1
|
Li S, Chen J, Zhou B. The clinical significance of endoplasmic reticulum stress related genes in non-small cell lung cancer and analysis of single nucleotide polymorphism for CAV1. Front Mol Biosci 2024; 11:1414164. [PMID: 39165641 PMCID: PMC11334084 DOI: 10.3389/fmolb.2024.1414164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/09/2024] [Indexed: 08/22/2024] Open
Abstract
In recent years, protein homeostasis imbalance caused by endoplasmic reticulum stress has become a major hallmark of cancer. Studies have shown that endoplasmic reticulum stress is closely related to the occurrence, development, and drug resistance of non-small cell lung cancer, however, the role of various endoplasmic reticulum stress-related genes in non-small cell lung cancer is still unclear. In this study, we established an endoplasmic reticulum stress scores based on the Cancer Genome Atlas for non-small cell lung cancer to reflect patient features and predict prognosis. Survival analysis showed significant differences in overall survival among non-small cell lung cancer patients with different endoplasmic reticulum stress scores. In addition, endoplasmic reticulum stress scores was significantly correlated with the clinical features of non-small cell lung cancer patients, and can be served as an independent prognostic indicator. A nomogram based on endoplasmic reticulum stress scores indicated a certain clinical net benefit, while ssGSEA analysis demonstrated that there was a certain immunosuppressive microenvironment in high endoplasmic reticulum stress scores. Gene Set Enrichment Analysis showed that scores was associated with cancer pathways and metabolism. Finally, weighted gene co-expression network analysis displayed that CAV1 was closely related to the occurrence of non-small cell lung cancer. Therefore, in order to further analyze the role of this gene, Chinese non-smoking females were selected as the research subjects to investigate the relationship between CAV1 rs3779514 and susceptibility and prognosis of non-small cell lung cancer. The results showed that the mutation of rs3779514 significantly reduced the risk of non-small cell lung cancer in Chinese non-smoking females, but no prognostic effect was found. In summary, we proposed an endoplasmic reticulum stress scores, which was an independent prognostic factor and indicated immune characteristics in the microenvironment of non-small cell lung cancer. We also validated the relationship between single nucleotide polymorphism locus of core genes and susceptibility to non-small cell lung cancer.
Collapse
Affiliation(s)
| | | | - Baosen Zhou
- Department of Clinical Epidemiology and Center of Evidence-Based Medicine, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Lou QM, Lai FF, Li JW, Mao KJ, Wan HT, He Y. Mechanisms of cuproptosis and its relevance to distinct diseases. Apoptosis 2024; 29:981-1006. [PMID: 38824478 DOI: 10.1007/s10495-024-01983-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
Copper is a trace element required by the organism, but once the level of copper exceeds the threshold, it becomes toxic and even causes death. The underlying mechanisms of copper-induced death are inconclusive, with different studies showing different opinions on the mechanism of copper-induced death. Multiple investigations have shown that copper induces oxidative stress, endoplasmic reticulum stress, nucleolar stress, and proteasome inhibition, all of which can result in cell death. The latest research elucidates a copper-dependent death and denominates it as cuproptosis. Cuproptosis takes place through the combination of copper and lipoylated proteins of the tricarboxylic acid cycle, triggering agglomeration of lipoylated proteins and loss of iron-sulfur cluster proteins, leading to proteotoxic stress and ultimately death. Given the toxicity and necessity of copper, abnormal levels of copper lead to diseases such as neurological diseases and cancer. The development of cancer has a high demand for copper, neurological diseases involve the change of copper contents and the binding of copper to proteins. There is a close relationship between these two kinds of diseases and copper. Here, we summarize the mechanisms of copper-related death, and the association between copper and diseases, to better figure out the influence of copper in cell death and diseases, thus advancing the clinical remedy of these diseases.
Collapse
Affiliation(s)
- Qiao-Mei Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fei-Fan Lai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jing-Wei Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Kun-Jun Mao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hai-Tong Wan
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
3
|
Chiablaem K, Jinawath A, Nuanpirom J, Arora JK, Nasaree S, Thanomchard T, Singhto N, Chittavanich P, Suktitipat B, Charoensawan V, Chairoungdua A, Jinn-Chyuan Sheu J, Kiyotani K, Svasti J, Nakamura Y, Jinawath N. Identification of RNF213 as a Potential Suppressor of Local Invasion in Intrahepatic Cholangiocarcinoma. J Transl Med 2024; 104:102074. [PMID: 38723854 DOI: 10.1016/j.labinv.2024.102074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 04/30/2024] [Indexed: 06/14/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a lethal cancer with poor survival especially when it spreads. The histopathology of its rare intraductal papillary neoplasm of the bile duct type (IPNB) characteristically shows cancer cells originating within the confined bile duct space. These cells eventually invade and infiltrate the nearby liver tissues, making it a good model to study the mechanism of local invasion, which is the earliest step of metastasis. To discover potential suppressor genes of local invasion in ICC, we analyzed the somatic mutation profiles and performed clonal evolution analyses of the 11 pairs of macrodissected locally invasive IPNB tissues (LI-IPNB) and IPNB tissues without local invasion from the same patients. We identified a protein-truncating variant in an E3 ubiquitin ligase, RNF213 (c.6967C>T; p.Gln2323X; chr17: 78,319,102 [hg19], exon 29), as the most common protein-truncating variant event in LI-IPNB samples (4/11 patients). Knockdown of RNF213 in HuCCT1 and YSCCC cells showed increased migration and invasion, and reduced vasculogenic mimicry but maintained normal proliferation. Transcriptomic analysis of the RNF213-knockdown vs control cells was then performed in the HuCCT1, YSCCC, and KKU-100 cells. Gene ontology enrichment analysis of the common differentially expressed genes revealed significantly altered cytokine and oxidoreductase-oxidizing metal ion activities, as confirmed by Western blotting. Gene Set Enrichment Analysis identified the most enriched pathways being oxidative phosphorylation, fatty acid metabolism, reactive oxygen species, adipogenesis, and angiogenesis. In sum, loss-of-function mutation of RNF213 is a common genetic alteration in LI-IPNB tissues. RNF213 knockdown leads to increased migration and invasion of ICC cells, potentially through malfunctions of the pathways related to inflammation and energy metabolisms.
