1
|
Tagore S, Caprio L, Amin AD, Bestak K, Luthria K, D'Souza E, Barrera I, Melms JC, Wu S, Abuzaid S, Wang Y, Jakubikova V, Koch P, Brodtman DZ, Bawa B, Deshmukh SK, Ebel L, Ibarra-Arellano MA, Jaiswal A, Gurjao C, Biermann J, Shaikh N, Ramaradj P, Georgis Y, Lagos GG, Ehrlich MI, Ho P, Walsh ZH, Rogava M, Politis MG, Biswas D, Cottarelli A, Rizvi N, Shu CA, Herzberg B, Anandasabapathy N, Sledge G, Zorn E, Canoll P, Bruce JN, Rizvi NA, Taylor AM, Saqi A, Hibshoosh H, Schwartz GK, Henick BS, Chen F, Schapiro D, Shah P, Izar B. Single-cell and spatial genomic landscape of non-small cell lung cancer brain metastases. Nat Med 2025; 31:1351-1363. [PMID: 40016452 DOI: 10.1038/s41591-025-03530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/19/2025] [Indexed: 03/01/2025]
Abstract
Brain metastases frequently develop in patients with non-small cell lung cancer (NSCLC) and are a common cause of cancer-related deaths, yet our understanding of the underlying human biology is limited. Here we performed multimodal single-nucleus RNA and T cell receptor, single-cell spatial and whole-genome sequencing of brain metastases and primary tumors of patients with treatment-naive NSCLC. Chromosomal instability (CIN) is a distinguishing genomic feature of brain metastases compared with primary tumors, which we validated through integrated analysis of molecular profiling and clinical data in 4,869 independent patients, and a new cohort of 12,275 patients with NSCLC. Unbiased analyses revealed transcriptional neural-like programs that strongly enriched in cancer cells from brain metastases, including a recurring, CINhigh cell subpopulation that preexists in primary tumors but strongly enriched in brain metastases, which was also recovered in matched single-cell spatial transcriptomics. Using multiplexed immunofluorescence in an independent cohort of treatment-naive pairs of primary tumors and brain metastases from the same patients with NSCLC, we validated genomic and tumor-microenvironmental findings and identified a cancer cell population characterized by neural features strongly enriched in brain metastases. This comprehensive analysis provides insights into human NSCLC brain metastasis biology and serves as an important resource for additional discovery.
Collapse
Affiliation(s)
- Somnath Tagore
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Program for Mathematical Genomics, Columbia University, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Lindsay Caprio
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Amit Dipak Amin
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kresimir Bestak
- Institute for Computational Biomedicine, Faculty of Medicine, University Hospital Heidelberg and Heidelberg University, Heidelberg, Germany
| | - Karan Luthria
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Edridge D'Souza
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Irving Barrera
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Johannes C Melms
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sharon Wu
- Caris Life Sciences, Phoenix, AZ, USA
| | - Sinan Abuzaid
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Yiping Wang
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Program for Mathematical Genomics, Columbia University, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Viktoria Jakubikova
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Peter Koch
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - D Zack Brodtman
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Banpreet Bawa
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | | | - Leon Ebel
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Miguel A Ibarra-Arellano
- Institute for Computational Biomedicine, Faculty of Medicine, University Hospital Heidelberg and Heidelberg University, Heidelberg, Germany
| | - Abhinav Jaiswal
- Department of Dermatology, Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Carino Gurjao
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Program for Mathematical Genomics, Columbia University, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jana Biermann
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Program for Mathematical Genomics, Columbia University, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Neha Shaikh
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Priyanka Ramaradj
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Yohanna Georgis
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Galina G Lagos
- Lifespan Cancer Institute, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Matthew I Ehrlich
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Patricia Ho
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Zachary H Walsh
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Meri Rogava
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michelle Garlin Politis
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Devanik Biswas
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Azzurra Cottarelli
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Nikhil Rizvi
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Catherine A Shu
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Benjamin Herzberg
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Niroshana Anandasabapathy
- Department of Dermatology, Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | | | - Emmanuel Zorn
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, New York Presbyterian/Columbia University Irving Medical Center, New York, NY, USA
| | - Naiyer A Rizvi
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Synthekine Inc., Menlo Park, CA, USA
| | - Alison M Taylor
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Anjali Saqi
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Hanina Hibshoosh
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Gary K Schwartz
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Brian S Henick
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Fei Chen
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Denis Schapiro
- Institute for Computational Biomedicine, Faculty of Medicine, University Hospital Heidelberg and Heidelberg University, Heidelberg, Germany
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Spatial Profiling Center (TPSC), Heidelberg, Germany
| | - Parin Shah
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Benjamin Izar
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Systems Biology, Program for Mathematical Genomics, Columbia University, New York, NY, USA.
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
2
|
Gritsch D, Brastianos PK. Molecular evolution of central nervous system metastasis and therapeutic implications. Trends Mol Med 2025; 31:240-251. [PMID: 39424530 PMCID: PMC11908961 DOI: 10.1016/j.molmed.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024]
Abstract
The increasing prevalence and poor prognosis of central nervous system (CNS) metastases pose a significant challenge in oncology, necessitating improved therapeutic strategies. Recent research has shed light on the complex genomic landscape of brain metastases, identifying unique and potentially actionable genetic alterations. These insights offer new avenues for targeted therapy, highlighting the potential of precision medicine approaches in treating CNS metastases. However, translating these discoveries into clinical practice requires overcoming challenges such as availability of tissue for characterization, access to molecular testing, drug delivery across the blood-brain barrier (BBB) and addressing intra- and intertumoral genetic heterogeneity. This review explores novel insights into the evolution of CNS metastases, the molecular mechanisms underlying their development, and implications for therapeutic interventions.
Collapse
Affiliation(s)
- David Gritsch
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Priscilla K Brastianos
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.
| |
Collapse
|
3
|
Uniyal P, Kashyap VK, Behl T, Parashar D, Rawat R. KRAS Mutations in Cancer: Understanding Signaling Pathways to Immune Regulation and the Potential of Immunotherapy. Cancers (Basel) 2025; 17:785. [PMID: 40075634 PMCID: PMC11899378 DOI: 10.3390/cancers17050785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
The Kirsten rat sarcoma viral oncogene homologue (KRAS) mutation is one of the most prevailing mutations in various tumors and is difficult to cure. Long-term proliferation in carcinogenesis is primarily initiated by oncogenic KRAS-downstream signaling. Recent research suggests that it also activates the autocrine effect and interplays the tumor microenvironment (TME). Here, we discuss the emerging research, including KRAS mutations to immune evasion in TME, which induce immunological modulation that promotes tumor development. This review gives an overview of the existing knowledge of the underlying connection between KRAS mutations and tumor immune modulation. It also addresses the mechanisms to reduce the effect of oncogenes on the immune system and recent advances in clinical trials for immunotherapy in KRAS-mutated cancers.
Collapse
Affiliation(s)
- Priyanka Uniyal
- Department of Pharmaceutical Technology, School of Health Sciences and Technology, UPES, Dehradun 248007, India;
| | - Vivek Kumar Kashyap
- Division of Cancer Immunology and Microbiology, Medicine, and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA;
- South Texas Center of Excellence in Cancer Research (ST-CECR), School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali 140306, India;
| | - Deepak Parashar
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ravi Rawat
- Department of Pharmaceutical Technology, School of Health Sciences and Technology, UPES, Dehradun 248007, India;
| |
Collapse
|
4
|
Urtecho SB, Provenzano L, Spagnoletti A, Bottiglieri A, Pircher C, Massa G, Sposetti C, Proto C, Brambilla M, Occhipinti M, Mazzeo L, Beninato T, Leporati R, Giani C, Cavalli C, Serino R, Prina MM, Bassetti A, Nasca V, di Mauro RM, Abate A, Manglaviti S, Dumitrascu AD, Liberti GD, Cassano TS, Ganzinelli M, Wu S, Garassino MC, de Braud FGM, Russo GL, Prelaj A. Decoding KRAS mutation in non-small cell lung cancer patients receiving immunotherapy: A retrospective institutional comparison and literature review. Lung Cancer 2025; 199:108051. [PMID: 39740426 DOI: 10.1016/j.lungcan.2024.108051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/02/2025]
Abstract
INTRODUCTION KRAS mutation the most common molecular alteration in advanced non-small cell lung cancer (NSCLC) and is associated with an unfavourable prognosis, largely due to the lack of targeted therapeutic options for the majority of the KRAS mutated isoforms. The landscape of NSCLC treatment has expanded with the introduction of immune checkpoint inhibitors (ICIs). Nonetheless, data regarding the efficacy of ICI in NSCLC patients harbouring KRAS mutations are conflicting. This study aimed to compare clinical outcomes of ICIs in advanced NSCLC with different isoforms of KRAS mutations. METHODS A retrospective study was conducted on 143 patients with advanced NSCLC harbouring different KRAS mutation and treated with immune checkpoint inhibitors (ICI) between December 2020 and July 2022 at "Fondazione IRCCS Istituto Nazionale dei Tumori" in Milan. Log-rank and Cox Hazard methods were used for survival analysis. RESULTS We evaluated 143 patients with advanced non-small cell lung cancer (NSCLC) harboring KRAS mutations. The most common mutation was G12C (41 %), followed by G12V (23.7 %) and G12D (11.8 %). The G12C mutation was notably associated with a higher incidence of bone metastases (42 %). Immunotherapy was administered as monotherapy in 54.5 % of cases, while 69 % received it as part of a first-line combination with chemotherapy. Co-mutations were detected in 52 % of patients, with Q61 (63 %) and G12C (58 %) being the most prevalent. Among these, 24 % had STK11 co-mutations, and 29 % had TP53 co-mutations. No significant differences in overall survival (OS) or progression-free survival (PFS) were observed across different KRAS subtypes. The longest OS was seen in patients with Q61 (46.5 months), 13X (31.8 months), and G12C (28.7 months). The highest overall response rate (ORR) of 73 % was observed in the G12D group, particularly with the combination of chemoimmunotherapy, where stable disease was the most common outcome at 40 %. The median duration of response (DOR) was 7.4 months across both treatments. The longest DOR was seen in the G12V group at 10.2 months, with no significant difference between treatments. In contrast, the shortest DOR was in the G12A group, with 1.54 months in those treated with combination therapy compared to 2.57 months with single-agent therapy. Regarding co-mutations, patients with STK11 co-mutations had a higher median OS than those without (39.7 vs. 26.1 months), but this was not statistically significant (p = 1). Similarly, TP53 co-mutations were associated with a lower median OS (19.1 vs. 26.1 months, p = 0.7), though this too was not statistically significant. Importantly, bone metastases emerged as a significant adverse prognostic factor, nearly doubling the risk of mortality (HR: 2.81, p < 0.001), regardless of KRAS subtype or co-mutation status. CONCLUSION KRAS mutation subtypes demonstrate varying clinical outcomes. Although no statistically significant differences were observed in overall survival (OS) or progression-free survival (PFS), bone metastases were identified as a significant adverse prognostic factor, nearly doubling the risk of mortality (HR: 2.72, p < 0.001) regardless of KRAS subtype or co-mutation status. These findings underscore the importance of personalized treatment approaches tailored to the genetic profiles of patients with advanced NSCLC.
Collapse
Affiliation(s)
- S Berenice Urtecho
- Medical Oncology Department, Fundacion Instituto Valenciano de Oncologia (IVO)
| | - Leonardo Provenzano
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Andrea Spagnoletti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Achille Bottiglieri
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Pircher
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giacomo Massa
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Caterina Sposetti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Claudia Proto
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marta Brambilla
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mario Occhipinti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Mazzeo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Electronics, Information and Bioengineering, Polytechnic University of Milan, Milan, Italy
| | - Teresa Beninato
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Rita Leporati
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudia Giani
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Cavalli
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Roberta Serino
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Anna Bassetti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Vincenzo Nasca
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Rosa Maria di Mauro
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alice Abate
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Manglaviti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andra Diana Dumitrascu
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giorgia Di Liberti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Teresa Serra Cassano
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Ganzinelli
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sulin Wu
- Department of Medicine, University of Chicago, Chicago, IL
| | - Marina Chiara Garassino
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Medicine, University of Chicago, Chicago, IL
| | - Filippo G M de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Department of Oncology and Hemato-Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giuseppe Lo Russo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Arsela Prelaj
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Electronics, Information and Bioengineering, Polytechnic University of Milan, Milan, Italy
| |
Collapse
|
5
|
Henick BS, Koch PD, Gainor JF, Awad MM, Chiuzan C, Izard S, Georgis Y, Mallick S, Garofano RF, Wong CV, Saqi A, Grindheim J, Schulze K, Sonett JR, Rizvi NA, Izar B, Taylor AM, Shu CA. Neoadjuvant atezolizumab + chemotherapy for resectable NSCLC: 3-year clinical update of phase II clinical trial results and translational findings. J Immunother Cancer 2024; 12:e009301. [PMID: 39721753 PMCID: PMC11752048 DOI: 10.1136/jitc-2024-009301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/05/2024] [Indexed: 12/28/2024] Open
Abstract
INTRODUCTION Neoadjuvant chemoimmunotherapy has achieved overall survival (OS) benefit for patients with resectable non-small cell lung cancer (NSCLC). Here, we present outcomes after 3 years of follow-up from the first reported study of neoadjuvant atezolizumab+chemotherapy. METHODS This open-label, multicenter single-arm investigator-initiated phase II study conducted at three US hospitals tested up to four cycles of atezolizumab, carboplatin, and nab-paclitaxel prior to surgery. Major pathological response (MPR, primary endpoint) was previously reported; here, we report 3-year disease-free survival (DFS), OS, and clinical characteristics of patients developing brain metastases (BM) with integrated data from tumor genomics, gene expression, and quantitative immunofluorescent measurement of immune markers. RESULTS Of 30 enrolled patients, 29 were taken to the operating room. 26 underwent R0 resection, with 17 experiencing MPR (10 pCR). With a median follow-up of 39.5 months, the median OS was 55.8 months, and the median DFS was 34.5 months. Landmark OS at 36 months was 77%. Among 14 patients with recurrent disease, 6 patients had BM. Patients whose tumors had mutations in STK11 and KEAP1 did not have a significantly higher incidence of BM. Reduced copy number of STK11 and KEAP1, both residing on chromosome 19p, was observed in ~1/3 of tumors. Reduced CN of STK11 was significantly associated with worse pathological response and incidence of BM. CONCLUSIONS Consistent with recent phase III studies, 3-year OS data with neoadjuvant atezolizumab+chemotherapy was associated with prolonged PFS and OS. Establishing associations between STK11 and KEAP1 genomic alterations and key clinical outcomes in early-stage NSCLC requires further study.
