1
|
Wang X, Li J, Wang Z, Wu Q. Comprehensive analysis of a palmitoylation-related prognostic signature in colorectal cancer: Implications for immune therapy and personalized treatment. Oncol Lett 2025; 30:350. [PMID: 40438869 PMCID: PMC12117421 DOI: 10.3892/ol.2025.15096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/26/2025] [Indexed: 06/01/2025] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-associated mortality worldwide. While immune checkpoint inhibitors have shown promise in treatment, there is a need for reliable biomarkers to predict patient prognosis and guide personalized therapies. Palmitoylation, a post-translational modification, has been implicated in various cancer processes, yet its role in CRC prognosis remains unclear. Transcriptome, survival, somatic mutation and copy number variation data were retrieved from The Cancer Genome Atlas, and the GSE17538 dataset was used for external validation. A palmitoylation-related risk signature was developed using univariate Cox regression, Least Absolute Shrinkage and Selection Operator and multivariate Cox regression analyses. Patients were stratified into high- and low-risk groups based on the median risk score. Prognostic accuracy was assessed using receiver operating characteristic curves and Kaplan-Meier overall survival (OS) analysis with validation in an independent cohort. Functional enrichment, immune cell infiltration and drug sensitivity analyses were performed to explore underlying mechanisms and therapeutic implications. Subsequently, keratin 8 pseudogene 12 (KRT8P12) overexpression was evaluated in HT29 cells, and knockdown HT29 cell lines were generated using lentivirus. Cell proliferation was assessed using Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine assays, cell migration was evaluated by Transwell assay and cell apoptosis was assessed using Annexin-V/propidium iodide staining. A palmitoylation-related risk signature consisting of six genes (KRT8P12, ZDHHC3, PCOLCE2, MPP2, LARS2 and MMAA) was identified. High-risk patients exhibited significantly worse OS (HR=3.19; P<0.001) compared with low-risk patients. Immune cell infiltration analysis revealed enhanced immune activity in the low-risk group, which was associated with higher expression of immune checkpoint genes. Immunotherapy prediction models indicated that low-risk patients might benefit more from immune checkpoint inhibitors. Drug sensitivity analysis identified distinct drug response profiles between the high- and low-risk groups. Furthermore, in vitro, KRT8P12 promoted tumor cell proliferation and migration while inhibiting apoptosis. In conclusion, the present study confirmed the role of KRT8P12 as a palmitoylation-related gene in regulating CRC. In addition, the palmitoylation-associated risk signature may offer a promising tool for prognostic prediction in CRC and could guide personalized treatment strategies, including immune checkpoint inhibitors and targeted therapies.
Collapse
Affiliation(s)
- Xiaokang Wang
- Department of Medical Oncology, Xianning Central Hospital, The First Affiliated Hospital of Hubei Institute of Science and Technology, Xianning, Hubei 437000, P.R. China
| | - Jian Li
- Department of Gastroenterology, Xianning Central Hospital, The First Affiliated Hospital of Hubei Institute of Science and Technology, Xianning, Hubei 437000, P.R. China
| | - Zi Wang
- College of Medicine, Hubei Three Gorges Polytechnic, Yichang, Hubei 443000, P.R. China
| | - Qingyun Wu
- Department of Gastrointestinal Surgery, Xianning Central Hospital, The First Affiliated Hospital of Hubei Institute of Science and Technology, Xianning, Hubei 437000, P.R. China
| |
Collapse
|
2
|
Zhang Y, Cheng J, Jin P, Lv L, Yu H, Yang C, Zhang S. Comprehensive profiling of T-cell exhaustion signatures and establishment of a prognostic model in lung adenocarcinoma through integrated RNA-sequencing analysis. Technol Health Care 2025; 33:848-862. [PMID: 40105167 DOI: 10.1177/09287329241290937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
BackgroundT-cell exhaustion (TEX) in the tumor microenvironment causes immunotherapy resistance and poor prognosis.ObjectiveWe used bioinformatics to identify crucial TEX genes associated with the molecular classification and risk stratification of lung adenocarcinoma (LUAD).MethodsBulk RNA sequencing data of patients with LUAD were acquired from open sources. LUAD samples exhibited abnormal TEX gene expression, compared with normal samples. TEX gene-based prognostic signature was established and validated in both TCGA and GSE50081 datasets. Immune correlation and risk group-related functional analyses were also performed.ResultsEight optimized TEX genes were identified using the LASSO algorithm: ERG, BTK, IKZF3, DCC, EML4, MET, LATS2, and LOX. Several crucial Kyoto encyclopedia of genes and genomes (KEGG) pathways were identified, such as T-cell receptor signaling, toll-like receptor signaling, leukocytes trans-endothelial migration, Fcγ R-mediated phagocytosis, and GnRH signaling. Eight TEX gene-based risk score models were established and validated. Patients with high-risk scores had worse prognosis (P < 0.001). A nomogram model comprising three independent clinical factors showed good predictive efficacy for survival rate in patients with LUAD. Correlation analysis revealed that the TEX signature significantly correlated with immune cell infiltration, tumor purity, stromal cells, estimate, and immunophenotype score.ConclusionTEX-derived risk score is a promising and effective prognostic factor that is closely correlated with the immune microenvironment and estimated score. TEX signature may be a useful clinical diagnostic tool for evaluating pre-immune efficacy in patients with LUAD.