Collapse
Affiliation(s)
- Khajeelak Chiablaem
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| | - Artit Jinawath
- Molecular Histopathology Laboratory, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Jiratchaya Nuanpirom
- Integrative Computational Bioscience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand
| | - Jantarika Kumar Arora
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sirawit Nasaree
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thanastha Thanomchard
- Ramathibodi Comprehensive Cancer Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nilubon Singhto
- Ramathibodi Comprehensive Cancer Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pamorn Chittavanich
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Bhoom Suktitipat
- Integrative Computational Bioscience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand; Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Varodom Charoensawan
- Integrative Computational Bioscience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Arthit Chairoungdua
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jim Jinn-Chyuan Sheu
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kazuma Kiyotani
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| | - Yusuke Nakamura
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan; National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Natini Jinawath
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Integrative Computational Bioscience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand; Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakan, Thailand.
| |
Collapse
|
4
|
Song W, Yue Y, Zhang Q, Wang X. Copper homeostasis dysregulation in respiratory diseases: a review of current knowledge. Front Physiol 2024; 15:1243629. [PMID: 38883186 PMCID: PMC11176810 DOI: 10.3389/fphys.2024.1243629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/22/2024] [Indexed: 06/18/2024] Open
Abstract
Cu is an essential micronutrient for various physiological processes in almost all human cell types. Given the critical role of Cu in a wide range of cellular processes, the local concentrations of Cu and the cellular distribution of Cu transporter proteins in the lung are essential for maintaining a steady-state internal environment. Dysfunctional Cu metabolism or regulatory pathways can lead to an imbalance in Cu homeostasis in the lungs, affecting both acute and chronic pathological processes. Recent studies have identified a new form of Cu-dependent cell death called cuproptosis, which has generated renewed interest in the role of Cu homeostasis in diseases. Cuproptosis differs from other known cell death pathways. This occurs through the direct binding of Cu ions to lipoylated components of the tricarboxylic acid cycle during mitochondrial respiration, leading to the aggregation of lipoylated proteins and the subsequent downregulation of Fe-S cluster proteins, which causes toxic stress to the proteins and ultimately leads to cell death. Here, we discuss the impact of dysregulated Cu homeostasis on the pathogenesis of various respiratory diseases, including asthma, chronic obstructive pulmonary disease, idiopathic interstitial fibrosis, and lung cancer. We also discuss the therapeutic potential of targeting Cu. This study highlights the intricate interplay between copper, cellular processes, and respiratory health. Copper, while essential, must be carefully regulated to maintain the delicate balance between necessity and toxicity in living organisms. This review highlights the need to further investigate the precise mechanisms of copper interactions with infections and immune inflammation in the context of respiratory diseases and explore the potential of therapeutic strategies for copper, cuproptosis, and other related effects.
Collapse
Affiliation(s)
- Wei Song
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyi Yue
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xueqing Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Ahmed YB, Ababneh OE, Al-Khalili AA, Serhan A, Hatamleh Z, Ghammaz O, Alkhaldi M, Alomari S. Identification of Hypoxia Prognostic Signature in Glioblastoma Multiforme Based on Bulk and Single-Cell RNA-Seq. Cancers (Basel) 2024; 16:633. [PMID: 38339384 PMCID: PMC10854729 DOI: 10.3390/cancers16030633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Glioblastoma (GBM) represents a profoundly aggressive and heterogeneous brain neoplasm linked to a bleak prognosis. Hypoxia, a common feature in GBM, has been linked to tumor progression and therapy resistance. In this study, we aimed to identify hypoxia-related differentially expressed genes (DEGs) and construct a prognostic signature for GBM patients using multi-omics analysis. Patient cohorts were collected from publicly available databases, including the Gene Expression Omnibus (GEO), the Chinese Glioma Genome Atlas (CGGA), and The Cancer Genome Atlas-Glioblastoma Multiforme (TCGA-GBM), to facilitate a comprehensive analysis. Hypoxia-related genes (HRGs) were obtained from the Molecular Signatures Database (MSigDB). Differential expression analysis revealed 41 hypoxia-related DEGs in GBM patients. A consensus clustering approach, utilizing these DEGs' expression patterns, identified four distinct clusters, with cluster 1 showing significantly better overall survival. Machine learning techniques, including univariate Cox regression and LASSO regression, delineated a prognostic signature comprising six genes (ANXA1, CALD1, CP, IGFBP2, IGFBP5, and LOX). Multivariate Cox regression analysis substantiated the prognostic significance of a set of three optimal signature genes (CP, IGFBP2, and LOX). Using the hypoxia-related prognostic signature, patients were classified into high- and low-risk categories. Survival analysis demonstrated that the high-risk group exhibited inferior overall survival rates in comparison to the low-risk group. The prognostic signature showed good predictive performance, as indicated by the area under the curve (AUC) values for one-, three-, and five-year overall survival. Furthermore, functional enrichment analysis of the DEGs identified biological processes and pathways associated with hypoxia, providing insights into the underlying mechanisms of GBM. Delving into the tumor immune microenvironment, our analysis revealed correlations relating the hypoxia-related prognostic signature to the infiltration of immune cells in GBM. Overall, our study highlights the potential of a hypoxia-related prognostic signature as a valuable resource for forecasting the survival outcome of GBM patients. The multi-omics approach integrating bulk sequencing, single-cell analysis, and immune microenvironment assessment enhances our understanding of the intricate biology characterizing GBM, thereby potentially informing the tailored design of therapeutic interventions.
Collapse
Affiliation(s)
- Yaman B. Ahmed
- School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA;
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (A.A.A.-K.); (A.S.); (Z.H.); (O.G.); (M.A.)
| | - Obada E. Ababneh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (A.A.A.-K.); (A.S.); (Z.H.); (O.G.); (M.A.)
| | - Anas A. Al-Khalili
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (A.A.A.-K.); (A.S.); (Z.H.); (O.G.); (M.A.)
| | - Abdullah Serhan
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (A.A.A.-K.); (A.S.); (Z.H.); (O.G.); (M.A.)
| | - Zaid Hatamleh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (A.A.A.-K.); (A.S.); (Z.H.); (O.G.); (M.A.)
| | - Owais Ghammaz
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (A.A.A.-K.); (A.S.); (Z.H.); (O.G.); (M.A.)
| | - Mohammad Alkhaldi
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (A.A.A.-K.); (A.S.); (Z.H.); (O.G.); (M.A.)
