1
|
Identification and Validation of Immune Cells and Hub Genes in Gastric Cancer Microenvironment. DISEASE MARKERS 2022; 2022:8639323. [PMID: 35422890 PMCID: PMC9005323 DOI: 10.1155/2022/8639323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/24/2022] [Indexed: 12/30/2022]
Abstract
Gastric cancer (GC) is the most common malignant tumor in the digestive system, traditional radiotherapy and chemotherapy are not effective for some patients. The research progress of immunotherapy seems to provide a new way for treatment. However, it is still urgent to predict immunotherapy biomarkers and determine novel therapeutic targets. In this study, the gene expression profiles and clinical data of 407 stomach adenocarcinoma (STAD) patients were downloaded from The Cancer Genome Atlas (TCGA) portal, and the abundance ratio of immune cells in each sample was obtained via the “Cell Type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT)” algorithm. Five immune cells were obtained as a result of abundance comparison, and 295 immune-related genes were obtained through differential gene analysis. Enrichment, protein interaction, and module analysis were performed on these genes. We identified five immune cells associated with infiltration and 20 hub genes, of which five genes were correlated with overall survival. Finally, we used Real-time PCR (RT-PCR) to detect the expression differences of the five hub genes in 18 pairs of GC and adjacent tissues. This research not only provides cellular and gene targets for immunotherapy of GC but also provides new ideas for researchers to explore immunotherapy for various tumors.
Collapse
|
2
|
Moreno P, Mantey SA, Lee SH, Ramos-Álvarez I, Moody TW, Jensen RT. A possible new target in lung-cancer cells: The orphan receptor, bombesin receptor subtype-3. Peptides 2018; 101:213-226. [PMID: 29410320 PMCID: PMC6159918 DOI: 10.1016/j.peptides.2018.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/27/2018] [Accepted: 01/31/2018] [Indexed: 12/11/2022]
Abstract
Human bombesin receptors, GRPR and NMBR, are two of the most frequently overexpressed G-protein-coupled-receptors by lung-cancers. Recently, GRPR/NMBR are receiving considerable attention because they act as growth factor receptors often in an autocrine manner in different lung-cancers, affect tumor angiogenesis, their inhibition increases the cytotoxic potency of tyrosine-kinase inhibitors reducing lung-cancer cellular resistance/survival and their overexpression can be used for sensitive tumor localization as well as to target cytotoxic agents to the cancer. The orphan BRS-3-receptor, because of homology is classified as a bombesin receptor but has received little attention, despite the fact that it is also reported in a number of studies in lung-cancer cells and has growth effects in these cells. To address its potential importance, in this study, we examined the frequency/relative quantitative expression of human BRS-3 compared to GRPR/NMBR and the effects of its activation on cell-signaling/growth in 13 different human lung-cancer cell-lines. Our results showed that BRS-3 receptor is expressed in 92% of the cell-lines and that it is functional in these cells, because its activation stimulates phospholipase-C with breakdown of phosphoinositides and changes in cytosolic calcium, stimulates ERK/MAPK and stimulates cell growth by EGFR transactivation in some, but not all, the lung-cancer cell-lines. These results suggest that human BRS-3, similar to GRPR/NMBR, is frequently ectopically-expressed by lung-cancer cells in which, it is functional, affecting cell signaling/growth. These results suggest that similar to GRPR/NMBR, BRS-3 should receive increased attention as possible approach for the development of novel treatments and/or diagnosis in lung-cancer.
Collapse
Affiliation(s)
- Paola Moreno
- Department of Health and Human Services, Digestive Diseases Branch, NIDDK, United States
| | - Samuel A Mantey
- Department of Health and Human Services, Digestive Diseases Branch, NIDDK, United States
| | - Suk H Lee
- Department of Health and Human Services, Digestive Diseases Branch, NIDDK, United States
| | - Irene Ramos-Álvarez
- Department of Health and Human Services, Digestive Diseases Branch, NIDDK, United States
| | - Terry W Moody
- Center for Cancer Research, Office of the Director, NCI, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Robert T Jensen
- Department of Health and Human Services, Digestive Diseases Branch, NIDDK, United States.