Collapse
Affiliation(s)
- Yingying Zhang
- Oncology Department, Hulunbuir Second People's Hospital, Zhalantun, Hulunbuir, China
| | - Jiaqi Cheng
- Oncology Department, Hulunbuir Second People's Hospital, Zhalantun, Hulunbuir, China
| | - Pingyan Jin
- Oncology Department, Hulunbuir Second People's Hospital, Zhalantun, Hulunbuir, China
| | - Lizheng Lv
- Department of Thoracic Surgery, Hulunbuir Second People's Hospital, Zhalantun, Hulunbuir, China
| | - Haijuan Yu
- Oncology Department, Hulunbuir Second People's Hospital, Zhalantun, Hulunbuir, China
| | - Chunxiao Yang
- Oncology Department, Hulunbuir Second People's Hospital, Zhalantun, Hulunbuir, China
| | - Shuai Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
3
|
Yu H, Xu X, Zhu L, Chen S, He J. MELK aggravates lung adenocarcinoma by regulating EZH2 ubiquitination and H3K27me3 histone methylation of LATS2. J Cell Mol Med 2024; 28:e18216. [PMID: 38652219 PMCID: PMC11037405 DOI: 10.1111/jcmm.18216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 01/11/2024] [Accepted: 02/04/2024] [Indexed: 04/25/2024] Open
Abstract
We tried to elucidate the possible roles of maternal embryonic leucine pull chain kinase (MELK) in lung adenocarcinoma (LUAD) growth and metastasis. Differentially expressed genes in LUAD samples were analysed by the GEPIA database. Clinical tissue samples and cells were collected for MELK, EZH2 and LATS2 expression determination. Co-IP assay was used to verify the interaction between EZH2 and MELK; CHX tracking assay and ubiquitination assay detected the degradation of MELK on EZH2 ubiquitination. ChIP assay detected the enrichment of EZH2 and H3K27me3 on the LATS2 promoter region. LUAD cells were selected for in vitro validation, and the tumorigenic ability of LUAD cells was also observed in a transplantation tumour model of LUAD nude mice. MELK and EZH2 were highly expressed in LUAD samples, while LATS2 was lowly expressed. MELK interacted with EZH2 to inhibit its ubiquitination degradation; EZH2 elevated H3K27me3 modification in the LATS2 promoter to lower LATS2 expression. Silencing MELK or EZH2 or overexpressing LATS2 restrained LUAD cell proliferation and invasion, and facilitated their apoptosis. Silencing MELK or EZH2 or overexpressing LATS2 suppressed tumour formation in nude mice. This study demonstrated that MELK aggravated LUAD by upregulating EZH2 and downregulating LATS2.
Collapse
Affiliation(s)
- Hui Yu
- Department of Thoracic SurgeryAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Xianrong Xu
- Department of Thoracic SurgeryAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Lirong Zhu
- Department of Respiratory and Critical Care MedicineAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Shengjie Chen
- Department of Thoracic SurgeryAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Jincheng He
- Surgical DepartmentDanyang Maternal and Child Health HospitalDanyangChina
| |
Collapse
|
4
|
Chen B, Chan WN, Mui CW, Liu X, Zhang J, Wang Y, Cheung AHK, Chan AKY, Chan RCK, Leung KT, Dong Y, Pan Y, Ke H, Liang L, Zhou Z, Wong CC, Wu WKK, Cheng ASL, Yu J, Lo KW, To KF, Kang W. STK3 promotes gastric carcinogenesis by activating Ras-MAPK mediated cell cycle progression and serves as an independent prognostic biomarker. Mol Cancer 2021; 20:147. [PMID: 34772410 PMCID: PMC8588685 DOI: 10.1186/s12943-021-01451-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, People's Republic of China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, People's Republic of China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Chun Wai Mui
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, People's Republic of China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Xiaoli Liu
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, People's Republic of China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Jinglin Zhang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, People's Republic of China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Yifei Wang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, People's Republic of China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Alvin H K Cheung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, People's Republic of China
| | - Aden K Y Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, People's Republic of China
| | - Ronald C K Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, People's Republic of China
| | - Kam Tong Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Yujuan Dong
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Yi Pan
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Huixing Ke
- Department of Respiratory and Critical Care Medicine, China National Center of Gerontology, Bejing Hospital, Beijing, People's Republic of China
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, People's Republic of China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Chi Chun Wong
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Alfred S L Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Jun Yu
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, People's Republic of China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, People's Republic of China. .,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China. .,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, People's Republic of China. .,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China. .,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
5
|
Wang L, Zhang J, Shan G, Liang J, Jin W, Li Y, Su F, Ba Y, Tian X, Sun X, Zhang D, Zhang W, Chen CL. Establishment of a Lung Cancer Discriminative Model Based on an Optimized Support Vector Machine Algorithm and Study of Key Targets of Wogonin in Lung Cancer. Front Pharmacol 2021; 12:728937. [PMID: 34630106 PMCID: PMC8493220 DOI: 10.3389/fphar.2021.728937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/10/2021] [Indexed: 12/16/2022] Open
Abstract
An optimized support vector machine model was used to construct a lung cancer diagnosis model based on serological indicators, and a molecular regulation model of Wogonin, a component of Scutellaria baicalensis, was established. Serological indexes of patients were collected, the grid search method was used to identify the optimal penalty coefficient C and parameter g of the support vector machine model, and the benign and malignant auxiliary diagnosis model of isolated pulmonary nodules based on serological indicators was established. The regulatory network and key targets of Wogonin in lung cancer were analyzed by network pharmacology, and key targets were detected by western blot. The relationship between serological susceptibility genes and key targets of Wogonin was established, and the signaling pathway of Wogonin regulating lung cancer was constructed. After support vector machine parameter optimization (C = 90.597, g = 32), the accuracy of the model was 90.8333%, with nine false positives and two false negative cases. Ontology functional analysis of 67 common genes between Wogonin targets and lung cancer–related genes showed that the targets were associated with biological processes involved in peptidye-serine modification and regulation of protein kinase B signaling; cell components in the membrane raft and chromosomal region; and molecular function in protein serine/threonine kinase activity and heme binding. Kyoto Encyclopedia of Genes and Genomes analysis showed that the regulation pathways involved the PI3K-Akt signaling pathway, ERBB signaling pathway, and EGFR tyrosine kinase inhibitor resistance. In vitro analyses using lung cancer cells showed that Wogonin led to significantly increased levels of cleaved caspase-3 and Bad and significantly decreased Bcl-2 expression in a concentration-dependent manner. ErbB4 expression also significantly decreased in lung cancer cells after treatment with Wogonin. A regulatory network of Wogonin regulating lung cancer cell apoptosis was constructed, including the participation of serological susceptibility genes. There is a certain regulatory effect between the serological indexes that can be used in the diagnosis of lung cancer and the key targets of Chinese herbal medicine treatment of lung cancer, which provides a new idea for the diagnosis, treatment and prognosis of clinical lung cancer.