Collapse
Affiliation(s)
- Brian S Henick
- Department of Medicine, Division of Hematology and Medical Oncology, Columbia University Irving Medical Center, Herbert Irving Comprehensive Cancer Center, New York, New York, USA
| | - Peter D Koch
- Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Justin F Gainor
- Department of Hematology/Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mark M Awad
- Department of Hematology/Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Codruta Chiuzan
- Department of Biostatistics, Northwell Health Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Stephanie Izard
- Department of Biostatistics, Northwell Health Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Yohanna Georgis
- Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Samyukta Mallick
- Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Robert F Garofano
- Department of Medicine, Division of Hematology and Medical Oncology, Columbia University Irving Medical Center, Herbert Irving Comprehensive Cancer Center, New York, New York, USA
| | - Cheryl V Wong
- Department of Biomarker Development and Medical Affairs, Genentech-Roche, San Francisco, California, USA
| | - Anjali Saqi
- Department of Medicine, Division of Hematology and Medical Oncology, Columbia University Irving Medical Center, Herbert Irving Comprehensive Cancer Center, New York, New York, USA
| | - Jessica Grindheim
- Department of Biomarker Development and Medical Affairs, Genentech-Roche, San Francisco, California, USA
| | - Katja Schulze
- Department of Biomarker Development and Medical Affairs, Genentech-Roche, San Francisco, California, USA
| | - Joshua R Sonett
- Department of Surgery, Columbia University Irving Medical Center, Herbert Irving Comprehensive Cancer Center, New York, New York, USA
| | - Naiyer A Rizvi
- Department of Medicine, Division of Hematology and Medical Oncology, Columbia University Irving Medical Center, Herbert Irving Comprehensive Cancer Center, New York, New York, USA
| | - Benjamin Izar
- Department of Medicine, Division of Hematology and Medical Oncology, Columbia University Irving Medical Center, Herbert Irving Comprehensive Cancer Center, New York, New York, USA
| | - Alison M Taylor
- Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Catherine A Shu
- Department of Medicine, Division of Hematology and Medical Oncology, Columbia University Irving Medical Center, Herbert Irving Comprehensive Cancer Center, New York, New York, USA
| |
Collapse
|
6
|
Guan C, Zhang X, Yu L. A Review of Recent Advances in the Molecular Mechanisms Underlying Brain Metastasis in Lung Cancer. Mol Cancer Ther 2024; 23:627-637. [PMID: 38123448 DOI: 10.1158/1535-7163.mct-23-0416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/26/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Brain metastasis from lung cancer is a prevalent mode of treatment failure associated with a poor prognosis. The incidence of brain metastasis has recently shown a dramatic increase. The early detection and risk stratification of lung cancer-related brain metastasis would be highly advantageous for patients. However, our current knowledge and comprehension of the underlying mechanisms driving brain metastasis in lung cancer pose significant challenges. This review summarizes the mechanisms underlying brain metastasis, focusing on the intricate interplay between lung cancer-derived tumor cells and the unique characteristics of the brain, recent advancements in the identification of driver genes, concomitant genes, epigenetic features, including miRNAs and long noncoding RNAs, as well as the molecular characterization of brain metastasis originating from other organs, which may further enhance risk stratification and facilitate precise treatment strategies.
Collapse
Affiliation(s)
- Chao Guan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoye Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Naqash AR, Floudas CS, Aber E, Maoz A, Nassar AH, Adib E, Choucair K, Xiu J, Baca Y, Ricciuti B, Alessi JV, Awad MM, Kim C, Judd J, Raez LE, Lopes G, Nieva JJ, Borghaei H, Takebe N, Ma PC, Halmos B, Kwiatkowski DJ, Liu SV, Mamdani H. Influence of TP53 Comutation on the Tumor Immune Microenvironment and Clinical Outcomes With Immune Checkpoint Inhibitors in STK11-Mutant Non-Small-Cell Lung Cancer. JCO Precis Oncol 2024; 8:e2300371. [PMID: 38330261 PMCID: PMC10860998 DOI: 10.1200/po.23.00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/05/2023] [Accepted: 01/02/2024] [Indexed: 02/10/2024] Open
Abstract
PURPOSE Non-small-cell lung cancer (NSCLC) with STK11mut has inferior outcomes to immune checkpoint inhibitors (ICIs). Using multiomics, we evaluated whether a subtype of STK11mut NSCLC with a uniquely inflamed tumor immune microenvironment (TIME) harboring TP53 comutations could have favorable outcomes to ICIs. PATIENTS AND METHODS NSCLC tumors (N = 16,896) were analyzed by next-generation sequencing (DNA-Seq/592 genes). A subset (n = 5,034) underwent gene expression profiling (RNA-Seq/whole transcriptome). Exome-level neoantigen load for STK11mut NSCLC was obtained from published pan-immune analysis. Tumor immune cell content was obtained from transcriptome profiles using the microenvironment cell population (MCP) counter. ICI data from POPLAR/OAK (n = 34) and the study by Rizvi et al (n = 49) were used to model progression-free survival (PFS), and a separate ICI-treated cohort (n = 53) from Dana-Farber Cancer Institute (DFCI) was used to assess time to treatment failure (TTF) and tumor RECIST response for STK11mutTP53mut versus STK11mutTP53wt NSCLC. RESULTS Overall, 12.6% of NSCLC tumors had a STK11mut with the proportions of tumor mutational burden (TMB)-high (≥10 mut/Mb), PD-L1 ≥50%, and microsatellite instability-high being 38.3%, 11.8%, and 0.72%, respectively. Unsupervised hierarchical clustering of STK11mut (n = 463) for stimulator of interferon-gamma (STING) pathway genes identified a STING-high cluster, which was significantly enriched in TP53mut NSCLC (P < .01). Compared with STK11mutTP53wt, tumors with STK11mutTP53mut had higher CD8+T cells and natural killer cells (P < .01), higher TMB (P < .001) and neoantigen load (P < .001), and increased expression of MYC and HIF-1A (P < .01), along with higher expression (P < .01) of glycolysis/glutamine metabolism genes. Meta-analysis of data from OAK/POPLAR and the study by Rizvi et al showed a trend toward improved PFS in patients with STK11mutTP53mut. In the DFCI cohort, compared with the STK11mut TP53wt cohort, the STK11mutTP53mut tumors had higher objective response rates (42.9% v 16.7%; P = .04) and also had longer TTF (14.5 v 4.5 months, P adj = .054) with ICI. CONCLUSION STK11mut NSCLC with TP53 comutation is a distinct subgroup with an immunologically active TIME and metabolic reprogramming. These properties should be exploited to guide patient selection for novel ICI-based combination approaches.
Collapse
Affiliation(s)
- Abdul Rafeh Naqash
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | | | - Etan Aber
- Center for Immuno-Oncology, National Cancer Institute, NIH, Bethesda, MD
| | - Asaf Maoz
- Dana Farber Cancer Institute, Boston, MA
| | - Amin H. Nassar
- Department of Hematology/Oncology, Yale New Haven Hospital, New Haven, CT
| | - Elio Adib
- Dana Farber Cancer Institute, Boston, MA
| | - Khalil Choucair
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI
| | | | | | | | | | | | - Chul Kim
- Department of Hematology and Oncology, Georgetown University, Washington, DC
| | - Julia Judd
- Fox Chase Cancer Center, Philadelphia, PA
| | - Luis E. Raez
- Memorial Cancer Institute//Florida Atlantic University (FAU), Miami, FL
| | - Gilberto Lopes
- University of Miami Miller School of Medicine, Miami, FL
| | | | | | - Naoko Takebe
- Developmental Therapeutics Clinic, National Cancer Institute, Bethesda, MD
| | - Patrick C. Ma
- Department of Hematology/ Oncology, Penn State Cancer Institute, Hershey, PA
| | - Balazs Halmos
- Medical Oncology, Albert Einstein College of Medicine, NY
| | | | - Stephen V. Liu
- Department of Hematology and Oncology, Georgetown University, Washington, DC
| | - Hirva Mamdani
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI
| |
Collapse
|
8
|
Li Z, Song Z, Zhao Y, Wang P, Jiang L, Gong Y, Zhou J, Jian H, Dong X, Zhuang W, Cang S, Yang N, Fang J, Shi J, Lu J, Ma R, Wu P, Zhang Y, Song M, Xu CW, Shi Z, Zhang L, Wang Y, Wang X, Zhang Y, Lu S. D-1553 (Garsorasib), a Potent and Selective Inhibitor of KRAS G12C in Patients With NSCLC: Phase 1 Study Results. J Thorac Oncol 2023; 18:940-951. [PMID: 36948246 DOI: 10.1016/j.jtho.2023.03.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/24/2023]
Abstract
INTRODUCTION D-1553 (garsorasib) is a potent and selective oral KRASG12C inhibitor. We report results from a phase I dose-escalation and dose-expansion study of D-1553 in patients with KRAS G12C-mutated NSCLC in multiple sites in the People's Republic of China. METHODS Patients with KRAS G12C-mutated NSCLC have administrated D-1553 600 mg orally once daily, 800 mg once daily, 1200 mg once daily, 400 mg twice a day, or 600 mg twice a day in dose escalation. In dose-expansion, all patients received 600 mg twice a day. The safety, pharmacokinetics, and efficacy of D-1553 were evaluated. RESULTS Among a total of 79 treated patients, 75 patients (94.9%) reported treatment-related adverse events with 30 patients experiencing grade 3 or 4 events (38.0%). Most of the adverse events were manageable and the patients tolerated the study treatment well. Among 74 patients assessable for efficacy analysis, 30 patients had a partial response and 38 had stable disease with a confirmed objective response rate (ORR) and disease control rate (DCR) of 40.5% and 91.9%, respectively. The median progression-free survival was 8.2 months, and the median duration of response was 7.1 months. Among 62 patients assessable for response at the recommended phase 2 dose, partial response occurred in 24 patients (ORR, 38.7%) and stable disease in 32 patients (DCR, 90.3%). The median progression-free survival and duration of response were 7.6 months and 6.9 months, respectively. In patients with brain metastasis, ORR and DCR were 17% and 100%, respectively. CONCLUSIONS D-1553 represents a promising therapeutic option for patients with KRAS G12C-mutated NSCLC with a well-tolerated safety profile and encouraging antitumor activity.
