1
|
Cho TJ, Rhee MS. Space food production on microbiological safety: Key considerations for the design of Hazard Analysis and Critical Control Points (HACCP) plan. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 113:287-381. [PMID: 40023563 DOI: 10.1016/bs.afnr.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Although diet in space has relied on the sterilized products transported from earth, on-site space food production (e.g., farming, nutritional bioregeneration, bioculture foods, cooking) have been suggested to establish sustainable food supply system. This book chapter describes the key consideration for the design of hazard analysis and critical control points plan optimized for food produced and prepared in outer space. Technical advances in the food production during spaceflight were summarized to categorize the types of on-site space food production. Overall results of previous research regarding microbial monitoring of contaminants onboard the habitat of astronauts (single bacterial isolation and community analysis) and the alteration of physiological characteristics of host-pathogen-food in microgravity were analyzed to suggest information required for hazard analysis. Pathogen control strategies which can be set as critical control points were also designed from raw materials to consumption followed by the waste recycling.
Collapse
Affiliation(s)
- Tae Jin Cho
- Department of Food and Biotechnology, College of Science and Technology, Korea University, Sejong, South Korea; Department of Food Regulatory Science, College of Science and Technology, Korea University, Sejong, South Korea
| | - Min Suk Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea.
| |
Collapse
|
2
|
Lemos MFL. Beyond Earth: Harnessing Marine Resources for Sustainable Space Colonization. Mar Drugs 2024; 22:481. [PMID: 39590761 PMCID: PMC11595546 DOI: 10.3390/md22110481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
The quest for sustainable space exploration and colonization is a challenge in its infancy, which faces scarcity of resources and an inhospitable environment. In recent years, advancements in space biotechnology have emerged as potential solutions to the hurdles of prolonged space habitation. Taking cues from the oceans, this review focuses on the sundry types of marine organisms and marine-derived chemicals that have the potential of sustaining life beyond planet Earth. It addresses how marine life, including algae, invertebrates, and microorganisms, may be useful in bioregenerative life support systems, food production, pharmaceuticals, radiation shielding, energy sources, materials, and other applications in space habitats. With the considerable and still unexplored potential of Earth's oceans that can be employed in developing space colonization, we allow ourselves to dream of the future where people can expand to other planets, not only surviving but prospering. Implementing the blend of marine and space sciences is a giant leap toward fulfilling man's age-long desire of conquering and colonizing space, making it the final frontier.
Collapse
Affiliation(s)
- Marco F L Lemos
- MARE-Marine and Environmental Sciences Centre, ARNET-Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| |
Collapse
|
3
|
Yates K, Berliner AJ, Makrygiorgos G, Kaiyom F, McNulty MJ, Khan I, Kusuma P, Kinlaw C, Miron D, Legg C, Wilson J, Bugbee B, Mesbah A, Arkin AP, Nandi S, McDonald KA. Nitrogen accountancy in space agriculture. NPJ Microgravity 2024; 10:90. [PMID: 39341860 PMCID: PMC11439006 DOI: 10.1038/s41526-024-00428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Food production and pharmaceutical synthesis are posited as essential biotechnologies for facilitating human exploration beyond Earth. These technologies not only offer critical green space and food agency to astronauts but also promise to minimize mass and volume requirements through scalable, modular agriculture within closed-loop systems, offering an advantage over traditional bring-along strategies. Despite these benefits, the prevalent model for evaluating such systems exhibits significant limitations. It lacks comprehensive inventory and mass balance analyses for crop cultivation and life support, and fails to consider the complexities introduced by cultivating multiple crop varieties, which is crucial for enhancing food diversity and nutritional value. Here we expand space agriculture modeling to account for nitrogen dependence across an array of crops and demonstrate our model with experimental fitting of parameters. By adding nitrogen limitations, an extended model can account for potential interruptions in feedstock supply. Furthermore, sensitivity analysis was used to distill key consequential parameters that may be the focus of future experimental efforts.
Collapse
Affiliation(s)
- Kevin Yates
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA.
- Department of Chemical Engineering, University of California Davis, Davis, CA, USA.
| | - Aaron J Berliner
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA.
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA.