Collapse
Affiliation(s)
- Lin Wang
- Department of Radiotherapy, People's Hospital of Zhengzhou, Zhengzhou, China
| | - Jianhua Zhang
- Medical Engineering Technology and Data Mining Institute, Zhengzhou University, Zhengzhou, China
| | - Guoyong Shan
- Department of Radiotherapy, People's Hospital of Zhengzhou, Zhengzhou, China
| | - Junting Liang
- Clinical Bioinformatics Experimental Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenwen Jin
- Medical Engineering Technology and Data Mining Institute, Zhengzhou University, Zhengzhou, China
| | - Yingyue Li
- Medical Engineering Technology and Data Mining Institute, Zhengzhou University, Zhengzhou, China
| | - Fangchu Su
- Medical Engineering Technology and Data Mining Institute, Zhengzhou University, Zhengzhou, China
| | - Yanhua Ba
- Department of Radiotherapy, People's Hospital of Zhengzhou, Zhengzhou, China
| | - Xifeng Tian
- Department of Radiotherapy, People's Hospital of Zhengzhou, Zhengzhou, China
| | - Xiaoyan Sun
- Department of Radiotherapy, People's Hospital of Zhengzhou, Zhengzhou, China
| | - Dayong Zhang
- Department of Radiotherapy, People's Hospital of Zhengzhou, Zhengzhou, China
| | - Weihua Zhang
- Medical Engineering Technology and Data Mining Institute, Zhengzhou University, Zhengzhou, China
| | - Chuan Liang Chen
- Clinical Bioinformatics Experimental Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Yang D, He Y, Wu B, Liu R, Wang N, Wang T, Luo Y, Li Y, Liu Y. Predictions of the dysregulated competing endogenous RNA signature involved in the progression of human lung adenocarcinoma. Cancer Biomark 2021; 29:399-416. [PMID: 32741804 DOI: 10.3233/cbm-200133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most common histological subtype of lung cancer worldwide. Until now, the molecular mechanisms underlying LUAD progression have not been fully explained. This study aimed to construct a competing endogenous RNA (ceRNA) network to predict the progression in LUAD. METHODS Differentially expressed lncRNAs (DELs), miRNAs (DEMs), and mRNAs (DEGs) were identified from The Cancer Genome Atlas (TCGA) database with a |log2FC|> 1.0 and a false discovery rate (FDR) < 0.05. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), protein-protein interaction (PPI) network, and survival analyses were performed to analyse these DEGs involved in the ceRNA network. Subsequently, the drug-gene interaction database (DGIdb) was utilized to select candidate LUAD drugs interacting with significant DEGs. Then, lasso-penalized Cox regression and multivariate Cox regression models were used to construct the risk score system. Finally, based on the correlations between DELs and DEGs involved in the risk score system, the final ceRNA network was identified. Meanwhile, the GEPIA2 database and immunohistochemical (IHC) results were utilized to validate the expression levels of selected DEGs. RESULTS A total of 340 DELs, 29 DEMs, and 218 DEGs were selected to construct the initial ceRNA network. Functional enrichment analyses indicated that 218 DEGs were associated with the KEGG pathway terms "microRNAs in cancer", "pathways in cancer", "cell cycle", "HTLV-1 infection", and the "PI3K-Akt signalling pathway". K-M survival analysis of all differentially expressed genes involved in the ceRNA network identified 24 DELs, 4 DEMs, and 29 DEGs, all of which were significantly correlated with LUAD progression (P< 0.05). Furthermore, 15 LUAD drugs interacting with 29 significant DEGs were selected. After lasso-penalized Cox regression and multivariate Cox regression modelling, PRKCE, DLC1, LATS2, and DPY19L1 were incorporated into the risk score system, and the results suggested that LUAD patients who had the high-risk score always suffered from a poorer overall survival. Additionally, the correlation coefficients between these 4 DEGs and their corresponding DELs involved in the ceRNA network suggested that there were 2 significant DEL-DEG pairs, NAV2-AS2 - PRKCE (r= 0.430, P< 0.001) and NAV2-AS2 - LATS2 (r= 0.338, P< 0.001). And NAV2-AS2 - mir-31 - PRKCE and NAV2-SA2 - mir-31 - LATS2 were finally identified as ceRNA network involved in the progression of LUAD. CONCLUSIONS The lncRNA-miRNA-mRNA ceRNA network plays an essential role in predicting the progression of LUAD. These results may improve our understanding and provide novel mechanistic insights to explore prognosis and therapeutic drugs for LUAD patients.