Collapse
Affiliation(s)
- Ziming Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Zhengbo Song
- Department of Clinical Trial, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Yanqiu Zhao
- Respiratory Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Pingli Wang
- Respiratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Liyan Jiang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yi Gong
- Department of Phase I Clinical Trial Ward, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Jianying Zhou
- Respiratory Medicine, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Hong Jian
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wu Zhuang
- Department of Thoracic Oncology, Fujian Provincial Cancer Hospital, Fuzhou, People's Republic of China
| | - Shundong Cang
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou, People's Republic of China
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital, Changsha, People's Republic of China
| | - Jian Fang
- Department of Thoracic Oncology II, Beijing Cancer Hospital, Beijing, People's Republic of China
| | - Jianhua Shi
- Department of Medical Oncology II, Linyi Cancer Hospital, Linyi, People's Republic of China
| | - Junguo Lu
- Department of Respiratory Medicine, Nantong Tumor Hospital, Nantong, People's Republic of China
| | - Rui Ma
- Thoracic Medicine Ward Area 2, Liaoning Cancer Hospital & Institute, Shenyang, People's Republic of China
| | - Ping Wu
- Department of Oncology, General Hospital of Ningxia Medical University, Yinchuan, People's Republic of China
| | - Yingqian Zhang
- Department of Translational Medicine, Geneplus-Beijing, Beijing, People's Republic of China
| | - Mengmeng Song
- Department of Translational Medicine, Geneplus-Beijing, Beijing, People's Republic of China
| | - Chun-Wei Xu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People's Republic of China
| | - Zhe Shi
- R&D, InventisBio Co., Ltd., Shanghai, People's Republic of China
| | - Ling Zhang
- R&D, InventisBio Co., Ltd., Shanghai, People's Republic of China
| | - Yaolin Wang
- R&D, InventisBio Co., Ltd., Shanghai, People's Republic of China
| | - Xicheng Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Yiping Zhang
- Department of Clinical Trial, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China.
| |
Collapse
|
9
|
Liu Z, Georgakopoulos-Soares I, Ahituv N, Wong KC. Risk scoring based on DNA methylation-driven related DEGs for colorectal cancer prognosis with systematic insights. Life Sci 2023; 316:121413. [PMID: 36682524 DOI: 10.1016/j.lfs.2023.121413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Colorectal cancer is a common malignant tumor of the digestive tract. Despite advances in diagnostic techniques and medications. Its prognosis remains challenging. DNA methylation-driven related circulating tumor cells have attracted enormous interest in diagnosing owing to their non-invasive nature and early recognition properties. However, the mechanism through which risk biomarkers act remains elusive. Here, we designed a risk model based on differentially expressed genes, DNA methylation, robust, and survival-related factors in the framework of Cox regression. The model has satisfactory performance and is independently verified by an external and isolated dataset in terms of C-index value, ROC, and tROC. The model was applied to Colorectal cancer patients who were subsequently divided into high- and low-risk groups. Functional annotations, genomic alterations, tumor immune environment, and drug sensitivity were analyzed. We observed that up-regulated genes are associated with epithelial cell differentiation and MAPK signaling pathways. The down-regulated genes are related to IL-7 signaling and apoptosis-induced DNA fragmentation. Interestingly, the immune system was inhibited in high-risk groups. High-frequency mutation genes tend to co-occur. High-risk score patients are related to copy number amplification events. To address the challenges, we suggested eleven and twenty-one drugs that are sensitive to low- and high-risk patients. Finally, an artificial neural network was provided to evaluate the immunotherapeutic efficiency. Taken together, the findings demonstrated that our risk score model is robust and reliable for evaluating the prognosis with novel diagnostic and treatment targets. It also yields benefits for the treatment and provides unique insights into developing therapeutic strategies.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
10
|
Therapeutic strategies for non-small cell lung cancer: Experimental models and emerging biomarkers to monitor drug efficacies. Pharmacol Ther 2023; 242:108347. [PMID: 36642389 DOI: 10.1016/j.pharmthera.2023.108347] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
While new targeted therapies have considerably changed the treatment and prognosis of non-small cell lung cancer (NSCLC), they are frequently unsuccessful due to primary or acquired resistances. Chemoresistance is a complex process that combines cancer cell intrinsic mechanisms including molecular and genetic abnormalities, aberrant interactions within the tumor microenvironment, and the pharmacokinetic characteristics of each molecule. From a pharmacological point of view, two levers could improve the response to treatment: (i) developing tools to predict the response to chemo- and targeted therapies and (ii) gaining a better understanding of the influence of the tumor microenvironment. Both personalized medicine approaches require the identification of relevant experimental models and biomarkers to understand and fight against chemoresistance mechanisms. After describing the main therapies in NSCLC, the scope of this review will be to identify and to discuss relevant in vitro and ex vivo experimental models that are able to mimic tumors. In addition, the interests of these models in the predictive responses to proposed therapies will be discussed. Finally, this review will evaluate the involvement of novel secreted biomarkers such as tumor DNA or micro RNA in predicting responses to anti-tumor therapies.
Collapse
|
11
|
Wang Y, Shen X, Wang Q, Guo Z, Hu L, Dong Z, Hu W. Non-canonical Small GTPase RBJ Promotes NSCLC Progression Through the Canonical MEK/ERK Signaling Pathway. Curr Pharm Des 2022; 28:3446-3455. [PMID: 36397632 DOI: 10.2174/1381612829666221117124048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/26/2022] [Accepted: 10/14/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Although the majority of members belonging to the small GTPase Ras superfamily have been studied in several malignancies, the function of RBJ has remained unclear, particularly in non-small cell lung cancer (NSCLC). OBJECTIVE The research aims to determine the function of RBJ in NSCLC. METHODS The levels of RBJ protein in tumor tissue and para-carcinoma normal tissue were ascertained via immunohistochemistry (IHC). The growth, migration, and invasion of NSCLC cells were assessed by 5- ethynyl-2-deoxyuridine (EdU) assay, colony formation, cell counting kit-8 (CCK8), transwell and wound healing assays. Furthermore, a nude mouse xenograft model was established to study the function of RBJ in tumorigenesis in vivo. RESULTS The IHC analysis revealed that the protein levels of RBJ were notably increased in tumor tissue and positively associated with the clinical stage. In addition, the knockdown of RBJ restrained the growth, invasion, and migration of NSCLC cell lines by inhibiting the epithelial-mesenchymal transition (EMT) through the MEK/ERK signaling pathway. Accordingly, opposite results were observed when RBJ was overexpressed. In addition, the overexpression of RBJ accelerated tumor formation by A549 cells in nude mice. CONCLUSION RBJ promoted cancer progression in NSCLC by activating EMT via the MEK/ERK signaling. Thus, RBJ could be used as a potential therapeutic against NSCLC.
Collapse
Affiliation(s)
- Yujin Wang
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaoyan Shen
- Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qingwen Wang
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zixin Guo
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Liwen Hu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhe Dong
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Weidong Hu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
12
|
Goeckeritz J, Cerillo J, Sanghadia C, Hosseini M, Clark A, Pierre K, Lucke-Wold B. Principles of Lung Cancer Metastasis to Brain. JOURNAL OF SKELETON SYSTEM 2022; 1:https://www.mediresonline.org/article/principles-of-lung-cancer-metastasis-to-brain. [PMID: 36745145 PMCID: PMC9893877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lung cancer is a disease associated with significant morbidity and mortality on a global setting. This form of cancer commonly gives raise to metastatic lesions the brain, which can further worsen outcomes. In this focused review, we discuss an overview of lung cancers that metastasize to the brain: known risk factors; means of detection and diagnosis; and options for treatment including a comparison between surgical resection, stereotactic radiosurgery, and whole-brain radiation therapy. These interventions are still being assessed by clinical trials and continue to be modified through evidence-based practice.
Collapse
Affiliation(s)
| | - John Cerillo
- College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL
| | | | | | - Alec Clark
- College of Medicine, University of Central Florida, Orlando, FL
| | - Kevin Pierre
- Department of Radiology, University of Florida, Gainesville, FL
| | | |
Collapse
|
13
|
London D, Patel DN, Donahue B, Navarro RE, Gurewitz J, Silverman JS, Sulman E, Bernstein K, Palermo A, Golfinos JG, Sabari JK, Shum E, Velcheti V, Chachoua A, Kondziolka D. The incidence and predictors of new brain metastases in patients with non-small cell lung cancer following discontinuation of systemic therapy. J Neurosurg 2022; 137:544-554. [PMID: 34891140 DOI: 10.3171/2021.9.jns212150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/24/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Patients with non-small cell lung cancer (NSCLC) metastatic to the brain are living longer. The risk of new brain metastases when these patients stop systemic therapy is unknown. The authors hypothesized that the risk of new brain metastases remains constant for as long as patients are off systemic therapy. METHODS A prospectively collected registry of patients undergoing radiosurgery for brain metastases was analyzed. Of 606 patients with NSCLC, 63 met the inclusion criteria of discontinuing systemic therapy for at least 90 days and undergoing active surveillance. The risk factors for the development of new tumors were determined using Cox proportional hazards and recurrent events models. RESULTS The median duration to new brain metastases off systemic therapy was 16.0 months. The probability of developing an additional new tumor at 6, 12, and 18 months was 26%, 40%, and 53%, respectively. There were no additional new tumors 22 months after stopping therapy. Patients who discontinued therapy due to intolerance or progression of the disease and those with mutations in RAS or receptor tyrosine kinase (RTK) pathways (e.g., KRAS, EGFR) were more likely to develop new tumors (hazard ratio [HR] 2.25, 95% confidence interval [CI] 1.33-3.81, p = 2.5 × 10-3; HR 2.51, 95% CI 1.45-4.34, p = 9.8 × 10-4, respectively). CONCLUSIONS The rate of new brain metastases from NSCLC in patients off systemic therapy decreases over time and is uncommon 2 years after cessation of cancer therapy. Patients who stop therapy due to toxicity or who have RAS or RTK pathway mutations have a higher rate of new metastases and should be followed more closely.
Collapse
Affiliation(s)
| | | | - Bernadine Donahue
- 2Radiation Oncology, and
- 3Department of Radiation Oncology, Maimonides Cancer Center, Brooklyn, New York
| | | | | | | | | | | | | | | | - Joshua K Sabari
- 4Medical Oncology, NYU Langone Health, Perlmutter Cancer Center, New York University, New York; and
| | - Elaine Shum
- 4Medical Oncology, NYU Langone Health, Perlmutter Cancer Center, New York University, New York; and
| | - Vamsidhar Velcheti
- 4Medical Oncology, NYU Langone Health, Perlmutter Cancer Center, New York University, New York; and
| | - Abraham Chachoua
- 4Medical Oncology, NYU Langone Health, Perlmutter Cancer Center, New York University, New York; and
| | | |
Collapse
|
14
|
Chen J, Williams M, Huang Y, Si S. Identifying Topics and Evolutionary Trends of Literature on Brain Metastases Using Latent Dirichlet Allocation. Front Mol Biosci 2022; 9:858577. [PMID: 35720132 PMCID: PMC9201447 DOI: 10.3389/fmolb.2022.858577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Research on brain metastases kept innovating. We aimed to illustrate what topics the research focused on and how it varied in different periods of all the studies on brain metastases with topic modelling. We used the latent Dirichlet allocation model to analyse the titles and abstracts of 50,176 articles on brain metastases retrieved from Web of Science, Embase and MEDLINE. We further stratified the articles to find out the topic trends of different periods. Our study identified that a rising number of studies on brain metastases were published in recent decades at a higher rate than all cancer articles. Overall, the major themes focused on treatment and histopathology. Radiotherapy took over the first and third places in the top 20 topics. Since the 2010's, increasing attention concerned about gene mutations. Targeted therapy was a popular topic of brain metastases research after 2020.
Collapse
Affiliation(s)
- Jiarong Chen
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, China
- Department of Oncology, Jiangmen Central Hospital, Jiangmen, China
- Computational Oncology Group, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Matt Williams
- Computational Oncology Group, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- Department of Radiotherapy, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Yanming Huang
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, China
| | - Shijing Si
- Duke University, Durham, NC, United States
| |
Collapse
|
15
|
Song Z, Ren G, Wang X, Hu L. The Effect of the Kirsten Rat Sarcoma Viral Oncogene Homolog ( Kras) Proto-Oncogene, GTPase Genetic Polymorphism on the Safety and Efficacy of Bevacizumab Combination Treatment Regimens for Patients with Nonsquamous, Non-Small Cell Lung Cancer with Brain Metastases. Genet Test Mol Biomarkers 2022; 26:290-297. [PMID: 35638910 PMCID: PMC9150132 DOI: 10.1089/gtmb.2021.0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Non-small cell lung cancer with brain metastasis (NSCLCBM) is normally observed in advanced-stage patients. Bevacizumab has shown to improve survival in the first-line treatment of metastatic brain NSCLC when added as a bolus plus irinotecan. However, a better understanding of the molecular mechanism is required to further drive progress in this field. Methods: A total of 155 patients were selected, including 42.10% with Kirsten rat sarcoma viral oncogene homolog (Kras)-mutant tumors. Of the 155 patients, 62.04% had developed brain metastasis (BM). Seven functional single-nucleotide polymorphisms (SNPs) in the Kras gene were extracted from the HapMap SNP database and were used for genotyping. The haplologit command in Statistical Software for Data Science (STATA) was used to model the association between haplotypes and case status. A Cox analysis was used to evaluate the prognostic value of the SNPs. Results: Among the patients treated with combination regimens, recurrence after local treatment was more frequent in those with two types of Kras mutations (odds ratio [OR] = 2.033 [0.5015-4.2552], p = 0.009). Among the patients with untreated BM, overall survival was shorter than that of patients with Kras mutations according to univariate analysis (OR = 5.130 [1.240-41.012], p = 0.033). Conclusions: Kras mutations have a predictive role for BM recurrence and outcome in patients with NSCLC treated with bevacizumab combination regimens.