| |
Collapse
|
3
|
Zhang Y, Liu Y, Wu L, Fan C, Wang Z, Zhang X, Alachkar A, Liang X, Civelli O. Receptor-specific crosstalk between prostanoid E receptor 3 and bombesin receptor subtype 3. FASEB J 2018; 32:3184-3192. [PMID: 29401613 DOI: 10.1096/fj.201700337rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bombesin receptor subtype 3 (BRS-3) is a GPCR that is expressed in the CNS, peripheral tissues, and tumors. Our understanding of BRS-3's role in physiology and pathophysiology is limited because its natural ligand is unknown. In an attempt to identify this ligand, we screened toad skin ( Bufo bufo gargarizans Cantor) extracts and identified prostaglandins as putative ligands. In BRS-3-transfected human embryonic kidney (HEK) cells, we found that prostaglandins, with prostaglandin E2 (PGE2) being the most potent, fulfill the pharmacologic criteria of affinity, selectivity, and specificity to be considered as agonists to the BRS-3 receptor. However, PGE2 is unable to activate BRS-3 in different cellular environments. We speculated that EP receptors might be the cause of this cellular selectivity, and we found that EP3 is the receptor primarily responsible for the differential PGE2 effect. Consequently, we reconstituted the HEK environment in Chinese hamster ovary (CHO) cells and found that BRS-3 and EP3 interact to potentiate PGE2 signaling. This potentiating effect is receptor specific, and it occurs only when BRS-3 is paired to EP3. Our study represents an example of functional crosstalk between two distantly related GPCRs and may be of clinical importance for BRS-3-targeted therapies.-Zhang, Y., Liu, Y., Wu, L., Fan, C., Wang, Z., Zhang, X., Alachkar, A., Liang, X., Civelli, O. Receptor-specific crosstalk between prostanoid E receptor 3 and bombesin receptor subtype 3.
Collapse
Affiliation(s)
- Yan Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yanfang Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Liaoning Province, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Lehao Wu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Fan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiwei Wang
- Department of Pharmacology, University of California, Irvine, Irvine, California, USA
| | - Xiuli Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Liaoning Province, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Amal Alachkar
- Department of Pharmacology, University of California, Irvine, Irvine, California, USA
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Liaoning Province, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Olivier Civelli
- Department of Pharmacology, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
4
|
Targets in small cell lung cancer. Biochem Pharmacol 2013; 87:211-9. [PMID: 24091017 DOI: 10.1016/j.bcp.2013.09.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 12/14/2022]
Abstract
Recurrent small cell lung cancer is a recalcitrant malgnancy. The application of genomic technologies has begun to elucidate the large number of genetic abnormalities in SCLC. Several cell surface receptors are known to be overexpressed by SCLC in clinic specimens and cell in culture including GPCRs such as the bradykinin receptor, the chemokine receptor CXCR4, the vasopression receeptor and the three bomebsin receptors. The glucose transporter GLUT1, the tetraspanin family member PETA/CD151 and the immunoglobulin superfamily member ALCAM/CD166 are also overexpressed by SCLC. NCAM/CD56 is overexpressed by nearly all SCLC and is currently the target for an antibody drug conjugate in Phase II trial. Although SCLC is not considered a RTK driven disease, IGF1R and FGFRs are often overexpressed by SCLC. SCLC abberantly expresses several developmental transcription factors including ASCL1, SOX2, 4, and 11, OCT4, NANOG, PAX5; however, overexpression of MYC may be a driver in SCLC. Like other cancers, SCLC expresses survival factors and uses aerobic glycolysis as a major source of ATP. The drawback of many potential targets overexpressed by SCLC is expression of the same proteins by normal tissues. We are slowly learning more about the molecular abnormalities that occur in SCLC; however, therapeutic impact from new findings remains a goal to work toward.