Collapse
Affiliation(s)
- Dan Yang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China.,Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Yang He
- Molecular Oncology Laboratory of Cancer Research Institute, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China.,Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Bo Wu
- Department of Anus and Intestine Surgery, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Ruxi Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Nan Wang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Tieting Wang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Yannan Luo
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Yunda Li
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Yang Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Chen P, Zhang W, Chen Y, Zheng X, Yang D. Comprehensive analysis of aberrantly expressed long non‑coding RNAs, microRNAs, and mRNAs associated with the competitive endogenous RNA network in cervical cancer. Mol Med Rep 2020; 22:405-415. [PMID: 32377727 PMCID: PMC7248517 DOI: 10.3892/mmr.2020.11120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 03/20/2020] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is a common malignant disease that poses a serious health threat to women worldwide. Growing research efforts have focused on protein‑coding and non‑coding RNAs involved in the tumorigenesis and prognosis of various types of cancer. The potential molecular mechanisms and the interaction among long non‑coding RNAs (lncRNAs), microRNAs (miRNAs), and mRNAs require further investigation in cervical cancer. In the present study, lncRNA, miRNA, and mRNA expression profiles of 304 primary tumor tissues from patients with cervical cancer and 3 solid normal tissues from The Cancer Genome Atlas (TCGA) dataset were studied via RNA sequencing (RNA‑seq). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed using R package clusterProfiler to annotate the principal functions of differentially expressed (DE) mRNAs. Kaplan‑Meier analysis was also conducted to investigate the effects of DElncRNAs, DEmiRNAs, and DEmRNAs on overall survival. A total of 2,255 mRNAs, 133 miRNAs, and 150 lncRNAs that were differentially expressed were identified with a threshold of P<0.05 and |fold change (FC)|>2. Functional enrichment analysis indicated that DEmRNAs were enriched in cancer‑associated KEGG pathways. Furthermore, 255 mRNAs, 15 miRNAs, and 12 lncRNAs that were significantly associated with overall survival in cervical carcinoma were also identified. Importantly, an miRNA‑mediated competitive endogenous RNA (ceRNA) network was successfully constructed based on the expression profiles of DElncRNAs and DEmRNAs. More importantly, it was found that the lncRNA EPB41L4A‑AS1 may function as a pivotal regulator in carcinoma of the uterine cervix. Taken together, the present study has provided novel insights into investigating the potential mechanisms underlying tumorigenesis, development, and prognosis of cervical cancer, and presented new potential avenues for cancer therapeutics.
Collapse
Affiliation(s)
- Peng Chen
- Department of Obstetrics and Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100000, P.R. China
| | - Weiyuan Zhang
- Department of Obstetrics and Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100000, P.R. China
| | - Yu Chen
- Department of Obstetrics and Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100000, P.R. China
| | - Xiaoli Zheng
- Department of Obstetrics and Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100000, P.R. China
| | - Dong Yang
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100000, P.R. China
| |
Collapse
|
8
|
Yang Y, Wang J. Inhibition of MiR-10b Restrains the Migration and Epithelial-Mesenchymal Transition of Lung Cells by Targeting LATS2 via TAZ Pathway. Med Sci Monit 2020; 26:e920275. [PMID: 32361707 PMCID: PMC7216563 DOI: 10.12659/msm.920275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND MiR-10b can promote the growth of lung cancer cells. LATS2 is reported to regulate lung cancer cell proliferation. We aimed to study the relationship between miR-10b and LATS2 in lung cancer. MATERIAL AND METHODS MiR-10b and LATS2 in lung cancer tissues and cells were measured via real-time polymerase chain reaction (RT-PCR) and western blotting. Luciferase reporter assay and mimic transfection were performed to study relation between miR-10b and LATS2. MiR-10b inhibitor was transfected to downregulate miR-10b expression and LATS2 was further downregulated. Then, the proliferation, apoptosis, migration, and invasion capacity of lung cancer cells were measured, respectively. Lung cancer cells stably transfected with LATS2 and TAZ plasmids were constructed as usual, and the effect of LATS2 overexpression on epithelial-mesenchymal transition (EMT) was determined. RESULTS MiR-10b was upregulated and LATS2 was significantly downregulated in lung cancer. Inhibition of miR-10b restrained the growth of lung cancer cells and accelerated the apoptosis of lung cancer cells. LATS2 is directly bound by miR-10b and silence of LATS2 reversed its inhibitory and promotive effects. Overexpression of LATS2 inhibited the EMT of lung cancer cells by inhibiting the TAZ pathway. CONCLUSIONS MiR-10b was upregulated in lung cancer. Inhibition of miR-10b could restrain the development of lung cancer by increasing LATS2 expression via TAZ.
