1
|
Zhu L, Yang X, Wu S, Dong R, Yan Y, Lin N, Zhang B, Tan B. Hepatotoxicity of epidermal growth factor receptor - tyrosine kinase inhibitors (EGFR-TKIs). Drug Metab Rev 2024; 56:302-317. [PMID: 39120430 DOI: 10.1080/03602532.2024.2388203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Drug-induced liver injury (DILI) is one of the most frequently adverse reactions in clinical drug use, usually caused by drugs or herbal compounds. Compared with other populations, cancer patients are more prone to abnormal liver function due to primary or secondary liver malignant tumor, radiation-induced liver injury and other reasons, making potential adverse reactions from liver damage caused by anticancer drugs of particular concernduring clinical treatment process. In recent years, the application of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) has changed the treatment status of a series of solid malignant tumors. Unfortunately, the increasing incidence of hepatotoxicitylimits the clinical application of EGFR-TKIs. The mechanisms of liver injury caused by EGFR-TKIs were complex. Despite more than a decade of research, other than direct damage to hepatocytes caused by inhibition of cellular DNA synthesis and resulting in hepatocyte necrosis, the rest of the specific mechanisms remain unclear, and few effective solutions are available. This review focuses on the clinical feature, incidence rates and the recent advances on the discovery of mechanism of hepatotoxicity in EGFR-TKIs, as well as rechallenge and therapeutic strategies underlying hepatotoxicity of EGFR-TKIs.
Collapse
Affiliation(s)
- Lulin Zhu
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Xinxin Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shanshan Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rong Dong
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Youyou Yan
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Nengming Lin
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Bo Zhang
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Biqin Tan
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Viganò M, La Milia M, Grassini MV, Pugliese N, De Giorgio M, Fagiuoli S. Hepatotoxicity of Small Molecule Protein Kinase Inhibitors for Cancer. Cancers (Basel) 2023; 15:cancers15061766. [PMID: 36980652 PMCID: PMC10046041 DOI: 10.3390/cancers15061766] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Small molecule protein kinase inhibitors (PKIs) have become an effective strategy for cancer patients. However, hepatotoxicity is a major safety concern of these drugs, since the majority are reported to increase transaminases, and few of them (Idelalisib, Lapatinib, Pazopanib, Pexidartinib, Ponatinib, Regorafenib, Sunitinib) have a boxed label warning. The exact rate of PKI-induced hepatoxicity is not well defined due to the fact that the majority of data arise from pre-registration or registration trials on fairly selected patients, and the post-marketing data are often based only on the most severe described cases, whereas most real practice studies do not include drug-related hepatotoxicity as an end point. Although these side effects are usually reversible by dose adjustment or therapy suspension, or by switching to an alternative PKI, and fatality is uncommon, all patients undergoing PKIs should be carefully pre-evaluated and monitored. The management of this complication requires an individually tailored reappraisal of the risk/benefit ratio, especially in patients who are responding to therapy. This review reports the currently available data on the risk and management of hepatotoxicity of all the approved PKIs.
Collapse
Affiliation(s)
- Mauro Viganò
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
- Correspondence: ; Tel.: +39-035-2674259; Fax: +39-035-2674964
| | - Marta La Milia
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Maria Vittoria Grassini
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
- Section of Gastroenterology & Hepatology, Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, 90127 Palermo, Italy
| | - Nicola Pugliese
- Department of Gastroenterology, Division of Internal Medicine and Hepatology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Massimo De Giorgio
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Stefano Fagiuoli
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
- Gastroenterology, Department of Medicine, University of Milan Bicocca, 20126 Milan, Italy
| |
Collapse
|
3
|
Wang X, Huang A, Lu Y, Gao S, Hu W, Cheng H. Drug-induced liver injury associated with dacomitinib: A case report. Front Oncol 2022; 12:979462. [PMID: 36185261 PMCID: PMC9515502 DOI: 10.3389/fonc.2022.979462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/22/2022] [Indexed: 01/09/2023] Open
Abstract
Dacomitinib, the second-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), has been used as a first-line treatment in non-small cell lung cancer (NSCLC) patients harboring EGFR mutation. In this case, we report a patient with drug-induced liver injury (DILI) associated with the use of dacomitinib. A 59-year-old man with stage IV NSCLC was prescribed with dacomitinib; 37 days after dacomitinib administration, he was admitted to our hospital because of jaundice. Laboratory examinations revealed elevated serum levels of liver enzymes and bilirubin. Following the immediate discontinuation of dacomitinib, liver enzymes decreased but bilirubin continued to rise. Total bilirubin reached the peak (18-fold) on day 26 after dacomitinib termination and normalized on day 146 after dacomitinib discontinuation. A "probable" cause of DILI by dacomitinib was determined based on the Roussel Uclaf Causality Assessment Method. The severity of DILI was assessed as acute liver failure. To our knowledge, this is the first case of DILI caused by dacomitinib monotherapy in a real-world setting. Clinicians should pay particular attention to the possibility of DILI during dacomitinib treatment.