| | - Safwan Alomari
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
6
|
Arnhold J. Inflammation-Associated Cytotoxic Agents in Tumorigenesis. Cancers (Basel) 2023; 16:81. [PMID: 38201509 PMCID: PMC10778456 DOI: 10.3390/cancers16010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic inflammatory processes are related to all stages of tumorigenesis. As inflammation is closely associated with the activation and release of different cytotoxic agents, the interplay between cytotoxic agents and antagonizing principles is highlighted in this review to address the question of how tumor cells overcome the enhanced values of cytotoxic agents in tumors. In tumor cells, the enhanced formation of mitochondrial-derived reactive species and elevated values of iron ions and free heme are antagonized by an overexpression of enzymes and proteins, contributing to the antioxidative defense and maintenance of redox homeostasis. Through these mechanisms, tumor cells can even survive additional stress caused by radio- and chemotherapy. Through the secretion of active agents from tumor cells, immune cells are suppressed in the tumor microenvironment and an enhanced formation of extracellular matrix components is induced. Different oxidant- and protease-based cytotoxic agents are involved in tumor-mediated immunosuppression, tumor growth, tumor cell invasion, and metastasis. Considering the special metabolic conditions in tumors, the main focus here was directed on the disturbed balance between the cytotoxic agents and protective mechanisms in late-stage tumors. This knowledge is mandatory for the implementation of novel anti-cancerous therapeutic approaches.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|
7
|
Ezzeldin S, Osama A, Anwar AM, Mahgoub S, Ahmed EA, Farid N, Zamzam M, El Ghoneimy A, Magdeldin S. Detection of early prognostic biomarkers for metastasis of Ewing's sarcoma in pediatric patients. Life Sci 2023; 334:122237. [PMID: 37926299 DOI: 10.1016/j.lfs.2023.122237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
AIMS Ewing's Sarcoma is an extremely aggressive tumor in children. The disease is associated with highly metastatic rate, especially at the time of diagnosis, contributing to a lower survival rate and poor prognosis. The study aimed to identify predictive biomarkers for metastatic Ewing's sarcoma through in-depth analysis of the plasma proteome profile of pediatric Ewing's sarcoma patients. MAIN METHODS Plasma samples from Ewing's sarcoma patients and control individuals were profiled using both shotgun and dimethyl-labeled proteomics analysis. Subsequently, Ewing's sarcoma patients were further stratified according to their metastatic state and chemotherapy response. Western blot was used for validation. Univariate and multivariate analyses were performed to determine proteome metastasis predictors. Receiver operating characteristic (ROC) analysis was done to assess the diagnostic significance of the potential plasma Ewing's sarcoma biomarkers. KEY FINDINGS Our results revealed a set of proteins significantly associated with the metastatic Ewing's sarcoma disease profile. These proteins include ceruloplasmin and several immunoglobulins. Additionally, our study disclosed significant differentially expressed proteins in pediatric Ewing's sarcoma, including CD5 antigen-like, clusterin, and dermcidin. Stable isotope dimethyl labeling and western blot further confirmed our results, strengthening the impact of such proteins in disease development. Furthermore, an unbiased ROC curve evaluated and confirmed the predictive power of these biomarker candidates. SIGNIFICANCE This study presented potential empirical predictive circulating biomarkers for determining the disease status of pediatric Ewing's sarcoma, which is vital for early prediction.
Collapse
Affiliation(s)
- Shahd Ezzeldin
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children's Cancer Hospital 57357 Egypt, 11617 Cairo, Egypt
| | - Aya Osama
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children's Cancer Hospital 57357 Egypt, 11617 Cairo, Egypt
| | - Ali Mostafa Anwar
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children's Cancer Hospital 57357 Egypt, 11617 Cairo, Egypt
| | - Sebaey Mahgoub
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children's Cancer Hospital 57357 Egypt, 11617 Cairo, Egypt
| | - Eman A Ahmed
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children's Cancer Hospital 57357 Egypt, 11617 Cairo, Egypt; Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Nesma Farid
- Clinical Research Program, Department of Basic Research, Children's Cancer Hospital 57357 Egypt, 11617 Cairo, Egypt
| | - Manal Zamzam
- Department of Pediatric Oncology, Children's Cancer Hospital 57357 Egypt, 11617 Cairo, Egypt
| | - Ahmed El Ghoneimy
- Musculoskeletal Tumor Surgery Unit, Children's Cancer Hospital 57357 Egypt, 11617 Cairo, Egypt; Department of Orthopedic Surgery, Faculty of Medicine, Cairo University, 12613 Giza, Egypt
| | - Sameh Magdeldin
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children's Cancer Hospital 57357 Egypt, 11617 Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt.
| |
Collapse
|
8
|
Robinson TP, Hamidi T, Counts B, Guttridge DC, Ostrowski MC, Zimmers TA, Koniaris LG. The impact of inflammation and acute phase activation in cancer cachexia. Front Immunol 2023; 14:1207746. [PMID: 38022578 PMCID: PMC10644737 DOI: 10.3389/fimmu.2023.1207746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
The development of cachexia in the setting of cancer or other chronic diseases is a significant detriment for patients. Cachexia is associated with a decreased ability to tolerate therapies, reduction in ambulation, reduced quality of life, and increased mortality. Cachexia appears intricately linked to the activation of the acute phase response and is a drain on metabolic resources. Work has begun to focus on the important inflammatory factors associated with the acute phase response and their role in the immune activation of cachexia. Furthermore, data supporting the liver, lung, skeletal muscle, and tumor as all playing a role in activation of the acute phase are emerging. Although the acute phase is increasingly being recognized as being involved in cachexia, work in understanding underlying mechanisms of cachexia associated with the acute phase response remains an active area of investigation and still lack a holistic understanding and a clear causal link. Studies to date are largely correlative in nature, nonetheless suggesting the possibility for a role for various acute phase reactants. Herein, we examine the current literature regarding the acute phase response proteins, the evidence these proteins play in the promotion and exacerbation of cachexia, and current evidence of a therapeutic potential for patients.
Collapse
Affiliation(s)
- Tyler P. Robinson
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Tewfik Hamidi
- Department of Surgery, Oregon Health Sciences University, Portland, OR, United States
| | - Brittany Counts
- Department of Surgery, Oregon Health Sciences University, Portland, OR, United States
| | - Denis C. Guttridge
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Michael C. Ostrowski
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Teresa A. Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Surgery, Oregon Health Sciences University, Portland, OR, United States
| | - Leonidas G. Koniaris
- Department of Surgery, Oregon Health Sciences University, Portland, OR, United States
| |
Collapse
|
9
|
Zhang Y, Yang Z, Tang Y, Guo C, Lin D, Cheng L, Hu X, Zhang K, Li G. Hallmark guided identification and characterization of a novel immune-relevant signature for prognostication of recurrence in stage I-III lung adenocarcinoma. Genes Dis 2023; 10:1657-1674. [PMID: 37397559 PMCID: PMC10311029 DOI: 10.1016/j.gendis.2022.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/07/2022] [Accepted: 07/16/2022] [Indexed: 11/23/2022] Open
Abstract
The high risk of postoperative mortality in lung adenocarcinoma (LUAD) patients is principally driven by cancer recurrence and low response rates to adjuvant treatment. Here, A combined cohort containing 1,026 stage I-III patients was divided into the learning (n = 678) and validation datasets (n = 348). The former was used to establish a 16-mRNA risk signature for recurrence prediction with multiple statistical algorithms, which was verified in the validation set. Univariate and multivariate analyses confirmed it as an independent indicator for both recurrence-free survival (RFS) and overall survival (OS). Distinct molecular characteristics between the two groups including genomic alterations, and hallmark pathways were comprehensively analyzed. Remarkably, the classifier was tightly linked to immune infiltrations, highlighting the critical role of immune surveillance in prolonging survival for LUAD. Moreover, the classifier was a valuable predictor for therapeutic responses in patients, and the low-risk group was more likely to yield clinical benefits from immunotherapy. A transcription factor regulatory protein-protein interaction network (TF-PPI-network) was constructed via weighted gene co-expression network analysis (WGCNA) concerning the hub genes of the signature. The constructed multidimensional nomogram dramatically increased the predictive accuracy. Therefore, our signature provides a forceful basis for individualized LUAD management with promising potential implications.