Collapse
Affiliation(s)
- Yunlong Yang
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Beihua University, Jilin City, Jilin, China (mainland)
| | - Jianzhong Wang
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Beihua University, Jilin City, Jilin, China (mainland)
| |
Collapse
|
9
|
Luo SY, Kwok HH, Yang PC, Ip MSM, Minna JD, Lam DCL. Expression of large tumour suppressor (LATS) kinases modulates chemotherapy response in advanced non-small cell lung cancer. Transl Lung Cancer Res 2020; 9:294-305. [PMID: 32420069 PMCID: PMC7225163 DOI: 10.21037/tlcr.2020.03.26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background The Hippo signalling pathway plays an important role in regulating organ size and cell proliferation. Down-regulation of large tumour suppressor (LATS) protein homologs LATS1 or LATS2 has been found in lung cancer. LATS1 and LATS2 are the core components of the Hippo signalling pathway. LATS1 and LATS2 share some conserved structural features and exhibit redundant biological functions. The aim of this study was to dissect the interaction between these two homologs. Methods In lung adenocarcinoma (AD) cells, protein expression of LATS1 and LATS2 were determined by western blotting; cell viability and apoptosis were measured by MTT and annexin V staining after treatment with cisplatin; subcellular distributions of LATS proteins were determined by immunofluorescence microscopy; LATS2 expression was modulated by shRNA-mediated knockdown or ectopic expression in cancer cell lines. Results Manipulation of the expression of these two LATS kinases influenced cisplatin response in advanced lung AD cell lines. High LATS2-to-LATS1 ratio in H2023 cells was associated with cisplatin resistance, while low LATS2-to-LATS1 ratio in CL1-0 and CL83 cells was associated with sensitivity to cisplatin. Manipulating the LATS2-to-LATS1 ratio by LATS2 over-expression in CL1-0 and CL83 rendered them resistant to cisplatin treatment, whereas LATS2 knockdown in H2023 alleviated the LATS2-to-LATS1 ratio and sensitized cancer cells to cisplatin exposure. Conclusions Our data suggested that the ratio of expression of LATS kinases played a role in the modulation of cisplatin sensitivity in advanced lung AD, and targeting of LATS proteins as a novel therapeutic strategy for lung AD deserves further investigation.
Collapse
Affiliation(s)
- Susan Yang Luo
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Hoi-Hin Kwok
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei
| | - Mary Sau-Man Ip
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - John Dorrance Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David Chi-Leung Lam
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
The Role of RASSF1 Methylation in Lung Carcinoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1255:99-108. [PMID: 32949393 DOI: 10.1007/978-981-15-4494-1_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lung carcinoma is the most frequently diagnosed malignant neoplasms and mainly consists of small-cell lung carcinoma (SCLC) and non-small-cell lung carcinoma (NSCLC). Large number of lung carcinoma patients have poor outcomes due to the late diagnosis and the limited therapeutic options. Previous attempts have proved that the evolution of lung carcinoma is a multistep molecular aberration which various genetic or epigenetic alterations may be take part in. Among these molecular aberrations, the inactivation of tumor suppressor gene has been widely observed in all types of carcinoma including lung carcinoma. As a vital inactivated mechanism, DNA methylation of tumor suppressor gene is frequently found in lung cancer. To gain exhaustive comprehension of the carcinogenesis of lung carcinoma, we summarize our current knowledge on DNA methylation of RASSF1 (RAS-Association Domain Family 1) and its clinical significance in lung carcinoma.
Collapse
|
11
|
miR-25 Promotes Cell Proliferation, Migration, and Invasion of Non-Small-Cell Lung Cancer by Targeting the LATS2/YAP Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9719723. [PMID: 31316723 PMCID: PMC6604298 DOI: 10.1155/2019/9719723] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/20/2019] [Indexed: 12/18/2022]
Abstract
Metastasis is the leading cause of high mortality in lung cancer patients, and metastatic lung cancer is difficult to treat. miRNAs are involved in various biological processes of cancer, including metastasis. Our previous studies revealed that miR-25 promoted non-small-cell lung cancer (NSCLC) cell proliferation and suppressed cell apoptosis by directly targeting TP53 and MOAP1. In this work, we further explored the miR-25 expression in NSCLC patients in the Cancer Genome Atlas (TCGA) database and measured the miR-25 expression levels in the tissues of NSCLC patients and cell lines. miR-25 was overexpressed in both NSCLC tissues and cell lines. NSCLC patients who expressed a higher level of miR-25 exhibited worse overall survival than those with a lower level of miR-25. Overexpression of miR-25 enhanced NSCLC cell migration and invasion, while the inhibition of miR-25 exhibited the opposite effects. We identified the large tumor suppressor homology 2 (LATS2) as a new target gene of miR-25 in lung cancer. The effects of miR-25 on promoting NSCLC cell migration and invasion were at least partially due to activation of the Hippo signaling pathway. Additionally, miR-25 antagomir inhibited xenograft tumor growth and metastasis by the upregulation of LATS2. Taken together, our findings demonstrate that miR-25 contribute to lung cancer cell proliferation and metastasis by targeting the LATS2/YAP signaling pathway, which implicate miR-25 as a promising therapeutic target for lung cancer metastasis. Given that oxidative stress induces the overexpression of miR-25 and plays a critical role in cancer progression, this study establishes miR-25 as an intermediate between oxidative stress and lung cancer metastasis.