Collapse
Affiliation(s)
- Zizheng Song
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, People's Republic of China
| | - Guanying Ren
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, People's Republic of China
| | - Xiaolei Wang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, People's Republic of China
| | - Ling Hu
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, People's Republic of China
- Address correspondence to: Ling Hu, MD, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, People's Republic of China
| |
Collapse
|
16
|
Dzung A, Saltari A, Tiso N, Lyck R, Dummer R, Levesque MP. STK11 Prevents Invasion through Signal Transducer and Activator of Transcription 3/5 and FAK Repression in Cutaneous Melanoma. J Invest Dermatol 2022; 142:1171-1182.e10. [PMID: 34757069 DOI: 10.1016/j.jid.2021.09.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 11/18/2022]
Abstract
The STK11/LKB1 is a tumor suppressor involved in metabolism and cell motility. In BRAFV600E melanoma, STK11 is inactivated by extracellular signal‒regulated kinase and RSK, preventing it from binding and activating adenosine monophosphate-activated protein kinase and promoting melanoma cell proliferation. Although STK11 mutations occur in 5‒10% of cutaneous melanoma, few functional studies have been performed. By knocking out STK11 with CRISPR/Cas9 in two human BRAF-mutant melanoma cell lines, we found that STK11 loss reduced the sensitivity to a BRAF inhibitor. More strikingly, STK11 loss led to an increased invasive phenotype in both three-dimensional spheroids and in vivo zebrafish xenograft models. STK11 overexpression consistently reversed the invasive phenotype. Interestingly, STK11 knockout increased invasion also in an NRAS-mutant melanoma cell line. Furthermore, although STK11 was expressed in primary human melanoma tumors, its expression significantly decreased in melanoma metastases, especially in brain metastases. In the STK11-knockout cells, we observed increased activating phosphorylation of signal transducer and activator of transcription 3/5 and FAK. Using inhibitors of signal transducer and activator of transcription 3/5 and FAK, we reversed the invasive phenotype in both BRAF- and NRAS-mutated cells. Our findings confirm an increased invasive phenotype on STK11 inactivation in BRAF- and NRAS-mutant cutaneous melanoma that can be targeted by signal transducer and activator of transcription 3/5 and FAK inhibition.
Collapse
Affiliation(s)
- Andreas Dzung
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Annalisa Saltari
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Natascia Tiso
- Laboratory of Developmental Genetics, Department of Biology, University of Padova, Padova, Italy
| | - Ruth Lyck
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
Giles Doran C, Pennington SR. Copy number alteration signatures as biomarkers in cancer: a review. Biomark Med 2022; 16:371-386. [PMID: 35195030 DOI: 10.2217/bmm-2021-0476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Within certain cancers, extensive copy number alterations (CNAs) contribute to a complex and heterogenic genomic profile. This makes it difficult to understand and unravel the distinct molecular dynamics shaping the disease while preventing clinically effective patient stratification. CNA signature analysis represents a novel genomic stratification tool for probing this complexity, offering an intricate framework for deriving CNA patterns at the molecular level. This allows the underlying genomic mechanisms of specific cancers to be revealed, leading to the potential identification of therapeutic targets and prognostic associations. This review outlines the molecular and methodological basis of CNA signatures and focuses on recent advances highlighting their clinical utility, limitations and prospective future as novel diagnostic and prognostic cancer biomarkers.
Collapse
Affiliation(s)
- Conor Giles Doran
- UCD Conway Institute, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Stephen R Pennington
- UCD Conway Institute, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
18
|
Désage AL, Léonce C, Swalduz A, Ortiz-Cuaran S. Targeting KRAS Mutant in Non-Small Cell Lung Cancer: Novel Insights Into Therapeutic Strategies. Front Oncol 2022; 12:796832. [PMID: 35251972 PMCID: PMC8889932 DOI: 10.3389/fonc.2022.796832] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/07/2022] [Indexed: 12/17/2022] Open
Abstract
Although KRAS-activating mutations represent the most common oncogenic driver in non-small cell lung cancer (NSCLC), various attempts to inhibit KRAS failed in the past decade. KRAS mutations are associated with a poor prognosis and a poor response to standard therapeutic regimen. The recent development of new therapeutic agents (i.e., adagrasib, sotorasib) that target specifically KRAS G12C in its GDP-bound state has evidenced an unprecedented success in the treatment of this subgroup of patients. Despite providing pre-clinical and clinical efficacy, several mechanisms of acquired resistance to KRAS G12C inhibitors have been reported. In this setting, combined therapeutic strategies including inhibition of either SHP2, SOS1 or downstream effectors of KRAS G12C seem particularly interesting to overcome acquired resistance. In this review, we will discuss the novel therapeutic strategies targeting KRAS G12C and promising approaches of combined therapy to overcome acquired resistance to KRAS G12C inhibitors.
Collapse
Affiliation(s)
- Anne-Laure Désage
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.,Department of Pulmonology and Thoracic Oncology, North Hospital, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Camille Léonce
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Aurélie Swalduz
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.,Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Sandra Ortiz-Cuaran
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| |
Collapse
|
19
|
Li J, Yang Z, Qi Y, Liu X, Liu Y, Gao X, Li S, Zhu J, Zhang C, Du E, Zhang Z. STIL Acts as an Oncogenetic Driver in a Primary Cilia-Dependent Manner in Human Cancer. Front Cell Dev Biol 2022; 10:804419. [PMID: 35155425 PMCID: PMC8826476 DOI: 10.3389/fcell.2022.804419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
SCL/TAL1 Interrupting locus (STIL) is a ciliary-related gene involved in regulating the cell cycle and duplication of centrioles in dividing cells. STIL has been found disordered in multiple cancers and driven carcinogenesis. However, the molecular mechanisms and biological functions of STIL in cancers remain ambiguous. Here, we systematically analyzed the genetic alterations, molecular mechanisms, and clinical relevance of STIL across >10,000 samples representing 33 cancer types in The Cancer Genome Atlas (TCGA) dataset. We found that STIL expression is up-regulated in most cancer types compared with their adjacent normal tissues. The expression dysregulation of STIL was affected by copy number variation, mutation, and DNA methylation. High STIL expression was associated with worse outcomes and promoted the progression of cancers. Gene Ontology (GO) enrichment analysis and Gene Set Variation Analysis (GSVA) further revealed that STIL is involved in cell cycle progression, Mitotic spindle, G2M checkpoint, and E2F targets pathways across cancer types. STIL expression was negatively correlated with multiple genes taking part in ciliogenesis and was positively correlated with several genes which participated with centrosomal duplication or cilia degradation. Moreover, STIL silencing could promote primary cilia formation and inhibit cell cycle protein expression in prostate and kidney cancer cell lines. The phenotype and protein expression alteration due to STIL silencing could be reversed by IFT88 silencing in cancer cells. These results revealed that STIL could regulate the cell cycle through primary cilia in tumor cells. In summary, our results revealed the importance of STIL in cancers. Targeting STIL might be a novel therapeutic approach for cancers.
Collapse
Affiliation(s)
- Jingxian Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zikun Yang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuanjiong Qi
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xun Liu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yang Liu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xinyu Gao
- Department of Graduate School, Tianjin Medical University, Tianjin, China
| | - Shuai Li
- Department of Graduate School, Tianjin Medical University, Tianjin, China
| | - Jianqiang Zhu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Changwen Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - E Du
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- *Correspondence: E Du, ; Zhihong Zhang,
| | - Zhihong Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- *Correspondence: E Du, ; Zhihong Zhang,
| |
Collapse
|
20
|
Huang L, Guo Z, Wang F, Fu L. KRAS mutation: from undruggable to druggable in cancer. Signal Transduct Target Ther 2021; 6:386. [PMID: 34776511 PMCID: PMC8591115 DOI: 10.1038/s41392-021-00780-4] [Citation(s) in RCA: 499] [Impact Index Per Article: 124.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/19/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is the leading cause of death worldwide, and its treatment and outcomes have been dramatically revolutionised by targeted therapies. As the most frequently mutated oncogene, Kirsten rat sarcoma viral oncogene homologue (KRAS) has attracted substantial attention. The understanding of KRAS is constantly being updated by numerous studies on KRAS in the initiation and progression of cancer diseases. However, KRAS has been deemed a challenging therapeutic target, even "undruggable", after drug-targeting efforts over the past four decades. Recently, there have been surprising advances in directly targeted drugs for KRAS, especially in KRAS (G12C) inhibitors, such as AMG510 (sotorasib) and MRTX849 (adagrasib), which have obtained encouraging results in clinical trials. Excitingly, AMG510 was the first drug-targeting KRAS (G12C) to be approved for clinical use this year. This review summarises the most recent understanding of fundamental aspects of KRAS, the relationship between the KRAS mutations and tumour immune evasion, and new progress in targeting KRAS, particularly KRAS (G12C). Moreover, the possible mechanisms of resistance to KRAS (G12C) inhibitors and possible combination therapies are summarised, with a view to providing the best regimen for individualised treatment with KRAS (G12C) inhibitors and achieving truly precise treatment.
Collapse
Affiliation(s)
- Lamei Huang
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 P. R. China
| | - Zhixing Guo
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 P. R. China
| | - Fang Wang
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 P. R. China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
21
|
Karimpour M, Ravanbakhsh R, Maydanchi M, Rajabi A, Azizi F, Saber A. Cancer driver gene and non-coding RNA alterations as biomarkers of brain metastasis in lung cancer: A review of the literature. Biomed Pharmacother 2021; 143:112190. [PMID: 34560543 DOI: 10.1016/j.biopha.2021.112190] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
Brain metastasis (BM) is the most common event in patients with lung cancer. Despite multimodal treatments and advances in systemic therapies, development of BM remains one of the main factors associated with poor prognosis and mortality in patients with lung cancer. Therefore, better understanding of mechanisms involved in lung cancer brain metastasis (LCBM) is of great importance to suppress cancer cells and to improve the overall survival of patients. Several cancer-related genes such as EGFR and KRAS have been proposed as potential predictors of LCBM. In addition, there is ample evidence supporting crucial roles of non-coding RNAs (ncRNAs) in mediating LCBM. In this review, we provide comprehensive information on risk assessment, predictive, and prognostic panels for early detection of BM in patients with lung cancer. Moreover, we present an overview of LCBM molecular mechanisms, cancer driver genes, and ncRNAs which may predict the risk of BM in lung cancer patients. Recent clinical studies have focused on determining mechanisms involved in LCBM and their association with diagnosis, prognosis, and treatment outcomes. These studies have shown that alterations in EGFR, KRAS, BRAF, and ALK, as the most frequent coding gene alterations, and dysregulation of ncRNAs such as miR-423, miR-330-3p, miR-145, piR-651, and MALAT1 can be considered as potential biomarkers of LCBM.
Collapse
Affiliation(s)
- Mina Karimpour
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reyhaneh Ravanbakhsh
- Department of Aquatic Biotechnology, Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| | - Melika Maydanchi
- Zimagene Medical Genetics Laboratory, Avicenna St., Hamedan, Iran
| | - Ali Rajabi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Faezeh Azizi
- Genetics Office, Non-Communicable Disease Control Department, Public Health Department, Ministry of Health and Medical Education, Tehran, Iran
| | - Ali Saber
- Zimagene Medical Genetics Laboratory, Avicenna St., Hamedan, Iran.
| |
Collapse
|
22
|
Wu Y, Ni H, Yang D, Niu Y, Chen K, Xu J, Wang F, Tang S, Shi Y, Zhang H, Hu J, Xia D, Wu Y. Driver and novel genes correlated with metastasis of non-small cell lung cancer: A comprehensive analysis. Pathol Res Pract 2021; 224:153551. [PMID: 34298439 DOI: 10.1016/j.prp.2021.153551] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022]
Abstract
Although mutations of genes are crucial events in tumorigenesis and development, the association between gene mutations and lung cancer metastasis is still largely unknown. The goal of this study is to identify driver and novel genes associated with non-small cell lung cancer (NSCLC) metastasis. Candidate genes were identified using a novel comprehensive analysis, which was based on bioinformatics technology and meta-analysis. Firstly, EGFR, KRAS, ALK, TP53, BRAF and PIK3CA were identified as candidate driver genes. Further meta-analysis identified that EGFR (Pooled OR 1.33, 95% CI 1.19, 1.50; P < .001) and ALK (Pooled OR 1.52, 95% CI 1.22, 1.89; P < .001) mutations were associated with distant metastasis of NSCLC. Besides, ALK (Pooled OR 2.40, 95% CI 1.71, 3.38; P < .001) mutation was associated with lymph node metastasis of NSCLC. In addition, thirteen novel gene mutations were identified to be correlated with NSCLC metastasis, including SMARCA1, GGCX, KIF24, LRRK1, LILRA4, OR2T10, EDNRB, NR1H4, ARID4A, PRKCI, PABPC5, ACAN and TLN1. Furthermore, elevated mRNA expression level of SMARCA1 and EDNRB was associated with poor overall survival in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), respectively. Additionally, pathway and protein-protein interactions network analyses found the two genes were correlated with epithelial-mesenchymal transition process. In conclusion, mutations of EGFR and ALK were significantly correlated with NSCLC metastasis. In addition, thirteen novel genes were identified to be associated with NSCLC metastasis, especially SMARCA1 in LUAD and EDNRB in LUSC.