Collapse
|
4
|
Clinical implications of germline variations for treatment outcome and drug resistance for small molecule kinase inhibitors in patients with non-small cell lung cancer. Drug Resist Updat 2022; 62:100832. [DOI: 10.1016/j.drup.2022.100832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 12/15/2022]
|
5
|
Luo P, Yan H, Du J, Chen X, Shao J, Zhang Y, Xu Z, Jin Y, Lin N, Yang B, He Q. PLK1 (polo like kinase 1)-dependent autophagy facilitates gefitinib-induced hepatotoxicity by degrading COX6A1 (cytochrome c oxidase subunit 6A1). Autophagy 2021; 17:3221-3237. [PMID: 33315519 PMCID: PMC8526032 DOI: 10.1080/15548627.2020.1851492] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 01/01/2023] Open
Abstract
Liver dysfunction is an outstanding dose-limiting toxicity of gefitinib, an EGFR (epidermal growth factor receptor)-tyrosine kinase inhibitor (TKI), in the treatment of EGFR mutation-positive non-small cell lung cancer (NSCLC). We aimed to elucidate the mechanisms underlying gefitinib-induced hepatotoxicity, and provide potentially effective intervention strategy. We discovered that gefitinib could sequentially activate macroautophagy/autophagy and apoptosis in hepatocytes. The inhibition of autophagy alleviated gefitinib-induced apoptosis, whereas the suppression of apoptosis failed to lessen gefitinib-induced autophagy. Moreover, liver-specific Atg7+/- heterozygous mice showed less severe liver injury than vehicle, suggesting that autophagy is involved in the gefitinib-promoted hepatotoxicity. Mechanistically, gefitinib selectively degrades the important anti-apoptosis factor COX6A1 (cytochrome c oxidase subunit 6A1) in the autophagy-lysosome pathway. The gefitinib-induced COX6A1 reduction impairs mitochondrial respiratory chain complex IV (RCC IV) function, which in turn activates apoptosis, hence causing liver injury. Notably, this autophagy-promoted apoptosis is dependent on PLK1 (polo like kinase 1). Both AAV8-mediated Plk1 knockdown and PLK1 inhibitor BI-2536 could mitigate the gefitinib-induced hepatotoxicity in vivo by abrogating the autophagic degradation of the COX6A1 protein. In addition, PLK1 inhibition could not compromise the anti-cancer activity of gefitinib. In conclusion, our findings reveal the gefitinib-hepatotoxicity pathway, wherein autophagy promotes apoptosis through COX6A1 degradation, and highlight pharmacological inhibition of PLK1 as an attractive therapeutic approach toward improving the safety of gefitinib-based cancer therapy.Abbreviations: 3-MA: 3-methyladenine; AAV8: adeno-associated virus serotype 8; ATG5: autophagy related 5; ATG7: autophagy related 7; B2M: beta-2-microglobulin; CCCP: carbonyl cyanide m-chlorophenylhydrazone; CHX: cycloheximide; COX6A1: cytochrome c oxidase subunit 6A1; c-PARP: cleaved poly(ADP-ribose) polymerase; CQ: chloroquine; GOT1/AST: glutamic-oxaloacetic transaminase 1, soluble; GPT/ALT: glutamic pyruvic transaminase, soluble; HBSS: Hanks´ balanced salt solution; H&E: hematoxylin and eosin; MAP1LC3/LC3: microtubule associated proteins 1 light chain 3; PLK1: polo like kinase 1; RCC IV: respiratory chain complex IV; ROS: reactive oxygen species; TUBB8: tubulin beta 8 class VIII.