Collapse
|
12
|
Andl T, Andl CD, Zhang Y. Two-edged sword: how activation of the "proto-oncogene" yes-associated protein 1 in lung squamous cell carcinoma can surprisingly inhibit tumor growth. J Thorac Dis 2019; 10:S3870-S3874. [PMID: 30631502 DOI: 10.21037/jtd.2018.10.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Thomas Andl
- Burnett School of Biological Sciences, University of Central Florida, Orlando, FL, USA
| | - Claudia D Andl
- Burnett School of Biological Sciences, University of Central Florida, Orlando, FL, USA
| | - Yuhang Zhang
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
13
|
Liu XL, Zuo R, Ou WB. The hippo pathway provides novel insights into lung cancer and mesothelioma treatment. J Cancer Res Clin Oncol 2018; 144:2097-2106. [PMID: 30073421 DOI: 10.1007/s00432-018-2727-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/30/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE Lung cancer and mesothelioma are two types of respiratory disease that have fatal courses and poor prognoses. Although a substantial number of targeted small molecules and antibody drugs have been developed, the 5-year survival rates of these patients remain relatively low. Moreover, most patients inevitably develop clinical resistance to treatment. Therefore, novel therapeutic options and cancer prognostic biomarkers are urgently needed. METHODS In this review, we summarized the recent literature from various electronic databases, including PubMed, and highlighted the most advanced findings regarding the hippo pathway in lung cancer and mesothelioma. CONCLUSION The hippo signaling transduction pathway has been demonstrated to play crucial roles in lung cancer and mesothelioma pathogenesis, including tumor development and multidrug resistance, and is emerging as a promising therapeutic target, potentially providing new tools for the detection of these tumors at an early stage.
Collapse
Affiliation(s)
- Xiao-Lan Liu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Rui Zuo
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Wen-Bin Ou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Hippo pathway affects survival of cancer patients: extensive analysis of TCGA data and review of literature. Sci Rep 2018; 8:10623. [PMID: 30006603 PMCID: PMC6045671 DOI: 10.1038/s41598-018-28928-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/29/2018] [Indexed: 12/12/2022] Open
Abstract
The disruption of the Hippo pathway occurs in many cancer types and is associated with cancer progression. Herein, we investigated the impact of 32 Hippo genes on overall survival (OS) of cancer patients, by both analysing data from The Cancer Genome Atlas (TCGA) and reviewing the related literature. mRNA and protein expression data of all solid tumors except pure sarcomas were downloaded from TCGA database. Thirty-two Hippo genes were considered; for each gene, patients were dichotomized based on median expression value. Survival analyses were performed to identify independent predictors, taking into account the main clinical-pathological features affecting OS. Finally, independent predictors were correlated with YAP1 oncoprotein expression. At least one of the Hippo genes is an independent prognostic factor in 12 out of 13 considered tumor datasets. mRNA levels of the independent predictors coherently correlate with YAP1 in glioma, kidney renal clear cell, head and neck, and bladder cancer. Moreover, literature data revealed the association between YAP1 levels and OS in gastric, colorectal, hepatocellular, pancreatic, and lung cancer. Herein, we identified cancers in which Hippo pathway affects OS; these cancers should be candidates for YAP1 inhibitors development and testing.
Collapse
|
15
|
YAP and TAZ in Lung Cancer: Oncogenic Role and Clinical Targeting. Cancers (Basel) 2018; 10:cancers10050137. [PMID: 29734788 PMCID: PMC5977110 DOI: 10.3390/cancers10050137] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 12/17/2022] Open
Abstract
Lung cancer is the leading cause of cancer death in the world and there is no current treatment able to efficiently treat the disease as the tumor is often diagnosed at an advanced stage. Moreover, cancer cells are often resistant or acquire resistance to the treatment. Further knowledge of the mechanisms driving lung tumorigenesis, aggressiveness, metastasization, and resistance to treatments could provide new tools for detecting the disease at an earlier stage and for a better response to therapy. In this scenario, Yes Associated Protein (YAP) and Trascriptional Coactivator with PDZ-binding motif (TAZ), the final effectors of the Hippo signaling transduction pathway, are emerging as promising therapeutic targets. Here, we will discuss the most recent advances made in YAP and TAZ biology in lung cancer and, more importantly, on the newly discovered mechanisms of YAP and TAZ inhibition in lung cancer as well as their clinical implications.