Collapse
Affiliation(s)
- Yongqiang Zhang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510620, China
| | - Zhao Yang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuqin Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Chengbin Guo
- Center for Biomedicine and Innovations, Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Danni Lin
- Center for Biomedicine and Innovations, Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Linling Cheng
- Center for Biomedicine and Innovations, Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Xun Hu
- Clinical Research Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- Biorepository, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kang Zhang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Center for Biomedicine and Innovations, Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Gen Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510620, China
| |
Collapse
|
10
|
Chinnappan R, Mir TA, Alsalameh S, Makhzoum T, Alzhrani A, Alnajjar K, Adeeb S, Al Eman N, Ahmed Z, Shakir I, Al-Kattan K, Yaqinuddin A. Emerging Biosensing Methods to Monitor Lung Cancer Biomarkers in Biological Samples: A Comprehensive Review. Cancers (Basel) 2023; 15:3414. [PMID: 37444523 DOI: 10.3390/cancers15133414] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Lung cancer is the most commonly diagnosed of all cancers and one of the leading causes of cancer deaths among men and women worldwide, causing 1.5 million deaths every year. Despite developments in cancer treatment technologies and new pharmaceutical products, high mortality and morbidity remain major challenges for researchers. More than 75% of lung cancer patients are diagnosed in advanced stages, leading to poor prognosis. Lung cancer is a multistep process associated with genetic and epigenetic abnormalities. Rapid, accurate, precise, and reliable detection of lung cancer biomarkers in biological fluids is essential for risk assessment for a given individual and mortality reduction. Traditional diagnostic tools are not sensitive enough to detect and diagnose lung cancer in the early stages. Therefore, the development of novel bioanalytical methods for early-stage screening and diagnosis is extremely important. Recently, biosensors have gained tremendous attention as an alternative to conventional methods because of their robustness, high sensitivity, inexpensiveness, and easy handling and deployment in point-of-care testing. This review provides an overview of the conventional methods currently used for lung cancer screening, classification, diagnosis, and prognosis, providing updates on research and developments in biosensor technology for the detection of lung cancer biomarkers in biological samples. Finally, it comments on recent advances and potential future challenges in the field of biosensors in the context of lung cancer diagnosis and point-of-care applications.
Collapse
Affiliation(s)
- Raja Chinnappan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, Transplant Research & Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Tanveer Ahmad Mir
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, Transplant Research & Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | | | - Tariq Makhzoum
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Alaa Alzhrani
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, Transplant Research & Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khalid Alnajjar
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Salma Adeeb
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Noor Al Eman
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Zara Ahmed
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ismail Shakir
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Khaled Al-Kattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
11
|
Zhou H, Li S, Lin Y. Prognostic significance of SH2D5 expression in lung adenocarcinoma and its relation to immune cell infiltration. PeerJ 2023; 11:e15238. [PMID: 37187527 PMCID: PMC10178299 DOI: 10.7717/peerj.15238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Objective Through analyzing the SH2D5 expression profiles, clinical features, and immune infiltration in lung adenocarcinoma (LUAD), the study was intended to discuss the correlations of SH2D5 with prognosis and immune infiltration in LUAD. Methods We downloaded transcriptome and clinical data of LUAD patients from TCGA, GEO, and CCLE databases. Sangerbox, R language, GEPIA, UALCAN, and Kaplan-Meier Plotter were adopted to analyze the SH2D5 expression patterns, prognosis, and clinical features. Spearman correlation analysis was performed to determine the association between SH2D5 expression and immune cell infiltration and immune checkpoint genes. The miRNA-SH2D5 relations were predicted by miRDB and starbase. Lastly, quantitative PCR, IHC and Western blot were implemented for validation. Results A prominent up-regulation of SH2D5 was noted in the LUAD group relative to the normal group, which was validated by quantitative PCR, IHC and Western blot. SH2D5 expression was inversely related to overall survival (OS) of LUAD patients as well as B cell immune infiltration. Additionally, SH2D5 expression was negatively correlated with dendritic cells resting (p < 0.001), plasma cells (p < 0.001), mast cells resting (p = 0.031) and T cells CD4 memory resting (p = 0.036) in LUAD patients with abundant SH2D5 expression correlated with poor prognosis. Furthermore, enrichment analysis suggested that SH2D5 was associated with lung cancer and immunity. Lastly, we investigated the relationship between the expression of SH2D5 and the use of antitumor drugs. Conclusion High SH2D5 expression shares an association with unfavorable prognosis in LUAD, and SH2D5 may also provide new ideas for immunotherapy as a potential therapeutic target.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Emergency and Critical Care Medicine, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Shengjun Li
- Department of Emergency and Critical Care Medicine, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Yuansheng Lin
- Department of Emergency and Critical Care Medicine, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| |
Collapse
|
12
|
Helman SL, Zhou J, Fuqua BK, Lu Y, Collins JF, Chen H, Vulpe CD, Anderson GJ, Frazer DM. The biology of mammalian multi-copper ferroxidases. Biometals 2023; 36:263-281. [PMID: 35167013 PMCID: PMC9376197 DOI: 10.1007/s10534-022-00370-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/04/2022] [Indexed: 12/24/2022]
Abstract
The mammalian multicopper ferroxidases (MCFs) ceruloplasmin (CP), hephaestin (HEPH) and zyklopen (ZP) comprise a family of conserved enzymes that are essential for body iron homeostasis. Each of these enzymes contains six biosynthetically incorporated copper atoms which act as intermediate electron acceptors, and the oxidation of iron is associated with the four electron reduction of dioxygen to generate two water molecules. CP occurs in both a secreted and GPI-linked (membrane-bound) form, while HEPH and ZP each contain a single C-terminal transmembrane domain. These enzymes function to ensure the efficient oxidation of iron so that it can be effectively released from tissues via the iron export protein ferroportin and subsequently bound to the iron carrier protein transferrin in the blood. CP is particularly important in facilitating iron release from the liver and central nervous system, HEPH is the major MCF in the small intestine and is critical for dietary iron absorption, and ZP is important for normal hair development. CP and HEPH (and possibly ZP) function in multiple tissues. These proteins also play other (non-iron-related) physiological roles, but many of these are ill-defined. In addition to disrupting iron homeostasis, MCF dysfunction perturbs neurological and immune function, alters cancer susceptibility, and causes hair loss, but, despite their importance, how MCFs co-ordinately maintain body iron homeostasis and perform other functions remains incompletely understood.