Collapse
Affiliation(s)
- Yongfeng Wu
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Heng Ni
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Dexin Yang
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yuequn Niu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Kelie Chen
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jinming Xu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Fang Wang
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Song Tang
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yu Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Honghe Zhang
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Dajing Xia
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Yihua Wu
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences, Hangzhou 310058, China.
| |
Collapse
|
23
|
Hasegawa T, Yanagitani N, Ninomiya H, Sakamoto H, Tozuka T, Yoshida H, Amino Y, Uematsu S, Yoshizawa T, Ariyasu R, Uchibori K, Kitazono S, Horiike A, Nishio M. Association Between the Efficacy of Pembrolizumab and Low STK11/LKB1 Expression in High-PD-L1-expressing Non-small-cell Lung Cancer. In Vivo 2021; 34:2997-3003. [PMID: 32871843 DOI: 10.21873/invivo.12131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND/AIM STK11/LKB1 mutation has been suggested as a poorly responding candidate biomarker of the anti-programmed cell death-1 (PD-1) antibody; however, the association between STK11/LKB1 expression and the effects of anti-PD-1 antibodies is uncertain. The aim of the study was to correlate the efficacy of pembrolizumab monotherapy and STK11/LKB1 expression in untreated patients with non-small-cell lung carcinoma (NSCLC) and high PD-ligand 1 expression. PATIENTS AND METHODS From February 2017 to January 2020, we retrospectively analyzed 30 previously untreated patients with NSCLC and a tumor proportion score (TPS) ≥50% treated with pembrolizumab monotherapy. STK11/LKB1 expression in tumor tissue was evaluated by immunohistochemistry. RESULTS Twenty-three (76.7%) of the 30 patients were classified with low-STK11/LKB1 expression. The median progression-free survival and overall survival of patients with low-STK11/LKB1 expression was shorter than those with high-STK11/LKB1 expression, although the results were not statistically significant. The disease progression rate for the low-STK11/LKB1 group was higher than that of the high-STK11/LKB1 group. CONCLUSION STK11/LKB1 expression, as measured by immunohistochemistry, could be a useful biomarker associated with the efficacy of pembrolizumab monotherapy for patients with NSCLC and a TPS ≥50%.
Collapse
Affiliation(s)
- Tsukasa Hasegawa
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Noriko Yanagitani
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hironori Ninomiya
- Division of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroaki Sakamoto
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takehiro Tozuka
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroshi Yoshida
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoshiaki Amino
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shinya Uematsu
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takahiro Yoshizawa
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ryo Ariyasu
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ken Uchibori
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Satoru Kitazono
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Atsushi Horiike
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan.,Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Makoto Nishio
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
24
|
Köhler J, Jänne PA. If Virchow and Ehrlich Had Dreamt Together: What the Future Holds for KRAS-Mutant Lung Cancer. Int J Mol Sci 2021; 22:3025. [PMID: 33809660 PMCID: PMC8002337 DOI: 10.3390/ijms22063025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/26/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) with Kirsten rat sarcoma (KRAS) mutations has notoriously challenged oncologists and researchers for three notable reasons: (1) the historical assumption that KRAS is "undruggable", (2) the disease heterogeneity and (3) the shaping of the tumor microenvironment by KRAS downstream effector functions. Better insights into KRAS structural biochemistry allowed researchers to develop direct KRAS(G12C) inhibitors, which have shown early signs of clinical activity in NSCLC patients and have recently led to an FDA breakthrough designation for AMG-510. Following the approval of immune checkpoint inhibitors for PDL1-positive NSCLC, this could fuel yet another major paradigm shift in the treatment of advanced lung cancer. Here, we review advances in our understanding of the biology of direct KRAS inhibition and project future opportunities and challenges of dual KRAS and immune checkpoint inhibition. This strategy is supported by preclinical models which show that KRAS(G12C) inhibitors can turn some immunologically "cold" tumors into "hot" ones and therefore could benefit patients whose tumors harbor subtype-defining STK11/LKB1 co-mutations. Forty years after the discovery of KRAS as a transforming oncogene, we are on the verge of approval of the first KRAS-targeted drug combinations, thus therapeutically unifying Paul Ehrlich's century-old "magic bullet" vision with Rudolf Virchow's cancer inflammation theory.
Collapse
Affiliation(s)
- Jens Köhler
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, Boston, MA 02215, USA
| | - Pasi A. Jänne
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, Boston, MA 02215, USA
- Belfer Center for Applied Cancer Sciences, Boston, MA 02215, USA
| |
Collapse
|
25
|
Yang X, Meng L, Zhong Y, Hu F, Wang L, Wang M. The long intergenic noncoding RNA GAS5 reduces cisplatin-resistance in non-small cell lung cancer through the miR-217/LHPP axis. Aging (Albany NY) 2021; 13:2864-2884. [PMID: 33418541 PMCID: PMC7880381 DOI: 10.18632/aging.202352] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/03/2020] [Indexed: 12/20/2022]
Abstract
Long noncoding RNAs (lncRNAs) are known to exert their effects to tumor progression. In this study, the role of the lncRNA GAS5 (growth arrest specific 5) was confirmed in reducing non-small cell lung cancer (NSCLC) cisplatin (DDP) resistance. In NSCLC tissue samples, GAS5 expression decreased significantly. Low GAS5 levels were positively correlated with NSCLC characteristics including TNM, tumor size and lymphatic metastasis. Functionally, GAS5 significantly reduced NSCLC/DDP cell migration, invasion and epithelial-mesenchymal transition (EMT) progression in vitro. In vivo, GAS5 upregulation inhibited remarkably NSCLC/DDP cell tumor growth. Mechanism analysis suggested that GAS5 was a molecular sponge of miR-217, inhibiting the expression of phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP). In conclusion, this study reveals that the GAS5/miR-217/LHPP pathway reduces NSCLC cisplatin resistance and that LHPP may serve as a potential therapeutic target for NSCLC cisplatin resistance.
Collapse
Affiliation(s)
- Xuhui Yang
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lifei Meng
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo, China
| | - Yuang Zhong
- Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Fengqing Hu
- Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lei Wang
- Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Mingsong Wang
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Veccia A, Kinspergher S, Dipasquale M, Caffo O. Management of brain metastases from lung cancer in the era of immunotherapy: a review of the literature. Future Oncol 2021; 17:597-609. [PMID: 33401981 DOI: 10.2217/fon-2020-0701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The brain is one of the most frequent sites of metastases in lung cancer patients, whose prognosis is related to the histological, biomolecular and clinical features of the disease. Over the years, the survival has improved significantly with the introduction of immune checkpoint inhibitors (ICIs), but there are limited data concerning their efficacy in patients with brain metastases. The aim of this review is to describe the biological mechanisms supporting the use of immunotherapy for brain metastases and the outcomes experienced by lung cancer patients with brain involvement enrolled in Phase III registration trials of ICIs. We also review retrospective data on ICIs alone or combined with brain radiotherapy, and indicate future directions for preclinical and clinical research.
Collapse
Affiliation(s)
- Antonello Veccia
- Medical Oncology, Santa Chiara Hospital, Largo Medaglie d'Oro 1, 38122, Trento, Italy
| | - Stefania Kinspergher
- Medical Oncology, Santa Chiara Hospital, Largo Medaglie d'Oro 1, 38122, Trento, Italy
| | | | - Orazio Caffo
- Medical Oncology, Santa Chiara Hospital, Largo Medaglie d'Oro 1, 38122, Trento, Italy
| |
Collapse
|
27
|
Zheng H, Li C, Li Z, Zhu K, Bao H, Xiong J, Liang P. HOXB9 enhances the ability of lung cancer cells to penetrate the blood-brain barrier. Aging (Albany NY) 2020; 13:4999-5019. [PMID: 33411683 PMCID: PMC7950248 DOI: 10.18632/aging.202324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 12/21/2022]
Abstract
Even after multimodal therapy, the prognosis is dismal for patients with brain metastases from non-small cell lung cancer (NSCLC). Although the blood-brain barrier (BBB) limits tumor cell penetration into the brain parenchyma, some nevertheless colonize brain tissue through mechanisms that are not fully clear. Here we show that homeobox B9 (HOXB9), which is commonly overexpressed in NSCLC, promotes epithelial-to-mesenchymal transition (EMT) and tumor migration and invasion. Animal experiments showed that HOXB9 expression correlates positively with the brain metastatic potential of human NSCLC cells, while brain metastatic cells derived through in vivo selection showed greater HOXB9 expression than their cells of origin. Comparable results were obtained after immunohistochemical analysis of clinical primary NSCLC and matched brain metastasis samples obtained after surgery. Using an in vitro BBB model, knockdown and overexpression experiments showed that HOXB9-dependent expression of MMP9 in NSCLC cells leads to reduced expression of junctional proteins in cultured human vascular endothelial cells and enhanced transmigration of tumor cells. These data indicate that HOXB9 enables NSCLC cells to break away from the primary tumor by inducing EMT, and promotes brain metastasis by driving MMP9 production and degradation of intercellular adhesion proteins in endothelial cells comprising the BBB.
Collapse
Affiliation(s)
- HongShan Zheng
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin 150001, Heilongjiang, P.R. China
| | - ChenLong Li
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin 150001, Heilongjiang, P.R. China
| | - ZhenZhe Li
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin 150001, Heilongjiang, P.R. China
| | - KaiBin Zhu
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin 150001, Heilongjiang, P.R. China
| | - HongBo Bao
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin 150001, Heilongjiang, P.R. China
| | - JinSheng Xiong
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin 150001, Heilongjiang, P.R. China
| | - Peng Liang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin 150001, Heilongjiang, P.R. China
| |
Collapse
|
28
|
Sitthideatphaiboon P, Galan-Cobo A, Negrao MV, Qu X, Poteete A, Zhang F, Liu DD, Lewis WE, Kemp HN, Lewis J, Rinsurongkawong W, Giri U, Lee JJ, Zhang J, Roth JA, Swisher S, Heymach JV. STK11/LKB1 Mutations in NSCLC Are Associated with KEAP1/NRF2-Dependent Radiotherapy Resistance Targetable by Glutaminase Inhibition. Clin Cancer Res 2020; 27:1720-1733. [PMID: 33323404 DOI: 10.1158/1078-0432.ccr-20-2859] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/28/2020] [Accepted: 12/10/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE Radiotherapy with or without chemotherapy is a mainstay of treatment for locally advanced non-small cell lung cancer (NSCLC), but no predictive markers are currently available to select patients who will benefit from these therapies. In this study, we investigated the association between alterations in STK11/LKB1, the second most common tumor suppressor in NSCLC, and response to radiotherapy as well as potential therapeutic approaches to improve outcomes. EXPERIMENTAL DESIGN We conducted a retrospective analysis of 194 patients with stage I-III NSCLC, including 164 stage III patients bearing mutant or wild-type STK11/LKB1 treated with radiotherapy, and assessed locoregional recurrence (LRR), distant metastasis rates, disease-free survival (DFS), and overall survival (OS), and we investigated the causal role of LKB1 in mediating radiotherapy resistance using isogenic pairs of NSCLC cell lines with LKB1 loss or gain. RESULTS In stage III patients, with 4 years median follow-up, STK11/LKB1 mutations were associated with higher LRR (P = 0.0108), and shorter DFS (HR 2.530, P = 0.0029) and OS (HR 2.198, P = 0.0263). LKB1 loss promoted relative resistance to radiotherapy, which was dependent on the KEAP1/NRF2 pathway for redox homeostasis. Suppression of the KEAP1/NRF2 pathway via KEAP1 expression, or pharmacologic blockade of glutaminase (GLS) 1 sensitized LKB1-deficient tumors to radiotherapy. CONCLUSIONS These data provide evidence that LKB1 loss is associated with LRR and poor clinical outcomes in patients with NSCLC treated with radiotherapy and that targeting the KEAP1/NRF2 pathway or GLS inhibition are potential approaches to radiosensitize LKB1-deficient tumors.
Collapse
Affiliation(s)
- Piyada Sitthideatphaiboon
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Chulalongkorn University/King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Ana Galan-Cobo
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marcelo V Negrao
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiao Qu
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Institute of Oncology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Alissa Poteete
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fahao Zhang
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Diane D Liu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Whitney E Lewis
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Haley N Kemp
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeff Lewis
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Waree Rinsurongkawong
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Uma Giri
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - J Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jianjun Zhang
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen Swisher
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John V Heymach
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
29
|
Chen H, Zhao J. KRAS oncogene may be another target conquered in non-small cell lung cancer (NSCLC). Thorac Cancer 2020; 11:3425-3435. [PMID: 33022831 PMCID: PMC7705909 DOI: 10.1111/1759-7714.13538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 12/31/2022] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) is one of the most common mutant oncogenes in non‐small cell lung cancer (NSCLC). The survival of patients with KRAS mutations may be much lower than patients without KRAS mutations. However, due to the complex structure and diverse biological properties, it is difficult to achieve specific inhibitors for the direct elimination of KRAS activity, making KRAS a challenging therapeutic target. At present, with the tireless efforts of medical research, including KRAS G12C inhibitors, immunotherapy and other combination strategies, this dilemma is expected to an end. In addition, inhibition of the downstream signaling pathways of KRAS may be a promising combination strategy. Given the rapid development of treatments, understanding the details will be important to determine the individualized treatment options, including combination therapy and potential resistance mechanisms. The survival of patients with KRAS mutations may be much lower than patients without KRAS mutations. At present, with the tireless efforts of medical research, including KRAS G12C inhibitors, immunotherapy and other combination strategy, this dilemma of KRAS mutated NSCLC is expected to an end.