Collapse
|
16
|
Sharif AA, Hergovich A. The NDR/LATS protein kinases in immunology and cancer biology. Semin Cancer Biol 2018; 48:104-114. [PMID: 28579171 DOI: 10.1016/j.semcancer.2017.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/15/2017] [Accepted: 04/25/2017] [Indexed: 02/07/2023]
|
17
|
Liu Y, Xing Y, Cai L. [Role of Hippo Signaling Pathway in Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2017; 20:629-634. [PMID: 28935017 PMCID: PMC5973372 DOI: 10.3779/j.issn.1009-3419.2017.09.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
肺癌是全世界范围内肿瘤相关性死亡的首要原因,每年死亡人数超过100万人,占全球癌症死亡人数的五分之一。虽然目前在手术、放化疗、靶向治疗、免疫治疗肺癌方面取得了一定进展,但患者的预后仍不理想。因此,亟待寻找评价预后的分子标志物和肺癌的治疗新靶点,为肺癌患者提供生存获益的有效方法。近年来,Hippo信号通路逐渐成为国内外肿瘤研究领域中新兴且热门的研究方向。Hippo信号通路激活时,其核心组件MST/MOB、LATS1/2等能抑制转录的共激活剂YAP/TAZ的转录,二者被磷酸化并滞留在细胞浆中,从而抑制肺癌的发生发展。因此Hippo信号通路在临床应用中的潜在价值也越来越受关注。本篇文章总结了Hippo信号通路核心组成元件及上下游调控因子在肺癌形成进展过程中的重要作用和分子机制,并对Hippo信号通路的研究前景进行展望。
Collapse
Affiliation(s)
- Yuechao Liu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Ying Xing
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Li Cai
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, China
| |
Collapse
|
18
|
Molecular Alterations and Expression Dynamics of LATS1 and LATS2 Genes in Non-Small-Cell Lung Carcinoma. Pathol Oncol Res 2017; 24:207-214. [PMID: 28434174 DOI: 10.1007/s12253-017-0225-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
Abstract
Large tumor suppressor (LATS) is an important member of the Hippo pathway which can regulate organ size and cell proliferation. However, very little is known about the expression and clinical significance of LATS in lung cancer especially from this part of the world. We elucidated the frequency of LATS1 &LATS2 promoter hypermethylation (by methylation-specific PCR) and expression (by real-time PCR) in sixty nine (n = 69) Non-Small Cell Lung Cancer (NSCLC) patients and their corresponding normal lung tissue samples. We found promoter hypermethylation frequencies of LATS1 & LATS1to be 66.66% (46/69) and 71% (49/69) in NSCLC tissues. Decreased LATS1 & LATS2 mRNA expression was found in 55% and 66.66% of NSCLC patients. The LATS1 mRNA expression was significantly higher in normal lung tissues. Also, the mRNA levels of LATS1 and LATS2 NSCLC tissues with hypermethylation were significantly lower. Multivariable analysis confirmed that LATS1 under expression increased the hazard of death after adjusting for other clinicopathological factors. Importantly, the loss of LATS1 mRNA expression was associated with overall short survival. LATS1 is an independent prognostic factor and may play an important role in NSCLC progression and may serve as a novel therapeutic target of NSCLC.
Collapse
|
19
|
Liang R, Lin Y, Yuan CL, Liu ZH, Li YQ, Luo XL, Ye JZ, Ye HH. The clinical significance and biological function of large tumour suppressor 2 in hepatocellular carcinoma. Cell Prolif 2017; 50. [PMID: 28247446 DOI: 10.1111/cpr.12340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/16/2017] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES Present evidence has suggested that large tumour suppressor 2 (LATS2) is abnormally expressed in most human cancer. However, the clinical and prognostic value in hepatocellular carcinoma (HCC) is still unknown. MATERIALS AND METHODS Large tumour suppressor 2 mRNA and protein expression levels in HCC tissues and cell lines were detected by qRT-PCR, immunohistochemistry or Western blot. The correlation between LATS2 expression and clinicopathological factors was analysed through immunohistochemistry. The function of LATS2 on HCC cell growth and mobility was explored through MTT, colony formation, Transwell migration and invasion assays. The molecular mechanism of LATS2 was screened and confirmed by qRT-PCR and Western blot. RESULTS AND CONCLUSION In this study, LATS2 mRNA and protein expressions were decreased in HCC tissues and cell lines compared with normal hepatic tissues and hepatic cell line. Low LATS2 expression was oppositely corrected with tumour stage, vascular invasion and metastasis. The univariate and multivariate analyses suggested that low LATS2 expression was an independent poor prognostic factor for HCC patients. The in vitro experiments showed that LATS2 regulated HCC cells migration and invasion, but had no effect on HCC cells proliferation. Meanwhile, LATS2 modulated metastasis-associated genes expression including E-cadherin, vimentin, snail, slug, MMP2 and MMP9. In conclusion, LATS2 is a prognostic biomarker and a tumour metastasis suppressor in HCC.
Collapse
Affiliation(s)
- Rong Liang
- First Department of Chemotherapy, Affiliated Tumour Hospital of Guangxi Medical University, Nanning, China
| | - Yan Lin
- First Department of Chemotherapy, Affiliated Tumour Hospital of Guangxi Medical University, Nanning, China
| | - Chun-Ling Yuan
- First Department of Chemotherapy, Affiliated Tumour Hospital of Guangxi Medical University, Nanning, China
| | - Zhi-Hui Liu
- First Department of Chemotherapy, Affiliated Tumour Hospital of Guangxi Medical University, Nanning, China
| | - Yong-Qiang Li
- First Department of Chemotherapy, Affiliated Tumour Hospital of Guangxi Medical University, Nanning, China
| | - Xiao-Ling Luo
- First Department of Chemotherapy, Affiliated Tumour Hospital of Guangxi Medical University, Nanning, China
| | - Jia-Zhou Ye
- Department of Hepatobilliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Hai-Hong Ye
- Department of Hepatobilliary Surgery, Affiliated Minzu Hospital of Guangxi Medical University, Naning, China
| |
Collapse
|
20
|
Wu A, Li J, Wu K, Mo Y, Luo Y, Ye H, Mai Z, Guo K, Wang Y, Li S, Chen H, Luo W, Yang Z. LATS2 as a poor prognostic marker regulates non-small cell lung cancer invasion by modulating MMPs expression. Biomed Pharmacother 2016; 82:290-297. [PMID: 27470365 DOI: 10.1016/j.biopha.2016.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 04/07/2016] [Accepted: 04/07/2016] [Indexed: 12/27/2022] Open
Abstract
Large tumor suppressor 2 (LATS2) plays significant roles in tumorigenesis and cancer progression. This study was aimed to analyze the correlation between LATS2 expression and clinicopathologic features and its prognostic significance in non-small cell lung cancer (NSCLC). LATS2 expression was examined in 73 NSCLC clinical specimens and 22 normal lung tissues using immunohistochemistry. Low levels of LATS2 protein were inversely associated with the T classification (P=0.001), N classification (P=0.005) and clinical stage (P=0.001) in NSCLC patients. Patients with lower LATS2 expression had a significantly shorter overall survival than patients with high LATS2 expression. Multivariate analysis suggested that low expression of LATS2 was an independent prognostic indicator (P=0.002) for the survival of patients with NSCLC. Furthermore, overexpression of LATS2 resulted in mobility inhibition in NSCLC cell lines A549 and H1299, and reduced protein level of matrix metalloproteinase-2 (MMP-2) and MMP-9. On the contrary, LATS2 siRNA treatment enhanced cell mobility and increased MMP-2 and MMP-9 protein expression level. In conclusion, low expression of LATS2 is a potential unfavorable prognostic factor and promoted cell invasion and migration in NSCLC.