Collapse
Affiliation(s)
- Peihua Luo
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hao Yan
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiangxia Du
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xueqin Chen
- Department of Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People´s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinjin Shao
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ying Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhifei Xu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ying Jin
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Nengming Lin
- Laboratory of Clinical Pharmacology, Affiliated Hangzhou First People´s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Houron C, Danielou M, Mir O, Fromenty B, Perlemuter G, Voican CS. Multikinase inhibitor-induced liver injury in patients with cancer: A review for clinicians. Crit Rev Oncol Hematol 2020; 157:103127. [PMID: 33161366 DOI: 10.1016/j.critrevonc.2020.103127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Multikinase inhibitors (MKI) are targeted molecular agents that have revolutionized cancer management. However, there is a paucity of data concerning MKI-related liver injury risk and clinical guidelines for the management of liver toxicity in patients receiving MKI for cancer are scarce. DESIGN We conducted a PubMed search of articles in English published from January 2000 to December 2018 related to hepatotoxicity of the 29 FDA-approved MKIs at doses used in clinical practice. The search terms were the international non-proprietary name of each agent cross-referenced with «hepatotoxicity», «hepatitis», «hepatic adverse event», or «liver failure», and «phase II clinical trial», «phase III clinical trial», or «case report». RESULTS Following this search, 140 relevant studies and 99 case reports were considered. Although asymptomatic elevation of aminotransferase levels has been frequently observed in MKI clinical trials, clinically significant hepatotoxicity is a rare event. In most cases, the interval between treatment initiation and the onset of liver injury is between one week and two months. Liver toxicity is often hepatocellular and less frequently mixed. Life-threatening MKI-induced hepatic injury has been described, involving fulminant liver failure or death. Starting from existing data, a description of MKI-related liver events, grading of hepatotoxicity risk, and recommendations for management are also given for various MKI molecules. CONCLUSION All MKIs can potentially cause liver injury, which is sometimes irreversible. As there is still no strategy available to prevent MKI-related hepatotoxicity, early detection remains crucial. The surveillance of liver function during treatment may help in the early detection of hepatotoxicity. Furthermore, the exclusion of potential causes of hepatic injury is essential to avoid unnecessary MKI withdrawal.
Collapse
Affiliation(s)
- Camille Houron
- Faculté de Médecine Paris-Saclay, Université Paris-Saclay, F-94276, Le Kremlin-Bicêtre, France; INSERM U996, DHU Hepatinov, Labex LERMIT, F-92140, Clamart, France
| | - Marie Danielou
- Faculté de Médecine Paris-Saclay, Université Paris-Saclay, F-94276, Le Kremlin-Bicêtre, France; Service d'Hépato-Gastroentérologie et Nutrition, Hôpital Antoine-Béclère, AP-HP, Université Paris-Saclay, F-92140, Clamart, France
| | - Olivier Mir
- Gustave Roussy Cancer Campus, Department of Ambulatory Care, F-94805, Villejuif, France
| | - Bernard Fromenty
- INSERM, INRAE, Univ Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), UMR_A 1341, UMR_S 1241, F-35000, Rennes, France
| | - Gabriel Perlemuter
- Faculté de Médecine Paris-Saclay, Université Paris-Saclay, F-94276, Le Kremlin-Bicêtre, France; INSERM U996, DHU Hepatinov, Labex LERMIT, F-92140, Clamart, France; Service d'Hépato-Gastroentérologie et Nutrition, Hôpital Antoine-Béclère, AP-HP, Université Paris-Saclay, F-92140, Clamart, France.