Collapse
Affiliation(s)
- Hanxiao Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Departments of Thoracic Medical Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jun Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Departments of Thoracic Medical Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
30
|
Popper H. Primary tumor and metastasis-sectioning the different steps of the metastatic cascade. Transl Lung Cancer Res 2020; 9:2277-2300. [PMID: 33209649 PMCID: PMC7653118 DOI: 10.21037/tlcr-20-175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Patients with lung cancer in the majority die of metastases. Treatment options include surgery, chemo- and radiotherapy, targeted therapy by tyrosine kinase inhibitors (TKIs), and immuno-oncologic treatment. Despite the success with these treatment options, cure of lung cancer is achieved in only a very small proportion of patients. In most patients’ recurrence and metastasis will occur, and finally kill the patient. Metastasis is a multistep procedure. It requires a change in adhesion of tumor cells for detachment from their neighboring cells. The next step is migration either as single cells [epithelial-mesenchymal transition (EMT)], or as cell clusters (hybrid-EMT or bulk migration). A combination of genetic changes is required to facilitate migration. Then tumor cells have to orient themselves along matrix proteins, detect oxygen concentrations, prevent attacks by immune cells, and induce a tumor-friendly switch of stroma cells (macrophages, myofibroblasts, etc.). Having entered the blood stream tumor cells need to adapt to shear stress, avoid being trapped by coagulation, but also use coagulation in small veins for adherence to endothelia, and express homing molecules for extravasation. Within a metastatic site, tumor cells need a well-prepared niche to establish a metastatic focus. Tumor cells again have to establish a vascular net for maintaining nutrition and oxygen supply, communicate with stroma cells, grow out and set further metastases. In this review the different steps will be discussed with a focus on pulmonary carcinomas. The vast amount of research manuscripts published so far are not easy to analyze: in most reports’ single steps of the metastatic cascade are interpreted as evidence for the whole process; for example, migration is interpreted as evidence for metastasis. In lung cancer most often latency periods are shorter, in between 1–5 years. In other cases, despite widespread migration occurs, tumor cells die within the circulation and do not reach a metastatic site. Therefore, migration is a requisite, but does not necessarily predict metastasis. The intention of this review is to point to these different aspects and hopefully provoke research directed into a more functional analysis of the metastatic process.
Collapse
Affiliation(s)
- Helmut Popper
- Institute of Pathology, Medical University of Graz, Graz, Austria
| |
Collapse
|
31
|
Zeng Q, Li L, Feng Z, Luo L, Xiong J, Jie Z, Cao Y, Li Z. LCP1 is a prognostic biomarker correlated with immune infiltrates in gastric cancer. Cancer Biomark 2020; 30:105-125. [PMID: 32986657 DOI: 10.3233/cbm-200006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Previous studies have identified LCP1 as a diagnostic and prognostic marker in several cancers. However, the role of LCP1 in gastric cancer (GC) and its effect on tumor immune infiltration remain unclear. OBJECTIVE The aim was to explore the role of LCP1 in GC and its effect on tumor immune infiltration. METHODS We explored the expression of LCP1 relative to clinicopathology in GC patients by bioinformatics analysis and immunohistochemistry. Using cBioportal database, we analyzed the characteristic genetic variations of LCP1 in GC. In addition, we evaluated the correlation between LCP1 expression and tumor-infiltrating lymphocytes (TILs) using R software, TIMER and TISIDB databases. Finally, we analyzed the biological functions in which LCP1 may participate and the signaling pathways it may regulate. RESULTS Here, we showed that LCP1 expression is significantly correlated with tumor aggressiveness and poor prognosis in GC patients. Additionally, the results indicated that LCP1 was associated with TILs, including both immunosuppressive and immunosupportive cells, and was strongly correlated with various immune marker sets in GC. GSEA analysis demonstrated that LCP1 expression played an important role in lymphocyte formation and immune reaction. CONCLUSIONS LCP1 may be a potential prognostic biomarker for GC patients and a marker for tumor immunotherapy.
Collapse
Affiliation(s)
- Qingwen Zeng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Leyan Li
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Zongfeng Feng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Lianghua Luo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Jianbo Xiong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Zhigang Jie
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Yi Cao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Zhengrong Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
32
|
Mendoza DP, Piotrowska Z, Lennerz JK, Digumarthy SR. Role of imaging biomarkers in mutation-driven non-small cell lung cancer. World J Clin Oncol 2020; 11:412-427. [PMID: 32821649 PMCID: PMC7407925 DOI: 10.5306/wjco.v11.i7.412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/31/2020] [Accepted: 06/14/2020] [Indexed: 02/06/2023] Open
Abstract
Lung cancer remains the leading cause of cancer-related deaths worldwide. The treatment of non-small cell lung cancer (NSCLC), which accounts for a vast majority of lung cancers, has shifted to personalized, targeted therapy following discoveries of several targetable oncogenic mutations. Targeting of specific mutations has improved outcomes in many patients. This success has led to several target-specific agents replacing chemotherapy as first-line treatment in certain mutated NSCLC. Several researchers have reported that there may be imaging biomarkers that may be predictive of the presence of these mutations. These features, when present, have the potential in triaging patients into the most appropriate diagnostic and treatment algorithms. Distinct imaging features and patterns of metastases that have been associated with NSCLC with various targetable oncogenic mutations are presented in this review.
Collapse
Affiliation(s)
- Dexter P Mendoza
- Division of Thoracic Imaging and Intervention, Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Zofia Piotrowska
- Massachusetts General Hospital Cancer Center and Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Jochen K Lennerz
- Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Subba R Digumarthy
- Division of Thoracic Imaging and Intervention, Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States
| |
Collapse
|
33
|
Linardou H, Kotoula V, Kouvatseas G, Mountzios G, Karavasilis V, Samantas E, Kalogera-Fountzila A, Televantou D, Papadopoulou K, Mavropoulou X, Daskalaki E, Zaramboukas T, Efstratiou I, Lampaki S, Rallis G, Res E, Syrigos KN, Kosmidis PA, Pectasides D, Fountzilas G. Genotyping KRAS and EGFR Mutations in Greek Patients With Non-small-cell Lung Cancer: Incidence, Significance and Implications for Treatment. Cancer Genomics Proteomics 2020; 16:531-541. [PMID: 31659106 DOI: 10.21873/cgp.20155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/15/2019] [Accepted: 09/18/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND/AIM KRAS mutations are reported in 20-25% of non-small cell lung cancer (NSCLC) and their prognostic role is unclear. We studied KRAS and EGFR genotyping in Greek NSCLC patients. PATIENTS AND METHODS KRAS and EGFR genotypes were centrally evaluated in 421 NSCLC patients (diagnosed September 1998 -June 2013) and associated with clinicopathological parameters. Outcome comparisons were performed in 288 patients receiving first line treatment. RESULTS Most patients were male (78.6%), >60 years old (63.9%), current smokers (51.1%), with adenocarcinoma histology (63.9%). EGFR and KRAS mutations were found in 10.7% and 16.6% of all histologies, respectively, and in 14.9% and 21.9% of adenocarcinomas. At 4.5 years median follow-up, KRAS status was an independent negative prognostic factor for overall survival (OS, p=0.016). KRAS mutations conferred 80% increased risk of death in patients receiving first-line treatment (p=0.002). CONCLUSION The presence of KRAS mutations is an independent negative prognosticator among Greek NSCLC patients and an independent response predictor to first line treatment.
Collapse
Affiliation(s)
| | - Vassiliki Kotoula
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece.,Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Giannis Mountzios
- Second Oncology Department, Henry Dunant Hospital Center, Athens, Greece
| | - Vasilios Karavasilis
- Department of Medical Oncology, Papageorgiou Hospital, Faculty of Medicine, Aristotle University of Thessaloniki, School of Health Sciences, Thessaloniki, Greece
| | - Epaminondas Samantas
- Third Department of Medical Oncology, Agii Anargiri Cancer Hospital, Athens, Greece
| | - Anna Kalogera-Fountzila
- Department of Radiology, AHEPA Hospital, School of Health Sciences, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despina Televantou
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kyriaki Papadopoulou
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Xanthipi Mavropoulou
- Department of Radiology, AHEPA Hospital, School of Health Sciences, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Emily Daskalaki
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - Thomas Zaramboukas
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | | | - Sofia Lampaki
- Department of Medical Oncology, Papageorgiou Hospital, Faculty of Medicine, Aristotle University of Thessaloniki, School of Health Sciences, Thessaloniki, Greece
| | - Grigorios Rallis
- Department of Medical Oncology, Papageorgiou Hospital, Faculty of Medicine, Aristotle University of Thessaloniki, School of Health Sciences, Thessaloniki, Greece
| | - Eleni Res
- Third Department of Medical Oncology, Agii Anargiri Cancer Hospital, Athens, Greece
| | - Konstantinos N Syrigos
- Oncology Unit GPP, Sotiria General Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Paris A Kosmidis
- Second Department of Medical Oncology, Hygeia Hospital, Athens, Greece
| | - Dimitrios Pectasides
- Oncology Section, Second Department of Internal Medicine, Hippokration Hospital, Athens, Greece
| | - George Fountzilas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece.,Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
34
|
Zhu Z, Xiao S, Hao H, Hou Q, Fu X. Kirsten Rat Sarcoma Viral Oncogene Homologue (KRAS) Mutations in the Occurrence and Treatment of Pancreatic Cancer. Curr Top Med Chem 2019; 19:2176-2186. [PMID: 31456520 DOI: 10.2174/1568026619666190828160804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/08/2019] [Accepted: 04/08/2019] [Indexed: 12/29/2022]
Abstract
Pancreatic cancer is a highly malignant tumor with a 5-year survival rate of less than 6%, and incidence increasing year by year globally. Pancreatic cancer has a poor prognosis and a high recurrence rate, almost the same as the death rate. However, the available effective prevention and treatment measures for pancreatic cancer are still limited. The genome variation is one of the main reasons for the development of pancreatic cancer. In recent years, with the development of gene sequencing technology, in-depth research on pancreatic cancer gene mutation presents that a growing number of genetic mutations are confirmed to be in a close relationship with invasion and metastasis of pancreatic cancer. Among them, KRAS mutation is a special one. Therefore, it is particularly important to understand the mechanism of the KRAS mutation in the occurrence and development of pancreatic cancer, and to explore the method of its transformation into clinical tumor molecular targeted treatment sites, to further improve the therapeutic effect on pancreatic cancer. Therefore, to better design chemical drugs, this review based on the biological functions of KRAS, summarized the types of KRAS mutations and their relationship with pancreatic cancer and included the downstream signaling pathway Raf-MEK-ERK, PI3K-AKT, RalGDS-Ral of KRAS and the current medicinal treatment methods for KRAS mutations. Moreover, drug screening and clinical treatment for KRAS mutated cell and animal models of pancreatic cancer are also reviewed along with the prospect of targeted medicinal chemistry therapy for precision treatment of pancreatic cancer in the future.