- Program in Aerospace Engineering, University of California Berkeley, Berkeley, CA, USA.
| | - Georgios Makrygiorgos
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Farrah Kaiyom
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Matthew J McNulty
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Chemical Engineering, University of California Davis, Davis, CA, USA
| | - Imran Khan
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Chemical Engineering, University of California Davis, Davis, CA, USA
| | - Paul Kusuma
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Plant Soils and Climate, Utah State University, Logan, UT, USA
| | | | | | | | | | - Bruce Bugbee
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Plant Soils and Climate, Utah State University, Logan, UT, USA
| | - Ali Mesbah
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Adam P Arkin
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Somen Nandi
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Chemical Engineering, University of California Davis, Davis, CA, USA
| | - Karen A McDonald
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Chemical Engineering, University of California Davis, Davis, CA, USA
| |
Collapse
|
4
|
Mussagy CU, Pereira JFB, Pessoa A. Microbial products for space nutrition. Trends Biotechnol 2024; 42:810-814. [PMID: 38182440 DOI: 10.1016/j.tibtech.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/07/2024]
Abstract
Sustainably producing nutrients beyond Earth is one of the biggest technical challenges for future extended human space missions. Microorganisms such as microalgae and cyanobacteria can provide astronauts with nutrients, pharmaceuticals, pure oxygen, and bio-based polymers, making them an interesting resource for constructing a circular bioregenerative life support system in space.
Collapse
Affiliation(s)
- Cassamo U Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile.
| | - Jorge F B Pereira
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Pólo II - Pinhal de Marro-cos, 3030-790 Coimbra, Portugal
| | - Adalberto Pessoa
- Department of Pharmaceutical-Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Golaz D, Papenfuhs CK, Bellés-Sancho P, Eberl L, Egli M, Pessi G. RNA-seq analysis in simulated microgravity unveils down-regulation of the beta-rhizobial siderophore phymabactin. NPJ Microgravity 2024; 10:44. [PMID: 38570513 PMCID: PMC10991261 DOI: 10.1038/s41526-024-00391-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/25/2024] [Indexed: 04/05/2024] Open
Abstract
Exploiting the symbiotic interaction between crops and nitrogen-fixing bacteria is a simple and ecological method to promote plant growth in prospective extraterrestrial human outposts. In this study, we performed an RNA-seq analysis to investigate the adaptation of the legume symbiont Paraburkholderia phymatum STM815T to simulated microgravity (s0-g) at the transcriptome level. The results revealed a drastic effect on gene expression, with roughly 23% of P. phymatum genes being differentially regulated in s0-g. Among those, 951 genes were upregulated and 858 downregulated in the cells grown in s0-g compared to terrestrial gravity (1 g). Several genes involved in posttranslational modification, protein turnover or chaperones encoding were upregulated in s0-g, while those involved in translation, ribosomal structure and biosynthesis, motility or inorganic ions transport were downregulated. Specifically, the whole phm gene cluster, previously bioinformatically predicted to be involved in the production of a hypothetical malleobactin-like siderophore, phymabactin, was 20-fold downregulated in microgravity. By constructing a mutant strain (ΔphmJK) we confirmed that the phm gene cluster codes for the only siderophore secreted by P. phymatum as assessed by the complete lack of iron chelating activity of the P. phymatum ΔphmJK mutant on chrome azurol S (CAS) agar plates. These results not only provide a deeper understanding of the physiology of symbiotic organisms exposed to space-like conditions, but also increase our knowledge of iron acquisition mechanisms in rhizobia.
Collapse
Affiliation(s)
- Daphné Golaz
- Department of Plant and Microbial biology, University of Zurich, Zurich, Switzerland
| | - Chad K Papenfuhs
- Department of Plant and Microbial biology, University of Zurich, Zurich, Switzerland
| | - Paula Bellés-Sancho
- Department of Plant and Microbial biology, University of Zurich, Zurich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial biology, University of Zurich, Zurich, Switzerland
| | - Marcel Egli
- School of Engineering and Architecture, Institute of Medical Engineering, Space Biology Group, Lucerne University of Applied Sciences and Arts, Hergiswil, Switzerland
- National Center for Biomedical Research in Space, Innovation Cluster Space and Aviation, University of Zurich, Zurich, Switzerland
| | - Gabriella Pessi
- Department of Plant and Microbial biology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|