition of SASP, and overexpression of BCL-XL protein in a subset of these cells. Furthermore, administration of ABT-263 resulted in the elimination of senescent/SASP cells, a decrease in pro-inflammatory cytokines (TNFRSF1B, CCL20, CXCL4, P-selectin, CCL27, and CXCL16) at the systemic level, and downregulation of β-catenin signaling that coincided with decreased GI cancer development. This study suggests a link between IR-induced senescent/SASP cell accumulation and GI cancer development. It also shows that the senolytic agent ABT-263 can regulate IR-induced inflammatory cytokines and carcinogenic mediators both systemically and in intestinal tissue. These findings support the potential of senolytic intervention to reduce IR-induced GI cancer risk.
Collapse
Affiliation(s)
- Kamendra Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Bo-Hyun Moon
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Santosh Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jerry Angdisen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Bhaskar V.S. Kallakury
- Department of Pathology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Albert J. Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
3
|
Kumar K, Fornace AJ, Suman S. 8-OxodG: A Potential Biomarker for Chronic Oxidative Stress Induced by High-LET Radiation. DNA 2024; 4:221-238. [PMID: 39268222 PMCID: PMC11391509 DOI: 10.3390/dna4030015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Oxidative stress-mediated biomolecular damage is a characteristic feature of ionizing radiation (IR) injury, leading to genomic instability and chronic health implications. Specifically, a dose- and linear energy transfer (LET)-dependent persistent increase in oxidative DNA damage has been reported in many tissues and biofluids months after IR exposure. Contrary to low-LET photon radiation, high-LET IR exposure is known to cause significantly higher accumulations of DNA damage, even at sublethal doses, compared to low-LET IR. High-LET IR is prevalent in the deep space environment (i.e., beyond Earth's magnetosphere), and its exposure could potentially impair astronauts' health. Therefore, the development of biomarkers to assess and monitor the levels of oxidative DNA damage can aid in the early detection of health risks and would also allow timely intervention. Among the recognized biomarkers of oxidative DNA damage, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodG) has emerged as a promising candidate, indicative of chronic oxidative stress. It has been reported to exhibit differing levels following equivalent doses of low- and high-LET IR. This review discusses 8-OxodG as a potential biomarker of high-LET radiation-induced chronic stress, with special emphasis on its potential sources, formation, repair mechanisms, and detection methods. Furthermore, this review addresses the pathobiological implications of high-LET IR exposure and its association with 8-OxodG. Understanding the association between high-LET IR exposure-induced chronic oxidative stress, systemic levels of 8-OxodG, and their potential health risks can provide a framework for developing a comprehensive health monitoring biomarker system to safeguard the well-being of astronauts during space missions and optimize long-term health outcomes.
Collapse
Affiliation(s)
- Kamendra Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
4
|
Suman S. Enteric Nervous System Alterations in Inflammatory Bowel Disease: Perspectives and Implications. GASTROINTESTINAL DISORDERS 2024; 6:368-379. [PMID: 38872954 PMCID: PMC11175598 DOI: 10.3390/gidisord6020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
The enteric nervous system (ENS), consisting of neurons and glial cells, is situated along the gastrointestinal (GI) tract's wall and plays a crucial role in coordinating digestive processes. Recent research suggests that the optimal functioning of the GI system relies on intricate connections between the ENS, the intestinal epithelium, the immune system, the intestinal microbiome, and the central nervous system (CNS). Inflammatory bowel disease (IBD) encompasses a group of chronic inflammatory disorders, such as Crohn's disease (CD) and ulcerative colitis (UC), characterized by recurring inflammation and damage to the GI tract. This review explores emerging research in the dynamic field of IBD and sheds light on the potential role of ENS alterations in both the etiology and management of IBD. Specifically, we delve into IBD-induced enteric glial cell (EGC) activation and its implications for persistent enteric gliosis, elucidating how this activation disrupts GI function through alterations in the gut-brain axis (GBA). Additionally, we examine IBD-associated ENS alterations, focusing on EGC senescence and the acquisition of the senescence-associated secretory phenotype (SASP). We highlight the pivotal role of these changes in persistent GI inflammation and the recurrence of IBD. Finally, we discuss potential therapeutic interventions involving senotherapeutic agents, providing insights into potential avenues for managing IBD by targeting ENS-related mechanisms. This approach might represent a potential alternative to managing IBD and advance treatment of this multifaceted disease.
Collapse
Affiliation(s)
- Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
5
|
Kumar K, Kumar S, Datta K, Fornace AJ, Suman S. High-LET-Radiation-Induced Persistent DNA Damage Response Signaling and Gastrointestinal Cancer Development. Curr Oncol 2023; 30:5497-5514. [PMID: 37366899 DOI: 10.3390/curroncol30060416] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Ionizing radiation (IR) dose, dose rate, and linear energy transfer (LET) determine cellular DNA damage quality and quantity. High-LET heavy ions are prevalent in the deep space environment and can deposit a much greater fraction of total energy in a shorter distance within a cell, causing extensive DNA damage relative to the same dose of low-LET photon radiation. Based on the DNA damage tolerance of a cell, cellular responses are initiated for recovery, cell death, senescence, or proliferation, which are determined through a concerted action of signaling networks classified as DNA damage response (DDR) signaling. The IR-induced DDR initiates cell cycle arrest to repair damaged DNA. When DNA damage is beyond the cellular repair capacity, the DDR for cell death is initiated. An alternative DDR-associated anti-proliferative pathway is the onset of cellular senescence with persistent cell cycle arrest, which is primarily a defense mechanism against oncogenesis. Ongoing DNA damage accumulation below the cell death threshold but above the senescence threshold, along with persistent SASP signaling after chronic exposure to space radiation, pose an increased risk of tumorigenesis in the proliferative gastrointestinal (GI) epithelium, where a subset of IR-induced senescent cells can acquire a senescence-associated secretory phenotype (SASP) and potentially drive oncogenic signaling in nearby bystander cells. Moreover, DDR alterations could result in both somatic gene mutations as well as activation of the pro-inflammatory, pro-oncogenic SASP signaling known to accelerate adenoma-to-carcinoma progression during radiation-induced GI cancer development. In this review, we describe the complex interplay between persistent DNA damage, DDR, cellular senescence, and SASP-associated pro-inflammatory oncogenic signaling in the context of GI carcinogenesis.
Collapse
Affiliation(s)
- Kamendra Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Santosh Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Kamal Datta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
6
|
Dynan WS, Chang PY, Sishc BJ, Elgart SR. Breaking the limit: Biological countermeasures for space radiation exposure to enable long-duration spaceflight. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:1-3. [PMID: 36336355 DOI: 10.1016/j.lssr.2022.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Concerns over the health effects of space radiation exposure currently limit the duration of deep-space travel. Effective biological countermeasures could allow humanity to break this limit, facilitating human exploration and sustained presence on the Moon, Mars, or elsewhere in the Solar System. In this issue, we present a collection of 20 articles, each providing perspectives or data relevant to the implementation of a countermeasure discovery and development program. Topics include agency and drug developer perspectives, the prospects for repurposing of existing drugs or other agents, and the potential for adoption of new technologies, high-throughput screening, novel animal or microphysiological models, and alternative ground-based radiation sources. Long-term goals of a countermeasures program include reduction in the risk of radiation-exposure induced cancer death to an acceptable level and reduction in risks to the brain, cardiovascular system, and other organs.
Collapse
Affiliation(s)
- William S Dynan
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States.
| | - Polly Y Chang
- SRI International, Biosciences Division, Menlo Park, CA, United States
| | | | | |
Collapse
|