Collapse
Affiliation(s)
- Ziying Zhu
- Institute of Basic Medical Science, Wound Healing and Cell Biology Laboratory, Chinese PLA General Hospital, 100039 Beijing, China
| | - Saisong Xiao
- Department of Anesthesia, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700 Beijing, China
| | - Haojie Hao
- Institute of Basic Medical Science, Wound Healing and Cell Biology Laboratory, Chinese PLA General Hospital, 100039 Beijing, China
| | - Qian Hou
- Institute of Basic Medical Science, Wound Healing and Cell Biology Laboratory, Chinese PLA General Hospital, 100039 Beijing, China
| | - Xiaobing Fu
- Institute of Basic Medical Science, Wound Healing and Cell Biology Laboratory, Chinese PLA General Hospital, 100039 Beijing, China
| |
Collapse
|
35
|
Shao X, Lv N, Liao J, Long J, Xue R, Ai N, Xu D, Fan X. Copy number variation is highly correlated with differential gene expression: a pan-cancer study. BMC MEDICAL GENETICS 2019; 20:175. [PMID: 31706287 PMCID: PMC6842483 DOI: 10.1186/s12881-019-0909-5] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 10/15/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cancer is a heterogeneous disease with many genetic variations. Lines of evidence have shown copy number variations (CNVs) of certain genes are involved in development and progression of many cancers through the alterations of their gene expression levels on individual or several cancer types. However, it is not quite clear whether the correlation will be a general phenomenon across multiple cancer types. METHODS In this study we applied a bioinformatics approach integrating CNV and differential gene expression mathematically across 1025 cell lines and 9159 patient samples to detect their potential relationship. RESULTS Our results showed there is a close correlation between CNV and differential gene expression and the copy number displayed a positive linear influence on gene expression for the majority of genes, indicating that genetic variation generated a direct effect on gene transcriptional level. Another independent dataset is utilized to revalidate the relationship between copy number and expression level. Further analysis show genes with general positive linear influence on gene expression are clustered in certain disease-related pathways, which suggests the involvement of CNV in pathophysiology of diseases. CONCLUSIONS This study shows the close correlation between CNV and differential gene expression revealing the qualitative relationship between genetic variation and its downstream effect, especially for oncogenes and tumor suppressor genes. It is of a critical importance to elucidate the relationship between copy number variation and gene expression for prevention, diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Xin Shao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ning Lv
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jie Liao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinbo Long
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Rui Xue
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ni Ai
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Donghang Xu
- Department of Pharmacy, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Xiaohui Fan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
36
|
Marchiò C, Mariani S, Bertero L, Di Bello C, Francia Di Celle P, Papotti M, Rudà R, Soffietti R, Cassoni P. Liquoral liquid biopsy in neoplastic meningitis enables molecular diagnosis and mutation tracking: a proof of concept. Neuro Oncol 2019; 19:451-453. [PMID: 27838647 PMCID: PMC5464358 DOI: 10.1093/neuonc/now244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/29/2016] [Indexed: 11/12/2022] Open
Affiliation(s)
- Caterina Marchiò
- Department of Medical Sciences, University of Turin, Turin, Italy.,Pathology Division, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Sara Mariani
- Department of Medical Sciences, University of Turin, Turin, Italy.,Pathology Division, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Luca Bertero
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Cristiana Di Bello
- Pathology Division, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Paola Francia Di Celle
- Pathology Division, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Mauro Papotti
- Pathology Division, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Oncology, University of Turin, Turin, Italy
| | - Roberta Rudà
- Department of Neuro-Oncology, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Riccardo Soffietti
- Department of Neuro-Oncology, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, Turin, Italy.,Department of Neurosciences, University of Turin, Turin, Italy
| | - Paola Cassoni
- Department of Medical Sciences, University of Turin, Turin, Italy.,Pathology Division, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| |
Collapse
|
37
|
EGFR mutant locally advanced non-small cell lung cancer is at increased risk of brain metastasis. Clin Transl Radiat Oncol 2019; 18:32-38. [PMID: 31341973 PMCID: PMC6612652 DOI: 10.1016/j.ctro.2019.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/24/2019] [Indexed: 12/24/2022] Open
Abstract
Locally advanced EGFR+ NSCLC patients have a high likelihood of brain metastasis. The high likelihood of EGFR+ brain metastasis is independent of survival duration. Surveillance MRI may allow early identification and treatment of brain metastasis.
Background and purpose Small studies of primarily metastatic non-small cell lung cancer (NSCLC) have suggested an association between EGFR mutation (EGFR+) and likelihood of brain metastasis. However, these studies are confounded by follow-up time bias. We performed a competing risk analysis of brain metastasis in a more uniform locally advanced NSCLC (LA-NSCLC) cohort with known tumor genotype. Materials and methods Between 2002 and 2014, 255 patients with LA-NSCLC underwent tumor genotyping for EGFR, ALK and/or KRAS (180 patients had follow-up brain imaging). Cumulative incidence and Fine-Gray regression were performed on clinical variables including genotype and risk of brain metastasis, with death as a competing event. Results The proportion of tumors with aberrations in EGFR, ALK and KRAS were 17%, 4% and 28%, respectively. The median follow-up was 68 months. On multivariate analysis, EGFR+ was significantly associated with risk of brain metastasis in the full patient cohort (HR 2.04, 95% CI 1.22–3.39, p = 0.006) as well as in the subset of patients with brain follow-up imaging (HR 1.91. 95% CI 1.17–3.13, p = 0.01). This translated to a higher cumulative incidence of brain metastasis in EGFR+ patients at 3 and 5 years (33.3% vs. 23.2 and 43.8% vs. 24.2%, p = 0.006). Conclusion Patients with EGFR+ LA-NSCLC have a significantly higher likelihood of developing brain metastasis after standard combined modality therapy, independent of their longer overall survival. This high-risk genotypic subgroup may benefit from routine surveillance with brain MRI to allow early salvage with targeted systemic- and/or radiation-therapies.
Collapse
|
38
|
Xing S, Qu Y, Li C, Huang A, Tong S, Wu C, Fan K. Deregulation of lncRNA-AC078883.3 and microRNA-19a is involved in the development of chemoresistance to cisplatin via modulating signaling pathway of PTEN/AKT. J Cell Physiol 2019; 234:22657-22665. [PMID: 31111480 DOI: 10.1002/jcp.28832] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 04/29/2019] [Indexed: 01/12/2023]
Abstract
Non-small cell lung cancer (NSCLC) remains the leading cause of cancer death worldwide. As a platinum-based chemotherapeutic drug, cisplatin has been used in the NSCLC treatment for over 30 years, and its effects are impaired by drug resistance. This study aimed to investigate the potential role of lncRNA-AC078883.3 in the development of chemoresistance against cisplatin. Real-time PCR, Western blot analysis, Immunohistochemistry (IHC) assay, bioinformatic analysis, and luciferase assay were collaboratively used to establish the lncRNA-AC078883.3/miR-19a/PTEN/AKT pathway. Also, the effect of cisplatin on cell proliferation was observed via an MTT assay. Furthermore, Cox regression and Kaplan-Meier analyses were used to study whether lncRNA-AC078883.3 is involved in the survival of NSCLC. Compared with the Cisplatin-Sensitive group, the Cisplatin-Resistance group exhibited lower levels of lncRNA-AC078883.3 and PTEN and higher levels of miR-19a and p-Akt. The growth rate of A549 and H460 cells and the IC 50 of DPP in the Cisplatin-Resistance group were higher than those in the Cisplatin-S group. miR-19a contains a putative binding site of lncRNA-AC078883.3, which enabled the luciferase activity of wild-type lncRNA-AC078883.3 to be reduced by miR-19a. In addition, by directly targeting PTEN 3'-untranslated region (UTR), miR-19a repressed the luciferase activity of wild-type PTEN 3'-UTR. The median OS of patients with reduced lncRNA-AC078883.3 expression was longer than that of patients with higher lncRNA-AC078883.3 expression. Finally, compared with low lncRNA-AC078883.3-expression patients, the high lncRNA-AC078883.3-expression patients were associated with lower miR-19a expression and higher PTEN expression. Therefore, we suggested for the first time that the low expression of lncRNA-AC078883.3 contributed to the development of chemoresistance against cisplatin.
Collapse
Affiliation(s)
- Shijie Xing
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Qu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoyi Li
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ai Huang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Tong
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuangyan Wu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Fan
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Achrol AS, Rennert RC, Anders C, Soffietti R, Ahluwalia MS, Nayak L, Peters S, Arvold ND, Harsh GR, Steeg PS, Chang SD. Brain metastases. Nat Rev Dis Primers 2019; 5:5. [PMID: 30655533 DOI: 10.1038/s41572-018-0055-y] [Citation(s) in RCA: 664] [Impact Index Per Article: 110.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An estimated 20% of all patients with cancer will develop brain metastases, with the majority of brain metastases occurring in those with lung, breast and colorectal cancers, melanoma or renal cell carcinoma. Brain metastases are thought to occur via seeding of circulating tumour cells into the brain microvasculature; within this unique microenvironment, tumour growth is promoted and the penetration of systemic medical therapies is limited. Development of brain metastases remains a substantial contributor to overall cancer mortality in patients with advanced-stage cancer because prognosis remains poor despite multimodal treatments and advances in systemic therapies, which include a combination of surgery, radiotherapy, chemotherapy, immunotherapy and targeted therapies. Thus, interest abounds in understanding the mechanisms that drive brain metastases so that they can be targeted with preventive therapeutic strategies and in understanding the molecular characteristics of brain metastases relative to the primary tumour so that they can inform targeted therapy selection. Increased molecular understanding of the disease will also drive continued development of novel immunotherapies and targeted therapies that have higher bioavailability beyond the blood-tumour barrier and drive advances in radiotherapies and minimally invasive surgical techniques. As these discoveries and innovations move from the realm of basic science to preclinical and clinical applications, future outcomes for patients with brain metastases are almost certain to improve.
Collapse
Affiliation(s)
- Achal Singh Achrol
- Department of Neurosurgery and Neurosciences, John Wayne Cancer Institute and Pacific Neuroscience Institute, Santa Monica, CA, USA.
| | - Robert C Rennert
- Department of Neurosurgery, University of California-San Diego, San Diego, CA, USA.
| | - Carey Anders
- Division of Hematology/Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | | | - Manmeet S Ahluwalia
- Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA
| | - Lakshmi Nayak
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Solange Peters
- Medical Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Nils D Arvold
- Department of Radiation Oncology, St. Luke's Cancer Center, Duluth, MN, USA
| | - Griffith R Harsh
- Department of Neurosurgery, University of California-Davis, School of Medicine, Sacramento, CA, USA
| | - Patricia S Steeg
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Center, Bethesda, MD, USA
| | - Steven D Chang
- Department of Neurosurgery, University of California-Davis, School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
40
|
Yang B, Lee H, Um SW, Kim K, Zo JI, Shim YM, Jung Kwon O, Lee KS, Ahn MJ, Kim H. Incidence of brain metastasis in lung adenocarcinoma at initial diagnosis on the basis of stage and genetic alterations. Lung Cancer 2018; 129:28-34. [PMID: 30797488 DOI: 10.1016/j.lungcan.2018.12.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/21/2018] [Accepted: 12/27/2018] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Patients with lung adenocarcinoma (ADC) are at higher risk of the development of brain metastasis (BM), and genetic alterations are associated with BM. PATIENTS AND METHODS A total of 598 patients with lung ADC in our institution between January 2014 and December 2014 were reviewed retrospectively. We evaluated the incidence of BM by stage and genetic alterations. RESULTS Of the 598 patients, 97 (16.2%) had BM, which occurred across all stages. The incidence of BM showed a tendency to increase as the stage increased (p < 0.001, trend test). Although patients with EGFR mutations had BM across all stages, those with ALK or K- mutations had BM only in stage III and IV diseases. Regardless of types of mutations, the incidence of BM showed a tendency to increase as the T or N staging increased (p < 0.001 for each of EGFR, ALK, and K-RAS mutations, trend test). Whereas BM incidence showed a tendency to increase as the M staging increased in patients with EGFR-mutant lung ADC (p < 0.001, trend test), there was no linear trend between M staging and ALK (p = 0.469, trend test) or K-RAS mutations (p = 0.066, trend test). After adjusting covariables, EGFR mutations were associated with BM in never-smokers (adjusted OR = 2.07, 95% CI = 1.02-4.34) and K-RAS mutations were risk factors for BM in males (adjusted OR = 3.86, 95% CI = 1.01-14.43). CONCLUSIONS BM occurred in approximately 16% of lung ADC patients, including 3% with stage I diseases. Whereas EGFR-mutant lung ADC had BM across all stages, ALK- or K-RAS-mutant lung ADC had BM only in advanced stages. EGFR mutations were risk factors for BM among never-smokers and K-RAS mutations were risk factors among males.