Collapse
Affiliation(s)
- Sheridan L Helman
- Molecular Nutrition Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jie Zhou
- Department of Physiological Sciences, University of Florida, Gainsville, FL, USA
| | - Brie K Fuqua
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yan Lu
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia
- Mucosal Immunology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - James F Collins
- Food Science and Human Nutrition Department, University of Florida, Gainsville, FL, USA
| | - Huijun Chen
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Christopher D Vulpe
- Department of Physiological Sciences, University of Florida, Gainsville, FL, USA
| | - Gregory J Anderson
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia.
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, Australia.
| | - David M Frazer
- Molecular Nutrition Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
13
|
Gao D, Liu R, Lv Y, Feng Y, Hong F, Xu X, Hu J, He A, Yang Y. A novel ferroptosis-related gene signature for predicting prognosis in multiple myeloma. Front Oncol 2023; 13:999688. [PMID: 36845727 PMCID: PMC9950937 DOI: 10.3389/fonc.2023.999688] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
Background Multiple myeloma (MM) is a highly malignant hematological tumor with a poor overall survival (OS). Due to the high heterogeneity of MM, it is necessary to explore novel markers for the prognosis prediction for MM patients. Ferroptosis is a form of regulated cell death, playing a critical role in tumorigenesis and cancer progression. However, the predictive role of ferroptosis-related genes (FRGs) in MM prognosis remains unknown. Methods This study collected 107 FRGs previously reported and utilized the least absolute shrinkage and selection operator (LASSO) cox regression model to construct a multi-genes risk signature model upon FRGs. The ESTIMATE algorithm and immune-related single-sample gene set enrichment analysis (ssGSEA) were carried out to evaluate immune infiltration level. Drug sensitivity was assessed based on the Genomics of Drug Sensitivity in Cancer database (GDSC). Then the synergy effect was determined with Cell counting kit-8 (CCK-8) assay and SynergyFinder software. Results A 6-gene prognostic risk signature model was constructed, and MM patients were divided into high and low risk groups. Kaplan-Meier survival curves showed that patients in the high risk group had significantly reduced OS compared with patients in the low risk group. Besides, the risk score was an independent predictor for OS. Receiver operating characteristic (ROC) curve analysis confirmed the predictive capacity of the risk signature. Combination of risk score and ISS stage had better prediction performance. Enrichment analysis revealed immune response, MYC, mTOR, proteasome and oxidative phosphorylation were enriched in high risk MM patients. We found high risk MM patients had lower immune scores and immune infiltration levels. Moreover, further analysis found that MM patients in high risk group were sensitive to bortezomib and lenalidomide. At last, the results of the in vitro experiment showed that ferroptosis inducers (RSL3 and ML162) may synergistically enhance the cytotoxicity of bortezomib and lenalidomide against MM cell line RPMI-8226. Conclusion This study provides novel insights into roles of ferroptosis in MM prognosis prediction, immune levels and drug sensitivity, which complements and improves current grading systems.
Collapse
Affiliation(s)
- Dandan Gao
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rui Liu
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yang Lv
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yuandong Feng
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Fei Hong
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xuezhu Xu
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jinsong Hu
- Department of Cell Biology and Genetics, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Aili He
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,*Correspondence: Aili He, ; Yun Yang,
| | - Yun Yang
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,*Correspondence: Aili He, ; Yun Yang,
| |
Collapse
|
14
|
Alvarez MS, Zhou Q, Tena J, Lebrilla CB, Completo GC, Heralde FM, Cabanatan M, Barzaga MT, Tan-Liu N, Ladrera GI, Danguilan JL, Rabajante J, Padolina I, Nacario RC. N-Glycan and Glycopeptide Serum Biomarkers in Philippine Lung Cancer Patients Identified Using Liquid Chromatography-Tandem Mass Spectrometry. ACS OMEGA 2022; 7:40230-40240. [PMID: 36385894 PMCID: PMC9647785 DOI: 10.1021/acsomega.2c05111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Aberrant glycosylation has been extensively reported in cancer, with fundamental changes in the glycosylation patterns of cell-surface and secreted proteins largely occurring during cancer progression. As such, serum glycan and glycopeptide biomarkers have been discovered using mass spectrometry and proposed for cancer detection. Here, we report for the first time potential serum N-glycan and glycopeptide biomarkers for Philippine lung cancer patients. The N-glycan and glycoprotein profiles of a cohort (n = 26 patients, n = 22 age- and gender-matched) of lung cancer patients were analyzed and compared to identify potential N-glycan and glycopeptide serum biomarkers using nano-QToF-MS/MS and ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry dynamic multiple monitoring methods, respectively. Statistical analyses identified differential N-glycan and glycopeptide abundances. The N-glycans were mostly sialylated and sialofucosylated branched structures. The glycopeptides involved proteins in complement and coagulation cascades (p adj = 6.418 × 10-4), innate immunity (p adj = 6.094 × 10-3), acute inflammatory response (p adj = 6.404 × 10-5), defense response (p adj = 2.082 × 10-4), complement activation pathways (p adj = 1.895 × 10-2), and immunoglobulin-mediated immune response pathways (p adj = 4.818 × 10-2). Biomarker models were constructed using serum N-glycans [area under the curve (AUC) = 0.775; 95% CI: 0.617-0.931] and glycopeptides (AUC = 0.959; 95% CI: 0.85-1.0), with glycopeptides having higher accuracies than N-glycans. The results suggest that in the Philippine lung cancer patient sera, specific N-glycans and site-specific glycans are differentially expressed between cases and controls. This report represents the first serum glycan and glycopeptide biomarkers of Philippine lung cancer patients, further demonstrating the utility of mass spectrometry-based glycomic and glycoproteomic methods.