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW This review summarizes the results of recent studies regarding the biology and pharmacology of novel synthetic agonists and antagonists of the bombesin receptor subtype-3 (BRS-3). RECENT FINDINGS All three mammalian bombesin receptors including gastrin-releasing peptide receptor, the neuromedin B receptor, and the BRS-3 have been shown to regulate energy balance and appetite and satiety. Studies indicate that the orphan BRS-3 is an important regulator of body weight, energy expenditure, and glucose homeostasis. Endogenous bombesin-like peptides bombesin, gastrin-releasing peptide, and neuromedin B receptor do not bind to BRS-3 and the endogenous BRS-3 ligand remains unknown. The novel synthesis of selective, high-affinity BRS-3 agonists and antagonists has recently been accomplished and showed that BRS-3 regulates energy balance independent of other established pathways and glucose-stimulated insulin secretion in the pancreatic islet cells. The availability of new BRS-3 selective agonists and antagonists will facilitate further elucidation of its role in energy homeostasis, and provides a potential approach for the pharmacological treatment of obesity and type 2 diabetes. SUMMARY The native ligand of the G protein-coupled BRS-3 has not been identified as of now. However, novel synthesis of small-molecule, high-affinity agonists and antagonists on the BRS-3 was used in the recent studies and demonstrated an important role of BRS-3 in the regulation of energy homeostasis and glucose metabolism.
Collapse
Affiliation(s)
- Ishita D Majumdar
- Section of Gastroenterology, Boston University School of Medicine, Boston, Massachusetts, USA
| | | |
Collapse
|
6
|
Abstract
Studies on bombesin-like peptides (BLP) and their respective mammalian receptors (Bn-r) have demonstrated a significant biological impact on a broad array of physiological and pathophysiological conditions. Pharmacological experiments in vitro and in vivo as well as utilization of genetic rodent models of the gastrin-releasing peptide receptor (GRP-R/BB2-receptor), neuromedin B receptor (NMB-R/BB1-receptor), and the bombesin receptor subtype-3 (BRS-3/BB3-receptor) further delineated their role in health and disease. All three mammalian bombesin receptors have been shown to possess some role in the regulation of energy balance and appetite and satiety. Compelling experimental evidence has accumulated indicating that the orphan BRS-3 is an important regulator of body weight, energy expenditure, and glucose homeostasis. BRS-3 possesses no high affinity to the endogenous bombesin-like peptides (BLP) bombesin, GRP, and NMB, and its endogenous ligand remains unknown. Recently, the synthesis of novel, selective high-affinity BRS-3 agonists and antagonists has been accomplished and has demonstrated that BRS-3 regulates energy balance independent of other established pathways. Accordingly, the availability of new BRS-3 selective agonists and antagonists will facilitate further elucidation of its role in energy homeostasis and provides a potential approach for the pharmacological treatment of obesity.
Collapse
|
7
|
Qin X, Qu X, Coy D, Weber HC. A Selective Human Bombesin Receptor Subtype-3 Peptide Agonist Mediates CREB Phosphorylation and Transactivation. J Mol Neurosci 2011; 46:88-99. [DOI: 10.1007/s12031-011-9675-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 11/07/2011] [Indexed: 01/08/2023]
|
8
|
Uehara H, González N, Sancho V, Mantey SA, Nuche-Berenguer B, Pradhan T, Coy DH, Jensen RT. Pharmacology and selectivity of various natural and synthetic bombesin related peptide agonists for human and rat bombesin receptors differs. Peptides 2011; 32:1685-99. [PMID: 21729729 PMCID: PMC3152620 DOI: 10.1016/j.peptides.2011.06.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/20/2011] [Accepted: 06/20/2011] [Indexed: 11/21/2022]
Abstract
The mammalian bombesin (Bn)-receptor family [gastrin-releasing peptide-receptor (GRPR-receptor), neuromedin B-receptor (NMB receptor)], their natural ligands, GRP/NMB, as well as the related orphan receptor, BRS-3, are widely distributed, and frequently overexpressed by tumors. There is increased interest in agonists for this receptor family to explore their roles in physiological/pathophysiological processes, and for receptor-imaging/cytotoxicity in tumors. However, there is minimal data on human pharmacology of Bn receptor agonists and most results are based on nonhuman receptor studies, particular rodent-receptors, which with other receptors frequently differ from human-receptors. To address this issue we compared hNMB-/GRP-receptor affinities and potencies/efficacies of cell activation (assessing phospholipase C activity) for 24 putative Bn-agonists (12 natural, 12 synthetic) in four different cells with these receptors, containing native receptors or receptors expressed at physiological densities, and compared the results to native rat GRP-receptor containing cells (AR42J-cells) or rat NMB receptor cells (C6-glioblastoma cells). There were close correlations (r=0.92-99, p<0.0001) between their affinities/potencies for the two hGRP- or hNMB-receptor cells. Twelve analogs had high affinities (≤ 1 nM) for hGRP receptor with 15 selective for it (greatest=GRP, NMC), eight had high affinity/potencies for hNMB receptors and four were selective for it. Only synthetic Bn analogs containing β-alanine(11) had high affinity for hBRS-3, but also had high affinities/potencies for all GRP-/hNMB-receptor cells. There was no correlation between affinities for human GRP receptors and rat GRP receptors (r=0.131, p=0.54), but hNMB receptor results correlated with rat NMB receptor (r=0.71, p<0.0001). These results elucidate the human and rat GRP-receptor pharmacophore for agonists differs markedly, whereas they do not for NMB receptors, therefore potential GRP-receptor agonists for human studies (such as Bn receptor-imaging/cytotoxicity) must be assessed on human Bn receptors. The current study provides affinities/potencies on a large number of potential agonists that might be useful for human studies.