| | - Cosmin Sebastian Voican
- Faculté de Médecine Paris-Saclay, Université Paris-Saclay, F-94276, Le Kremlin-Bicêtre, France; INSERM U996, DHU Hepatinov, Labex LERMIT, F-92140, Clamart, France; Service d'Hépato-Gastroentérologie et Nutrition, Hôpital Antoine-Béclère, AP-HP, Université Paris-Saclay, F-92140, Clamart, France
| |
Collapse
|
7
|
Ho D, Quake SR, McCabe ERB, Chng WJ, Chow EK, Ding X, Gelb BD, Ginsburg GS, Hassenstab J, Ho CM, Mobley WC, Nolan GP, Rosen ST, Tan P, Yen Y, Zarrinpar A. Enabling Technologies for Personalized and Precision Medicine. Trends Biotechnol 2020; 38:497-518. [PMID: 31980301 PMCID: PMC7924935 DOI: 10.1016/j.tibtech.2019.12.021] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
Abstract
Individualizing patient treatment is a core objective of the medical field. Reaching this objective has been elusive owing to the complex set of factors contributing to both disease and health; many factors, from genes to proteins, remain unknown in their role in human physiology. Accurately diagnosing, monitoring, and treating disorders requires advances in biomarker discovery, the subsequent development of accurate signatures that correspond with dynamic disease states, as well as therapeutic interventions that can be continuously optimized and modulated for dose and drug selection. This work highlights key breakthroughs in the development of enabling technologies that further the goal of personalized and precision medicine, and remaining challenges that, when addressed, may forge unprecedented capabilities in realizing truly individualized patient care.
Collapse
Affiliation(s)
- Dean Ho
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore; The Institute for Digital Medicine (WisDM), National University of Singapore, Singapore; Department of Biomedical Engineering, NUS Engineering, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, CA, USA; Department of Applied Physics, Stanford University, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Wee Joo Chng
- Department of Haematology and Oncology, National University Cancer Institute, National University Health System, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Edward K Chow
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Xianting Ding
- Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bruce D Gelb
- Mindich Child Health and Development Institute, Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Geoffrey S Ginsburg
- Center for Applied Genomics and Precision Medicine, Duke University, NC, USA
| | - Jason Hassenstab
- Department of Neurology, Washington University in St. Louis, MO, USA; Psychological & Brain Sciences, Washington University in St. Louis, MO, USA
| | - Chih-Ming Ho
- Department of Mechanical Engineering, University of California, Los Angeles, CA, USA
| | - William C Mobley
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Garry P Nolan
- Department of Microbiology & Immunology, Stanford University, CA, USA
| | - Steven T Rosen
- Comprehensive Cancer Center and Beckman Research Institute, City of Hope, CA, USA
| | - Patrick Tan
- Duke-NUS Medical School, National University of Singapore, Singapore
| | - Yun Yen
- College of Medical Technology, Center of Cancer Translational Research, Taipei Cancer Center of Taipei Medical University, Taipei, Taiwan
| | - Ali Zarrinpar
- Department of Surgery, Division of Transplantation & Hepatobiliary Surgery, University of Florida, FL, USA
| |
Collapse
|
8
|
Liu JC, Narva S, Zhou K, Zhang W. A Review on the Antitumor Activity of Various Nitrogenous-based Heterocyclic Compounds as NSCLC Inhibitors. Mini Rev Med Chem 2019; 19:1517-1530. [DOI: 10.2174/1389557519666190312152358] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 11/22/2022]
Abstract
At present, cancers have been causing deadly fears to humans and previously unpredictable
losses to health. Especially, lung cancer is one of the most common causes of cancer-related mortality
accounting for approximately 15% of all cancer cases worldwide. While Non-Small Cell Lung Carcinomas
(NSCLCs) makes up to 80% of lung cancer cases. The patient compliance has been weakening
because of serious drug resistance and adverse drug effects. Therefore, there is an urgent need for the
development of novel structural agents to inhibit NSCLCs. Nitrogen-containing heterocyclic compounds
exhibit wide range of biological properties, especially antitumor activity. We reviewed some
deadly defects of clinical medicines for the lung cancer therapy and importance of nitrogen based heterocyclic
derivatives against NSCLCs. Nitrogen heterocycles exhibit significant antitumor activity
against NSCLCs. Nitrogen heterocyclic hybrids could be developed as multi-target-directed NSCLC
inhibitors and it is believed that the review is significant for rational designs and new ideas in the development
of nitrogen heterocyclic-based drugs.