Collapse
Affiliation(s)
- Michael
Russelle S. Alvarez
- Institute
of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, Laguna 4031, Philippines
- Department
of Chemistry, University of California Davis, Davis, California 95616-5270, United States
| | - Qingwen Zhou
- Department
of Chemistry, University of California Davis, Davis, California 95616-5270, United States
| | - Jennyfer Tena
- Department
of Chemistry, University of California Davis, Davis, California 95616-5270, United States
| | - Carlito B. Lebrilla
- Department
of Chemistry, University of California Davis, Davis, California 95616-5270, United States
| | - Gladys C. Completo
- Institute
of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, Laguna 4031, Philippines
| | - Francisco M. Heralde
- Molecular
Diagnostics and Cellular Therapeutics Laboratory, Lung Center of the Philippines, Quezon City 1104, Philippines
- Department
of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines−Manila, Manila, NCR 1159, Philippines
| | - Michelle Cabanatan
- Molecular
Diagnostics and Cellular Therapeutics Laboratory, Lung Center of the Philippines, Quezon City 1104, Philippines
| | - Ma. Teresa Barzaga
- Molecular
Diagnostics and Cellular Therapeutics Laboratory, Lung Center of the Philippines, Quezon City 1104, Philippines
- College
of Medicine, De La Salle Health Sciences
Institute, Cavite 4114, Philippines
| | - Nelia Tan-Liu
- Molecular
Diagnostics and Cellular Therapeutics Laboratory, Lung Center of the Philippines, Quezon City 1104, Philippines
| | - Guia Imelda Ladrera
- Molecular
Diagnostics and Cellular Therapeutics Laboratory, Lung Center of the Philippines, Quezon City 1104, Philippines
| | - Jose Luis Danguilan
- Department
of Thoracic Surgery and Anesthesia, Lung
Center of the Philippines, Quezon
City 1104, Philippines
| | - Jomar Rabajante
- Institute
of Mathematical Sciences and Physics, College of Arts and Sciences, University of the Philippines Los Baños, Laguna 4031, Philippines
| | - Isagani Padolina
- Pascual
Pharma Corp, Core Research and Development Laboratory, UPLB Science and Technology Park, Los Baños, Laguna 4031, Philippines
| | - Ruel C. Nacario
- Institute
of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, Laguna 4031, Philippines
| |
Collapse
|
15
|
Xu Y, Wang Y, Liang L, Song N. Single-cell RNA sequencing analysis to explore immune cell heterogeneity and novel biomarkers for the prognosis of lung adenocarcinoma. Front Genet 2022; 13:975542. [PMID: 36147484 PMCID: PMC9486955 DOI: 10.3389/fgene.2022.975542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/22/2022] [Indexed: 01/17/2023] Open
Abstract
Background: Single-cell RNA sequencing is necessary to understand tumor heterogeneity, and the cell type heterogeneity of lung adenocarcinoma (LUAD) has not been fully studied. Method: We first reduced the dimensionality of the GSE149655 single-cell data. Then, we statistically analysed the subpopulations obtained by cell annotation to find the subpopulations highly enriched in tumor tissues. Monocle was used to predict the development trajectory of five subpopulations; beam was used to find the regulatory genes of five branches; qval was used to screen the key genes; and cellchart was used to analyse cell communication. Next, we used the differentially expressed genes of TCGA-LUAD to screen for overlapping genes and established a prognostic risk model through univariate and multivariate analyses. To identify the independence of the model in clinical application, univariate and multivariate Cox regression were used to analyse the relevant HR, 95% CI of HR and p value. Finally, the novel biomarker genes were verified by qPCR and immunohistochemistry. Results: The single-cell dataset GSE149655 was subjected to quality control, filtration and dimensionality reduction. Finally, 23 subpopulations were screened, and 11-cell subgroups were annotated in 23 subpopulations. Through the statistical analysis of 11 subgroups, five important subgroups were selected, including lung epithelial cells, macrophages, neuroendocrine cells, secret cells and T cells. From the analysis of cell trajectory and cell communication, it is found that the interaction of five subpopulations is very complex and that the communication between them is dense. We believe that these five subpopulations play a very important role in the occurrence and development of LUAD. Downloading the TCGA data, we screened the marker genes of these five subpopulations, which are also the differentially expressed genes in tumorigenesis, with a total of 462 genes, and constructed 10 gene prognostic risk models based on related genes. The 10-gene signature has strong robustness and can achieve stable prediction efficiency in datasets from different platforms. Two new molecular markers related to LUAD, HLA-DRB5 and CCDC50, were verified by qPCR and immunohistochemistry. The results showed that HLA-DRB5 expression was negatively correlated with the risk of LUAD, and CCDC50 expression was positively correlated with the risk of LUAD. Conclusion: Therefore, we identified a prognostic risk model including CCL20, CP, HLA-DRB5, RHOV, CYP4B1, BASP1, ACSL4, GNG7, CCDC50 and SPATS2 as risk biomarkers and verified their predictive value for the prognosis of LUAD, which could serve as a new therapeutic target.
Collapse
Affiliation(s)
| | | | - Leilei Liang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Nan Song
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
16
|
Identification of an Exosome-Related Signature for Predicting Prognosis, Immunotherapy Efficacy, and Tumor Microenvironment in Lung Adenocarcinoma. JOURNAL OF ONCOLOGY 2022; 2022:1827987. [PMID: 35966889 PMCID: PMC9365589 DOI: 10.1155/2022/1827987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/02/2022] [Indexed: 11/17/2022]
Abstract
Accumulating evidence suggests that exosomes can affect lung adenocarcinoma (LUAD) progression. However, there is still a lack of understanding of the global influence of exosome-related genes (ERGs) on prognostic relevance, tumor microenvironment features, and immunotherapy responsiveness in patients with LUAD. In the TCGA dataset, differential analysis of 490 LUAD samples and 59 normal samples yielded 30 ERGs with differential expression. We have created a predictive signature based on 10 overall survival (OS)-related ERGs and confirmed it in two external cohorts (GSE72094 and GSE68465) via the least absolute shrinkage and selection operator (LASSO) and Cox regression analysis in the TCGA dataset. The new signature revealed superior robustness and prognostic capacity for overall patient survival. Univariate and multivariate Cox regression analyses indicated that this signature was an independent risk factor for survival in patients with LUAD. In addition, for predicting the 1-year, 3-year, and 5-year OS of LUAD patients, we developed a nomogram and confirmed its predictive ability via the C-index and calibration curve. In addition, patients categorized by risk score exhibited distinct immunological states, stemness index, immune subtypes, and immunotherapy response. In conclusion, we created a risk signature for LUAD that was tightly associated with the immune landscape and therapeutic response. Also, such a risk signature effectively promotes the ability of the clinicians in making more precise and individualized treatment recommendations for patients with LUAD.
Collapse
|
17
|
Yang H, Bao Y, Jin F, Jiang C, Wei Z, Liu Z, Xu Y. Ceruloplasmin inhibits the proliferation, migration and invasion of nasopharyngeal carcinoma cells and is negatively regulated by miR-543. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:474-488. [PMID: 35306965 DOI: 10.1080/15257770.2022.2052314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Ceruloplasmin (CP), recognized as a member of multicopper oxidase family, is related to the progression of diverse cancers in human beings. This study is designed to clarify the expression characteristics, biological function and related mechanism of CP in nasopharyngeal carcinoma (NPC). METHODS CP expression in NPC tissues and cells was probed by quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC) and Western blot. After gain-of-function and loss-of-function models were established, cell counting kit-8 (CCK-8), Transwell and BrdU assays were employed to measure cell viability, migration and invasion. The targeting relationship between microRNA-543 (miR-543) and CP was verified by dual-luciferase reporter gene assay. RESULTS As against normal nasopharyngeal epithelial tissues, CP expression was significantly lower in NPC tissues, which was associated with higher clinical stage and the short overall survival time. Compared with the control group, CP overexpression markedly restrained the growth, migration and invasion of NPC cells; knocking down CP had the opposite effect. MiR-543 directly targeted CP and negatively modulated its expression. CONCLUSION CP restrains the growth, migration and invasion of NPC cells and is negatively regulated by miR-543.