Collapse
Affiliation(s)
- Hirotsugu Uehara
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Moody TW, Sancho V, di Florio A, Nuche-Berenguer B, Mantey S, Jensen RT. Bombesin receptor subtype-3 agonists stimulate the growth of lung cancer cells and increase EGF receptor tyrosine phosphorylation. Peptides 2011; 32:1677-84. [PMID: 21712056 PMCID: PMC3152616 DOI: 10.1016/j.peptides.2011.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 06/13/2011] [Accepted: 06/13/2011] [Indexed: 10/18/2022]
Abstract
The effects of bombesin receptor subtype-3 (BRS-3) agonists were investigated on lung cancer cells. The BRS-3 agonist (DTyr(6), (Ala(11), Phe(13), Nle(14)) bombesin(6-14) (BA1), but not gastrin releasing peptide (GRP) or neuromedin B (NMB) increased significantly the clonal growth of NCI-H1299 cells stably transfected with BRS-3 (NCI-H1299-BRS-3). Also, BA1 addition to NCI-H727 or NCI-H1299-BRS-3 cells caused Tyr(1068) phosphorylation of the epidermal growth factor receptor (EGFR). Similarly, (DTyr(6), R-Apa(11), Phe(13), Nle(14)) bombesin(6-14) (BA2) and (DTyr(6), R-Apa(11), 4-Cl,Phe(13), Nle(14)) bombesin(6-14) (BA3) but not gastrin releasing peptide (GRP) or neuromedin B (NMB) caused EGFR transactivation in NCI-H1299-BRS-3 cells. BA1-induced EGFR or ERK tyrosine phosphorylation was not inhibited by addition of BW2258U89 (BB(2)R antagonist) or PD168368 (BB(1)R antagonist) but was blocked by (DNal-Cys-Tyr-DTrp-Lys-Val-Cys-Nal)NH(2) (BRS-3 ant.). The BRS-3 ant. reduced clonal growth of NCI-H1299-BRS-3 cells. BA1, BA2, BA3 and BRS-3 ant. inhibit specific (125)I-BA1 binding to NCI-H1299-BRS-3 cells with an IC(50) values of 1.1, 21, 15 and 750nM, respectively. The ability of BRS-3 to regulate EGFR transactivation in NCI-H1299-BRS-3 cells was reduced by AG1478 or gefitinib (EGFR tyrosine kinase inhibitors), GM6001 (matrix metalloprotease inhibitor), PP2 (Src inhibitor), N-acetylcysteine (anti-oxidant), Tiron (superoxide scavenger) and DPI (NADPH oxidase inhibitor). These results demonstrate that BRS-3 agonists may stimulate lung cancer growth as a result of EGFR transactivation and that the transactivation is regulated by BRS-3 in a Src-, reactive oxygen and matrix metalloprotease-dependent manner.