Collapse
Affiliation(s)
- Aibing Wu
- Cancer Center, Affiliated Hospital of Guangdong Medical University, No. 57 Peoples Avenue South, Zhanjiang 524001, Guangdong, China
| | - Jinmei Li
- Cancer Center, Affiliated Hospital of Guangdong Medical University, No. 57 Peoples Avenue South, Zhanjiang 524001, Guangdong, China
| | - Kunpeng Wu
- Cancer Center, Heyuan People's Hospital, No. 733 Wenxiang Road, Heyuan 517000, Guangdong, China
| | - Yanli Mo
- Cancer Center, Affiliated Hospital of Guangdong Medical University, No. 57 Peoples Avenue South, Zhanjiang 524001, Guangdong, China
| | - Yiping Luo
- Cancer Center, Affiliated Hospital of Guangdong Medical University, No. 57 Peoples Avenue South, Zhanjiang 524001, Guangdong, China
| | - Haiyin Ye
- Cancer Center, Affiliated Hospital of Guangdong Medical University, No. 57 Peoples Avenue South, Zhanjiang 524001, Guangdong, China
| | - Zongjiong Mai
- Cancer Center, Affiliated Hospital of Guangdong Medical University, No. 57 Peoples Avenue South, Zhanjiang 524001, Guangdong, China
| | - Kangwen Guo
- Cancer Center, Affiliated Hospital of Guangdong Medical University, No. 57 Peoples Avenue South, Zhanjiang 524001, Guangdong, China
| | - Yuzhou Wang
- Cancer Center, Affiliated Hospital of Guangdong Medical University, No. 57 Peoples Avenue South, Zhanjiang 524001, Guangdong, China
| | - Shujun Li
- Cancer Center, Affiliated Hospital of Guangdong Medical University, No. 57 Peoples Avenue South, Zhanjiang 524001, Guangdong, China
| | - Hualin Chen
- Cancer Center, Affiliated Hospital of Guangdong Medical University, No. 57 Peoples Avenue South, Zhanjiang 524001, Guangdong, China
| | - Weiren Luo
- Department of Clinical Laboratory, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China; Cancer Research Institute, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Zhixiong Yang
- Cancer Center, Affiliated Hospital of Guangdong Medical University, No. 57 Peoples Avenue South, Zhanjiang 524001, Guangdong, China.
| |
Collapse
|
21
|
Xu B, Sun D, Wang Z, Weng H, Wu D, Zhang X, Zhou Y, Hu W. Expression of LATS family proteins in ovarian tumors and its significance. Hum Pathol 2015; 46:858-67. [PMID: 25841306 DOI: 10.1016/j.humpath.2015.02.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 02/07/2023]
Abstract
Epithelial ovarian cancer is composed of a diverse group of tumors that can be derived from the fallopian tube, endometrium, or ovary. In this study, we explored the expression levels of LATS family members in ovarian tumors using normal ovaries, fallopian tubes, and endometrium as controls. Immunohistochemistry studies of LATS1, LATS2, Pax8, and calretinin were performed on normal ovary, fallopian tube, normal endometrium, and ovarian tumor sections. Statistical analyses were conducted using the χ(2) test, Fisher exact test, or Kruskal-Wallis H test. Patient survival was analyzed using the Kaplan-Meier method. LATS1 was expressed in normal ovarian epithelia, endometrium, and fallopian tubes, whereas LATS2 expression was observed in the normal fallopian tubes and endometrium. High expressions of LATS1 and LATS2 in serous cystadenomas gradually decreased in borderline cystadenomas and carcinomas, respectively. However, an opposite expression pattern was observed in mucinous tumors. Low expressions of LATS1 and LATS2 were also detected in clear cell carcinoma. Both LATS1 and LATS2 expression levels significantly correlated with recurrence and stage; LATS1 levels were also related with tumor grades in serous carcinoma. However, univariate and multivariate Cox regression analyses revealed that high expression of LATS1 was associated with better prognosis in patients with serous carcinoma. Both LATS1 and LATS2 were not related with the clinical variables in mucinous and clear cell carcinoma. LATS1 expression levels might be a valuable survival indicator in ovarian serous carcinoma.
Collapse
Affiliation(s)
- Bing Xu
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, China
| | - Duoxiang Sun
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, China
| | - Zhihua Wang
- Department of Pathology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, China
| | - Haiyan Weng
- Department of Pathology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, China
| | - Dabao Wu
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, China
| | - Xuefen Zhang
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, China.
| | - Weiping Hu
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, China.
| |
Collapse
|