Collapse
Affiliation(s)
- Hang Yang
- Department of Otolarynglogy, Jiangshan People's Hospital, Jiangshan, Zhejiang, China
| | - Yangyang Bao
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fenfen Jin
- Department of Otolarynglogy, Jiangshan People's Hospital, Jiangshan, Zhejiang, China
| | - Chonghan Jiang
- Department of Otolarynglogy, Jiangshan People's Hospital, Jiangshan, Zhejiang, China
| | - Zhanhui Wei
- Department of Otolaryngology, Traditional Chinese Medicine Hospital of Chunan County, Hangzhou, Zhejiang, China
| | - Zhenli Liu
- Department of Neurology, Traditional Chinese Medicine Hospital of Chunan County, Hangzhou, Zhejiang, China
| | - Yaping Xu
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Lin Y, An J, Zhuo X, Qiu Y, Xie W, Yao W, Yin D, Wu L, Lei D, Li C, Xie Y, Hu A, Li S. Integrative Multi-Omics Analysis of Identified SKA3 as a Candidate Oncogene Correlates with Poor Prognosis and Immune Infiltration in Lung Adenocarcinoma. Int J Gen Med 2022; 15:4635-4647. [PMID: 35535142 PMCID: PMC9078431 DOI: 10.2147/ijgm.s359987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yuansheng Lin
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Jianzhong An
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Xingli Zhuo
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Yingzhuo Qiu
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Wenjing Xie
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Wei Yao
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Dan Yin
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Linpeng Wu
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Dian Lei
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Chenghui Li
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Yuanguang Xie
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Ahu Hu
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
- Correspondence: Ahu Hu; Shengjun Li, Department of emergency and critical care medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, No. 1 Lijiang Road, Suzhou, 215000, People’s Republic of China, Email ;
| | - Shengjun Li
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| |
Collapse
|
19
|
Xia Y, Yang J, Li C, Hao X, Fan H, Zhao Y, Tang J, Wan X, Lian S, Yang J. TMT-Based Quantitative Proteomics Analysis Reveals the Panoramic Pharmacological Molecular Mechanism of β-Elemonic Acid Inhibition of Colorectal Cancer. Front Pharmacol 2022; 13:830328. [PMID: 35242040 PMCID: PMC8886227 DOI: 10.3389/fphar.2022.830328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/26/2022] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide but has limited available therapeutic methods; therefore, there is a need to develop highly efficient prevention and treatment strategies. Here, we investigated the anti-cancer activity of β-elemonic acid (EA) in CRC in vitro and in vivo. Our results showed that EA inhibited cell proliferation and migration in the CRC cell lines SW480 and HCT116. Moreover, EA significantly suppressed the growth of transplanted colorectal tumors in nude mice. Interestingly, high-throughput tandem mass tag (TMT)-based quantitative proteomics indicated that EA mainly targets tumor mitochondria and attenuates the translation of 54 mitochondrial ribosome proteins, many of which are discovered significantly upregulated in clinical CRC patients. More interestingly, EA at a low concentration (lower than 15 μg/ml) repressed the cell cycle by downregulating CDK1, CDK6, and CDC20, whereas at a high concentration (higher than 15 μg/ml), caused a non-apoptotic cell death-ferroptosis via downregulating ferritin (FTL) and upregulating transferrin (TF), ferroxidase (CP), and acyl-CoA synthetase long-chain family member 4 (ACSL4). This is the first report on the panoramic molecular mechanism of EA against CRC, which would make great contributions to developing a novel drug for colorectal cancer therapy.
Collapse
Affiliation(s)
- Yong Xia
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Jinfan Yang
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Chao Li
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Xiaopeng Hao
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, China
| | - Huixia Fan
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Yuyang Zhao
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, China
| | - Jinfu Tang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, China
| | - Xiufu Wan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, China
| | - Sen Lian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, China
| |
Collapse
|
20
|
Liu C, Liu Y, Yu Y, Zhao Y, Yu A. Comprehensive analysis of ferroptosis-related genes and prognosis of cutaneous melanoma. BMC Med Genomics 2022; 15:39. [PMID: 35232428 PMCID: PMC8886785 DOI: 10.1186/s12920-022-01194-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/24/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cutaneous Melanoma (CM) is a malignant disease with increasing incidence and high mortality. Ferroptosis is a new kind of cell death and related to tumor blood and lymphatic metastasis. This study aims at using bioinformatics technology to construct a prognostic signature and identify ferroptosis-related biomarkers to improve the prognosis and treatment of cutaneous melanoma. METHODS We used bioinformatics tools to analyze RNA sequencing expression data with clinical information from multiple databases, utilized varieties of statistical methods to construct a ferroptosis-related prognostic signature of cutaneous melanoma and screened out specific genes with independent prognostic ability. RESULTS We obtained 22 ferroptosis-related (P < 0.05) prognostic DEGs in the uniCox regression analysis, among which 10 high-expressed genes (ATG5, CHAC1, FANCD2, FBXL5, HMOX2, HSPB1, NQO1, PEBP1, PRNP, SLC3A2) were screened out by LASSO regression analysis to establish a predictive model. Meanwhile, the ferroptosis-related signature and the nomogram we drew performed an excellent performance based on Kaplan-Meier (K-M), Receiver operating characteristic (ROC) and calibration curves. Univariate and multivariable cox analyses displayed that our model was greater than other prognostic features. GO and KEGG analyses revealed that 10-biomarker signature was mainly related to epidermis differentiation and immunity. ssGSEA analysis indicated that the immune status between the two risk groups was highly different. Besides, we found that two genes (CP, ZEB1) had independent prognostic ability and can be applied for drug research. Both genes were highly related to immunity. GSEA illustrated that ZEB1 may be involved in cellular functions such as proliferation, apoptosis, and migration, while CP was closely connected to immune cell related functions. CONCLUSION The present study suggested a 10-biomarker signature can be clinically used to predict the prognosis of cutaneous melanoma, which was better than conventional factors. CP and ZEB1 were independent prognostic genes and can be applied to guide treatment. In addition, ZEB1 mutation was highly related to overall survival in cutaneous melanoma, while CP may be associated with tumor progression. Our study comprehensively analyzed the relationship between iron metabolism, ferroptosis-related genes, and the prognosis of cutaneous melanoma, provided new insight for molecular mechanisms and treatment of ferroptosis and cutaneous melanoma.