Collapse
Affiliation(s)
- Terry W Moody
- Department of Health and Human Services, National Cancer Institute, Center for Cancer Research, Office of Director, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Pyridinesulfonylureas and pyridinesulfonamides as selective bombesin receptor subtype-3 (BRS-3) agonists. Bioorg Med Chem Lett 2011; 21:2040-3. [PMID: 21354793 DOI: 10.1016/j.bmcl.2011.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/02/2011] [Accepted: 02/03/2011] [Indexed: 10/18/2022]
Abstract
Bombesin receptor subtype-3 (BRS-3) is an orphan G-protein coupled receptor belonging to the subfamily of bombesin-like receptors. BRS-3 is implicated in the development of obesity and diabetes. We report here small-molecule agonists that are based on a 4-(alkylamino)pyridine-3-sulfonamide core. We describe the discovery of 2a, which has mid-nanomolar potency, selectivity for human BRS-3 versus the other bombesin-like receptors, and good bioavailability.
Collapse
|
11
|
Sancho V, Moody TW, Mantey SA, Di Florio A, Uehara H, Coy DH, Jensen RT. Pharmacology of putative selective hBRS-3 receptor agonists for human bombesin receptors (BnR): affinities, potencies and selectivity in multiple native and BnR transfected cells. Peptides 2010; 31:1569-78. [PMID: 20438784 PMCID: PMC2905478 DOI: 10.1016/j.peptides.2010.04.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 04/23/2010] [Accepted: 04/23/2010] [Indexed: 11/28/2022]
Abstract
The orphan receptor, bombesin receptor subtype-3(BRS-3) is a G-protein-coupled receptor classified in the bombesin (Bn) receptor family because of its high homology (47-51%) with other members of this family [gastrin-releasing peptide receptor [GRPR] and neuromedin B receptor [NMBR]]. There is increasing interest in BRS-3, because primarily from receptor knockout studies, it seems important in energy metabolism, glucose control, insulin secretion, motility and tumor growth. Pharmacological tools to study the role of BRS-3 in physiology/pathophysiology are limited because the natural ligand is unknown and BRS-3 has low affinity for all naturally occurring Bn-related peptides. However, a few years ago a synthetic high-affinity agonist [dTyr(6),betaAla(11),Phe(13),Nle(14)]Bn-(6-14) was described but was nonselective for BRS-3 over other Bn receptors. Based on this peptide, in various studies a number of putative selective, high-potency hBRS-3 agonists were described, however the results on their selectivity are conflicting in a number of cases. The purpose of the present study was to thoroughly study the pharmacology of four of the most select/potent putative hBRS-3 agonists (#2-4, 16a). Each was studied in multiple well-characterized Bn receptor-transfected cells and native Bn receptor bearing cells, using binding studies, alterations in cellular signaling (PLC, PKD) and changes in cellular function(growth). Two peptides (#2, #3) had nM affinities/potencies for hBRS-3, peptide #4 had low affinity/potency, and peptide #16a very low (>3000 nM). Peptide#3 had the highest selectivity for hBRS-3 (100-fold), whereas #2, 4 had lower selectivity. Peptide #16a's selectivity could not be determined because of its low affinity/potencies for all hBn receptors. These results show that peptide #3 is the preferred hBRS-3 agonist for studies at present, although its selectivity of only 100-fold may limit its utility in some cases. This study underscores the importance of full pharmacological characterization of newly reported selective agonists.
Collapse
Affiliation(s)
- Veronica Sancho
- Digestive Diseases Branch, NIDDK, and Department of Health and Human Services, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - Terry W. Moody
- NCI Office of the Director, CCR, NCI and Department of Health and Human Services, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - Samuel A. Mantey
- Digestive Diseases Branch, NIDDK, and Department of Health and Human Services, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - Alessia Di Florio
- Digestive Diseases Branch, NIDDK, and Department of Health and Human Services, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - Hirotsugu Uehara
- Digestive Diseases Branch, NIDDK, and Department of Health and Human Services, National Institutes of Health, Bethesda, Maryland 20892-1804
| | - David H. Coy
- Peptide Research Laboratories, Department of Medicine, Tulane Health Sciences Center, New Orleans, Louisiana 70112-2699
| | - Robert T. Jensen
- Digestive Diseases Branch, NIDDK, and Department of Health and Human Services, National Institutes of Health, Bethesda, Maryland 20892-1804
| |
Collapse
|
12
|
Abstract
BRS-3 is an orphan G protein coupled receptor highly expressed in the brain. Pharmacological studies in this issue (Guan et al., 2010) further support a role for this receptor in energy homeostasis and show that the BRS-3 agonist Bag-1 effectively causes weight loss by decreasing food intake and increasing metabolic rate.