Collapse
Affiliation(s)
- Jia-Chun Liu
- Laboratory of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Suresh Narva
- Laboratory of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Kang Zhou
- Laboratory of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wen Zhang
- Laboratory of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
9
|
Shah RR, Shah DR. Safety and Tolerability of Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitors in Oncology. Drug Saf 2019; 42:181-198. [PMID: 30649743 DOI: 10.1007/s40264-018-0772-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) that target epidermal growth factor receptor (EGFR) have dramatically improved progression-free survival in non-small-cell lung cancer (NSCLC) patients who carry sensitizing EGFR-activating mutations and in patients with breast and pancreatic cancers. However, EGFR-TKIs are associated with significant and disabling undesirable effects that adversely impact on quality of life and compliance. These effects include dermatological reactions, diarrhoea, hepatotoxicity, stomatitis, interstitial lung disease and ocular toxicity. Each individual EGFR-TKI is also associated with additional adverse effect(s) that are not shared widely by the other members of its class. Often, these effects call for dose reduction, treatment discontinuation or pharmacotherapeutic intervention. Since dermatological effects result from on-target effects on wild-type EGFR, rash is often considered to be a biomarker of efficacy. A number of studies have reported better outcomes in patients with skin reactions compared with those without. This has led to a 'dosing-to-rash' strategy to optimize therapeutic outcomes. Although conceptually attractive, there is currently insufficient evidence-based support for this strategy. While skin reactions following EGFR-TKIs are believed to result from an effect on wild-type EGFR, their efficacy is related to effects on mutant variants of EGFR. It is noteworthy that newer EGFR-TKIs that spare wild-type EGFR are associated with fewer dermatological reactions. Furthermore, secondary mutations such as T790M in exon 20 often lead to development of resistance to the clinical activity and efficacy of first- and second-generation EGFR-TKIs. This has stimulated the search for later-generations of EGFR-TKIs with the ability to overcome this resistance and with greater target selectivity to spare wild-type EGFR in expectations of an improved safety profile. However, available data reviewed herein indicate that not only are these newer agents associated with the aforementioned adverse effects typical of earlier agents, but they are also susceptible to resistance due to tertiary mutations, most frequently C797S. At least three later-generation EGFR-TKIs, canertinib, naquotinib and rociletinib, have been discontinued from further development in NSCLC following concerns about their safety and risk/benefit.
Collapse
|
10
|
Yamanaka Y, Sekine A, Kato T, Yamakawa H, Ikeda S, Baba T, Iwasawa T, Okudela K, Ogura T. Afatinib Therapy for Brain Metastases Aggravated by a Reduction in the Dose of Erlotinib Due to the Development of Hepatotoxicity. Intern Med 2017; 56:2895-2898. [PMID: 28943548 PMCID: PMC5709634 DOI: 10.2169/internalmedicine.8638-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We report an 80-year-old woman with EGFR-mutant lung adenocarcinoma with multiple brain metastases (BMs). All lesions including BM showed a successful resolution after initiating daily 150 mg erlotinib. However, a grade 2 bilirubin-increase developed, and it was necessary to reduce the dose of erlotinib to 50 mg every other day, which aggravated BM. Switching erlotinib to afatinib led to the resolution of BM without an increase in the bilirubin level. Our results indicate that afatinib is an important treatment option when erlotinib-induced hepatotoxicity develops, regardless of the patients' age. Particularly in those patients with BM, switching to afatinib may be preferable to reducing the dose of erlotinib.
Collapse
Affiliation(s)
- Yumie Yamanaka
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Japan
- Department of Respiratory Medicine, Tokyo Jikei University Hospital, Japan
| | - Akimasa Sekine
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Japan
| | - Terufumi Kato
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Japan
| | - Hideaki Yamakawa
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Japan
- Department of Respiratory Medicine, Tokyo Jikei University Hospital, Japan
| | - Satoshi Ikeda
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Japan
| | - Tomohisa Baba
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Japan
| | - Tae Iwasawa
- Department of Radiology, Kanagawa Cardiovascular and Respiratory Center, Japan
| | - Koji Okudela
- Department of Pathology, Graduate School of Medicine, Yokohama City University, Japan
| | - Takashi Ogura
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Japan
| |
Collapse
|