Collapse
Affiliation(s)
- Bumhee Yang
- Division of Pulmonology and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyun Lee
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Sang-Won Um
- Division of Pulmonology and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyunga Kim
- Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Jae Il Zo
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Young Mog Shim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - O Jung Kwon
- Division of Pulmonology and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyung Soo Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Myung-Ju Ahn
- Section of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hojoong Kim
- Division of Pulmonology and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
41
|
Buss EJ, Wang TJC. Treatment of lung adenocarcinoma brain metastases: what is the role of radiotherapy in the age of precision medicine? Transl Lung Cancer Res 2018; 7:S318-S320. [PMID: 30705844 DOI: 10.21037/tlcr.2018.12.07] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Elizabeth J Buss
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY, USA
| | - Tony J C Wang
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
42
|
Gao G, Deng L. [Association between EGFR, ALK and KRAS Gene Status and Synchronous Distant
Organ Metastasis in Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2018; 21:536-542. [PMID: 30037374 PMCID: PMC6058661 DOI: 10.3779/j.issn.1009-3419.2018.07.06] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
肺癌是我国恶性肿瘤的首位死亡疾病,据统计大约57%的肺癌患者就诊时已经出现了远处转移,临床预后较差。抗肺癌转移是当前治疗晚期转移性肺癌的新方向和思路。既往研究表明肿瘤的生物学改变在一定程度上能够影响肿瘤的转移行为和侵袭扩散模式,而目前的基础及临床研究尚未阐明导致肺癌相关信号转导途径中发生特异性器官转移的分子机制,有关驱动基因突变与器官转移之间相关性的研究也较为罕见。本篇综述旨在对近几年有关非小细胞肺癌表皮生长因子受体(epidermal growth factor receptor, EGFR)、间变性淋巴瘤激酶(anaplastic lymphoma kinase, ALK)、Kristen鼠肉瘤病毒原癌基因同源体(V-Ki-ras2 Kirsten rat sarcoma viral oncogene homologue, KRAS)驱动基因表达的特点以及与转移器官分布之间相关性的文献进行小结。
Collapse
Affiliation(s)
- Ge Gao
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Chinaa
| | - LiLi Deng
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Chinaa
| |
Collapse
|
43
|
Liu L, Wei S. [Research Progress of KRAS Mutation in Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2018; 21:419-424. [PMID: 29764594 PMCID: PMC5999922 DOI: 10.3779/j.issn.1009-3419.2018.05.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
肺癌是全球癌症相关死亡的主要原因。非小细胞肺癌(non-small cell lung cancer, NSCLC)占所有肺癌患者中的80%-85%,大多数肺癌患者在确诊时已处于晚期阶段。目前,基于驱动基因的靶向治疗的发展改变了晚期NSCLC患者的治疗模式。在NSCLC中,表皮生长因子受体突变(epidermal growth factor receptor, EGFR)和棘皮动物微管相关蛋白和间变性淋巴瘤激酶(echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase, EML4-ALK)融合已被验证为强大的生物标志物。众所周知KRAS也是NSCLC中最常见的突变致癌基因之一,尽管20多年前在NSCLC中发现了KRAS突变,迄今为止用于治疗KRAS突变的NSCLC患者的药物有很多,但目前还没有针对直接消除KRAS活性的选择性和特异性抑制剂。此外具有KRAS突变的NSCLC患者对大多数系统性治疗的反应性差。然而使用靶向药物针对活化的信号通路个体化治疗对KRAS突变的NSCLC患者的预后有很好疗效。此外KRAS突变在NSCLC中的预后和预测作用尚不清楚。在这篇综述中,我们重点讨论了KRAS突变的NSCLC的研究进展,包括分子生物学、临床病理特征、KRAS突变的预后和预测等方面,进而有助于提高临床工作者对KRAS突变的NSCLC的认知。。
Collapse
Affiliation(s)
- Lei Liu
- Department of Medical Oncology, Fourth Hospital of Heibei Medical Medical University, Shijiazhuang 050011, China
| | - Suju Wei
- Department of Medical Oncology, Fourth Hospital of Heibei Medical Medical University, Shijiazhuang 050011, China
| |
Collapse
|
44
|
Rotolo F, Zhu CQ, Brambilla E, Graziano SL, Olaussen K, Le-Chevalier T, Pignon JP, Kratzke R, Soria JC, Shepherd FA, Seymour L, Michiels S, Tsao MS. Genome-wide copy number analyses of samples from LACE-Bio project identify novel prognostic and predictive markers in early stage non-small cell lung cancer. Transl Lung Cancer Res 2018; 7:416-427. [PMID: 30050779 DOI: 10.21037/tlcr.2018.05.01] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Adjuvant chemotherapy (ACT) provides modest benefit in resected non-small cell lung cancer (NSCLC) patients. Genome-wide studies have identified gene copy number aberrations (CNA), but their prognostic implication is unknown. Methods DNA from 1,013 FFPE tumor samples from three pivotal multicenter randomized trials (ACT vs. control) in the LACE-Bio consortium (median follow-up: 5.2 years) was successfully extracted, profiled using a molecular inversion probe SNP assay, normalized relative to a pool of normal tissues and segmented. Minimally recurrent regions were identified. P values were adjusted to control the false discovery rate (Q values). Results A total of 976 samples successfully profiled, 414 (42%) adenocarcinoma (ADC), 430 (44%) squamous cell carcinoma (SCC) and 132 (14%) other NSCLC; 710 (73%) males. We identified 431 recurrent regions, with on average 51 gains and 43 losses; 253 regions (59%) were ≤3 Mb. Most frequent gains (up to 48%) were on chr1, 3q, 5p, 6p, 8q, 22q; most frequent losses (up to 40%) on chr3p, 8p, 9p. CNA frequency of 195 regions was significantly different (Q≤0.05) between ADC and SCC. Fourteen regions (7p11-12, 9p21, 18q12, and 19p11-13) were associated with disease-free survival (DFS) (univariate P≤0.005, Q<0.142), with poorer DFS for losses of regions including CDKN2A/B [hazard ratio (HR) for 2-fold lower CN: 1.5 (95% CI: 1.2-1.9), P<0.001, Q=0.020] and STK11 [HR =2.4 (1.3-4.3), P=0.005, Q=0.15]. Chromosomal instability was associated with poorer DFS (HR =1.5, P=0.015), OS (HR =1.2, P=0.189) and lung-cancer specific survival (HR =1.7, P=0.003). Conclusions These large-scale genome-wide analyses of gene CNA provide new candidate prognostic markers for stage I-III NSCLC.
Collapse
Affiliation(s)
- Federico Rotolo
- Gustave Roussy, Université Paris-Saclay, Service de Biostatistique et d'Epidémiologie, Villejuif, France.,Université Paris-Saclay, Univ. Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France.,Ligue Nationale Contre le Cancer Meta-Analysis Platform, Gustave Roussy, Villejuif, France
| | - Chang-Qi Zhu
- University Health Network, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Elisabeth Brambilla
- Department of Pathology, Institut Albert Bonniot, Hopital Albert Michallon, Grenoble, France
| | | | - Ken Olaussen
- INSERM U981, Université Paris-Sud, Université Paris-Saclay and Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Jean-Pierre Pignon
- Gustave Roussy, Université Paris-Saclay, Service de Biostatistique et d'Epidémiologie, Villejuif, France.,Université Paris-Saclay, Univ. Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France.,Ligue Nationale Contre le Cancer Meta-Analysis Platform, Gustave Roussy, Villejuif, France
| | - Robert Kratzke
- Department of Medical Oncology, University of Minnesota, Minneapolis, MN, USA
| | - Jean-Charles Soria
- INSERM U981, Université Paris-Sud, Université Paris-Saclay and Gustave Roussy Cancer Campus, Villejuif, France.,Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Frances A Shepherd
- University Health Network, Princess Margaret Cancer Centre, Toronto, ON, Canada.,Department of Medicine, Division of Medical Oncology, University of Toronto, Toronto, ON, Canada
| | - Lesley Seymour
- Canadian Cancer Trials Group and Queen's University, Kingston, ON, Canada
| | - Stefan Michiels
- Gustave Roussy, Université Paris-Saclay, Service de Biostatistique et d'Epidémiologie, Villejuif, France.,Université Paris-Saclay, Univ. Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France.,Ligue Nationale Contre le Cancer Meta-Analysis Platform, Gustave Roussy, Villejuif, France
| | - Ming-Sound Tsao
- University Health Network, Princess Margaret Cancer Centre, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
45
|
Pedrosa RMSM, Mustafa DAM, Aerts JGJV, Kros JM. Potential Molecular Signatures Predictive of Lung Cancer Brain Metastasis. Front Oncol 2018; 8:159. [PMID: 29868480 PMCID: PMC5958181 DOI: 10.3389/fonc.2018.00159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/25/2018] [Indexed: 12/25/2022] Open
Abstract
Brain metastases are the most common tumors of the central nervous system (CNS). Incidence rates vary according to primary tumor origin, whereas the majority of the cerebral metastases arise from primary tumors in the lung (40-50%). Brain metastases from lung cancer can occur concurrently or within months after lung cancer diagnosis. Survival rates after lung cancer brain metastasis diagnosis remain poor, to an utmost of 10 months. Therefore, prevention of brain metastasis is a critical concern in order to improve survival among cancer patients. Although several studies have been made in order to disclose the genetic and molecular mechanisms associated with CNS metastasis, the precise mechanisms that govern the CNS metastasis from lung cancer are yet to be clarified. The ability to forecast, which patients have a higher risk of brain metastasis occurrence, would aid cancer management approaches to diminish or prevent the development of brain metastasis and improve the clinical outcome for such patients. In this work, we revise genetic and molecular targets suitable for prediction of lung cancer CNS disease.
Collapse
Affiliation(s)
| | - Dana A M Mustafa
- Department of Pathology, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Johan M Kros
- Department of Pathology, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
46
|
Ciminera AK, Jandial R, Termini J. Metabolic advantages and vulnerabilities in brain metastases. Clin Exp Metastasis 2017; 34:401-410. [PMID: 29063238 PMCID: PMC5712254 DOI: 10.1007/s10585-017-9864-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 10/14/2017] [Indexed: 12/13/2022]
Abstract
Metabolic adaptations permit tumor cells to metastasize to and thrive in the brain. Brain metastases continue to present clinical challenges due to rising incidence and resistance to current treatments. Therefore, elucidating altered metabolic pathways in brain metastases may provide new therapeutic targets for the treatment of aggressive disease. Due to the high demand for glucose in the brain, increased glycolytic activity is favored for energy production. Primary tumors that undergo Warburg-like metabolic reprogramming become suited to growth in the brain microenvironment. Indeed, elevated metabolism is a predictor of metastasis in many cancer subtypes. Specifically, metabolic alterations are seen in primary tumors that are associated with the formation of brain metastases, namely breast cancer, lung cancer, and melanoma. Because of this selective pressure, inhibitors of key metabolic factors may reduce tumor cell viability, thus exploiting metabolic pathways for cancer therapeutics. This review summarizes the metabolic advantages and vulnerabilities of brain metastases.
Collapse
Affiliation(s)
- Alexandra K Ciminera
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Rahul Jandial
- Division of Neurosurgery, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - John Termini
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
47
|
Lung cancer-associated brain metastasis: Molecular mechanisms and therapeutic options. Cell Oncol (Dordr) 2017; 40:419-441. [PMID: 28921309 DOI: 10.1007/s13402-017-0345-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Lung cancer is the most common cause of cancer-related mortality in humans. There are several reasons for this high rate of mortality, including metastasis to several organs, especially the brain. In fact, lung cancer is responsible for approximately 50% of all brain metastases, which are very difficult to manage. Understanding the cellular and molecular mechanisms underlying lung cancer-associated brain metastasis brings up novel therapeutic promises with the hope to ameliorate the severity of the disease. Here, we provide an overview of the molecular mechanisms underlying the pathogenesis of lung cancer dissemination and metastasis to the brain, as well as promising horizons for impeding lung cancer brain metastasis, including the role of cancer stem cells, the blood-brain barrier, interactions of lung cancer cells with the brain microenvironment and lung cancer-driven systemic processes, as well as the role of growth factor/receptor tyrosine kinases, cell adhesion molecules and non-coding RNAs. In addition, we provide an overview of current and novel therapeutic approaches, including radiotherapy, surgery and stereotactic radiosurgery, chemotherapy, as also targeted cancer stem cell and epithelial-mesenchymal transition (EMT)-based therapies, micro-RNA-based therapies and other small molecule or antibody-based therapies. We will also discuss the daunting potential of some combined therapies. CONCLUSIONS The identification of molecular mechanisms underlying lung cancer metastasis has opened up new avenues towards their eradication and provides interesting opportunities for future research aimed at the development of novel targeted therapies.
Collapse
|
48
|
Cao L, Chen J, Ou B, Liu C, Zou Y, chen Q. GAS5 knockdown reduces the chemo-sensitivity of non-small cell lung cancer (NSCLC) cell to cisplatin (DDP) through regulating miR-21/PTEN axis. Biomed Pharmacother 2017; 93:570-579. [DOI: 10.1016/j.biopha.2017.06.089] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/07/2017] [Accepted: 06/23/2017] [Indexed: 11/25/2022] Open
|
49
|
Targeting metabolism and AMP-activated kinase with metformin to sensitize non-small cell lung cancer (NSCLC) to cytotoxic therapy: translational biology and rationale for current clinical trials. Oncotarget 2017; 8:57733-57754. [PMID: 28915708 PMCID: PMC5593680 DOI: 10.18632/oncotarget.17496] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/19/2017] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the most fatal malignancy worldwide, in part, due to high resistance to cytotoxic therapy. There is need for effective chemo-radio-sensitizers in lung cancer. In recent years, we began to understand the modulation of metabolism in cancer and its importance in tumor progression and survival after cytotoxic therapy. The activity of biosynthetic pathways, driven by the Growth Factor Receptor/Ras/PI3k/Akt/mTOR pathway, is balanced by the energy stress sensor pathway of LKB1/AMPK/p53. AMPK responds both to metabolic and genotoxic stress. Metformin, a well-tolerated anti-diabetic agent, which blocks mitochondria oxidative phosphorylation complex I, became the poster child agent to elicit AMPK activity and tumor suppression. Metformin sensitizes NSCLC models to chemotherapy and radiation. Here, we discuss the rationale for targeting metabolism, the evidence supporting metformin as an anti-tumor agent and adjunct to cytotoxic therapy in NSCLC and we review retrospective evidence and on-going clinical trials addressing this concept.
Collapse
|
50
|
Targeting KRAS mutated non-small cell lung cancer: A history of failures and a future of hope for a diverse entity. Crit Rev Oncol Hematol 2017; 110:1-12. [DOI: 10.1016/j.critrevonc.2016.12.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/10/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023] Open
|