Collapse
Affiliation(s)
- Anthony P Coll
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
13
|
Regulation of energy homeostasis by bombesin receptor subtype-3: selective receptor agonists for the treatment of obesity. Cell Metab 2010; 11:101-12. [PMID: 20096642 DOI: 10.1016/j.cmet.2009.12.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 09/02/2009] [Accepted: 12/18/2009] [Indexed: 01/04/2023]
Abstract
Bombesin receptor subtype 3 (BRS-3) is a G protein coupled receptor whose natural ligand is unknown. We developed potent, selective agonist (Bag-1, Bag-2) and antagonist (Bantag-1) ligands to explore BRS-3 function. BRS-3-binding sites were identified in the hypothalamus, caudal brainstem, and several midbrain nuclei that harbor monoaminergic cell bodies. Antagonist administration increased food intake and body weight, whereas agonists increased metabolic rate and reduced food intake and body weight. Prolonged high levels of receptor occupancy increased weight loss, suggesting a lack of tachyphylaxis. BRS-3 agonist effectiveness was absent in Brs3(-/Y) (BRS-3 null) mice but was maintained in Npy(-/-)Agrp(-/-), Mc4r(-/-), Cnr1(-/-), and Lepr(db/db) mice. In addition, Brs3(-/Y) mice lost weight upon treatment with either a MC4R agonist or a CB1R inverse agonist. These results demonstrate that BRS-3 has a role in energy homeostasis that complements several well-known pathways and that BRS-3 agonists represent a potential approach to the treatment of obesity.
Collapse
|
14
|
Jensen RT, Battey JF, Spindel ER, Benya RV. International Union of Pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol Rev 2008; 60:1-42. [PMID: 18055507 PMCID: PMC2517428 DOI: 10.1124/pr.107.07108] [Citation(s) in RCA: 423] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mammalian bombesin receptor family comprises three G protein-coupled heptahelical receptors: the neuromedin B (NMB) receptor (BB(1)), the gastrin-releasing peptide (GRP) receptor (BB(2)), and the orphan receptor bombesin receptor subtype 3 (BRS-3) (BB(3)). Each receptor is widely distributed, especially in the gastrointestinal (GI) tract and central nervous system (CNS), and the receptors have a large range of effects in both normal physiology and pathophysiological conditions. The mammalian bombesin peptides, GRP and NMB, demonstrate a broad spectrum of pharmacological/biological responses. GRP stimulates smooth muscle contraction and GI motility, release of numerous GI hormones/neurotransmitters, and secretion and/or hormone release from the pancreas, stomach, colon, and numerous endocrine organs and has potent effects on immune cells, potent growth effects on both normal tissues and tumors, potent CNS effects, including regulation of circadian rhythm, thermoregulation; anxiety/fear responses, food intake, and numerous CNS effects on the GI tract as well as the spinal transmission of chronic pruritus. NMB causes contraction of smooth muscle, has growth effects in various tissues, has CNS effects, including effects on feeding and thermoregulation, regulates thyroid-stimulating hormone release, stimulates various CNS neurons, has behavioral effects, and has effects on spinal sensory transmission. GRP, and to a lesser extent NMB, affects growth and/or differentiation of various human tumors, including colon, prostate, lung, and some gynecologic cancers. Knockout studies show that BB(3) has important effects in energy balance, glucose homeostasis, control of body weight, lung development and response to injury, tumor growth, and perhaps GI motility. This review summarizes advances in our understanding of the biology/pharmacology of these receptors, including their classification, structure, pharmacology, physiology, and role in pathophysiological conditions.
Collapse
Affiliation(s)
- R T Jensen
- Digestive Diseases Branch, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | |
Collapse
|