Collapse
Affiliation(s)
- Changjiang Liu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China
| | - Yuhang Liu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China
| | - Yifeng Yu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China
| | - Yong Zhao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China
| | - Aixi Yu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China.
| |
Collapse
|
21
|
Jiang A, Wang J, Liu N, Zheng X, Li Y, Ma Y, Zheng H, Chen X, Fan C, Zhang R, Fu X, Yao Y. Integration of Single-Cell RNA Sequencing and Bulk RNA Sequencing Data to Establish and Validate a Prognostic Model for Patients With Lung Adenocarcinoma. Front Genet 2022; 13:833797. [PMID: 35154287 PMCID: PMC8829512 DOI: 10.3389/fgene.2022.833797] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/14/2022] [Indexed: 12/27/2022] Open
Abstract
Background: Lung adenocarcinoma (LUAD) remains a lethal disease worldwide, with numerous studies exploring its potential prognostic markers using traditional RNA sequencing (RNA-seq) data. However, it cannot detect the exact cellular and molecular changes in tumor cells. This study aimed to construct a prognostic model for LUAD using single-cell RNA-seq (scRNA-seq) and traditional RNA-seq data. Methods: Bulk RNA-seq data were downloaded from The Cancer Genome Atlas (TCGA) database. LUAD scRNA-seq data were acquired from Gene Expression Omnibus (GEO) database. The uniform manifold approximation and projection (UMAP) was used for dimensionality reduction and cluster identification. Weighted Gene Correlation Network Analysis (WGCNA) was utilized to identify key modules and differentially expressed genes (DEGs). The non-negative Matrix Factorization (NMF) algorithm was used to identify different subtypes based on DEGs. The Cox regression analysis was used to develop the prognostic model. The characteristics of mutation landscape, immune status, and immune checkpoint inhibitors (ICIs) related genes between different risk groups were also investigated. Results: scRNA-seq data of four samples were integrated to identify 13 clusters and 9cell types. After applying differential analysis, NK cells, bladder epithelial cells, and bronchial epithelial cells were identified as significant cell types. Overall, 329 DEGs were selected for prognostic model construction through differential analysis and WGCNA. Besides, NMF identified two clusters based on DEGs in the TCGA cohort, with distinct prognosis and immune characteristics being observed. We developed a prognostic model based on the expression levels of six DEGs. A higher risk score was significantly correlated with poor survival outcomes but was associated with a more frequent TP53 mutation rate, higher tumor mutation burden (TMB), and up-regulation of PD-L1. Two independent external validation cohorts were also adopted to verify our results, with consistent results observed in them. Conclusion: This study constructed and validated a prognostic model for LUAD by integrating 10× scRNA-seq and bulk RNA-seq data. Besides, we observed two distinct subtypes in this population, with different prognosis and immune characteristics.
Collapse
Affiliation(s)
- Aimin Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingjing Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Na Liu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoqiang Zheng
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yimeng Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuyan Ma
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Haoran Zheng
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xue Chen
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chaoxin Fan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rui Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiao Fu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yu Yao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
22
|
Schneider MA, Rozy A, Wrenger S, Christopoulos P, Muley T, Thomas M, Meister M, Welte T, Chorostowska-Wynimko J, Janciauskiene S. Acute Phase Proteins as Early Predictors for Immunotherapy Response in Advanced NSCLC: An Explorative Study. Front Oncol 2022; 12:772076. [PMID: 35174082 PMCID: PMC8841510 DOI: 10.3389/fonc.2022.772076] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/10/2022] [Indexed: 01/22/2023] Open
Abstract
In the last decade, targeting the immune system became a promising therapy in advanced lung cancer stages. However, in a clinical follow-up, patient responses to immune checkpoint inhibitors widely differ. Peripheral blood is a minimally invasive source of potential biomarkers to explain these differences. We blindly analyzed serum samples from 139 patients with non-small cell lung cancer prior to anti-PD-1 or anti-PD-L1 therapies to assess whether baseline levels of albumin (ALB), alpha-1 acid glycoprotein (AGP), alpha1-antitrypsin (AAT), alpha2-macroglobulin (A2M), ceruloplasmin (CP), haptoglobin (HP), alpha1-antichymotrypsin (ACT), serum amyloid A (SAA), and high-sensitivity C-reactive protein (hs-CRP), have a predictive value for immunotherapy success. Disease progression-free survival (PFS) was calculated based on RECIST 1.1 criteria. A multivariate Cox regression analysis, including serum levels of acute-phase proteins and clinical parameters, revealed that higher pre-therapeutic levels of HP and CP are independent predictors of a worse PFS. Moreover, a combined panel of HP and CP stratified patients into subgroups. We propose to test this panel as a putative biomarker for assessing the success of immunotherapy in patients with NSCLC.
Collapse
Affiliation(s)
- Marc A. Schneider
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
- Translational Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Adriana Rozy
- Laboratory of Molecular Diagnostics and Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Sabine Wrenger
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- Biomedical Research in End Stage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Petros Christopoulos
- Translational Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Thoracic Oncology, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Muley
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
- Translational Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Michael Thomas
- Translational Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Thoracic Oncology, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Meister
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
- Translational Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- Biomedical Research in End Stage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Joanna Chorostowska-Wynimko
- Laboratory of Molecular Diagnostics and Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Sabina Janciauskiene
- Laboratory of Molecular Diagnostics and Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- Biomedical Research in End Stage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- *Correspondence: Sabina Janciauskiene,
| |
Collapse
|
23
|
Zhang Z, Cheng X, Jiang H, Gu J, Yin Y, Shen Z, Xu C, Pu Z, Li JB, Xu G. Quantitative proteomic analysis of glycosylated proteins enriched from urine samples with magnetic ConA nanoparticles identifies potential biomarkers for small cell lung cancer. J Pharm Biomed Anal 2021; 206:114352. [PMID: 34509662 DOI: 10.1016/j.jpba.2021.114352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/21/2021] [Accepted: 08/28/2021] [Indexed: 01/08/2023]
Abstract
Lung cancer has high morbidity and mortality and small cell lung cancer (SCLC) is a highly invasive malignant tumor with a very unfavorable survival rate. Early diagnosis and treatment can result in better prognosis for the SCLC patients but current diagnostic methods are either invasive or incapable for large-scale screen. Therefore, discovering biomarkers for early diagnosis of SCLC is of importance. In this work, we covalently coupled Concanavalin A (ConA) to functionalized magnetic nanoparticles to obtain magnetic ConA-nanoparticles (ConA-NPs) for the enrichment of glycosylated proteins. We then purified glycosylated proteins in 36 urine samples from 9 healthy controls, 9 SCLC patients, 9 lung adenocarcinoma (LUAD) patients, and 9 lung squamous cell carcinoma (LUSC) patients. The purified glycosylated proteins were digested and analyzed by LC-MS/MS for identification and quantification. Among the 398 identified proteins, 20, 15, and 1 glycosylated protein(s), respectively, were upregulated in the urine of SCLC, LUAD, and LUSC patients. Immunoblotting experiments further demonstrated that cathepsin C and transferrin were significantly upregulated in the ConA-NP purified urine of SCLC patients. This work suggests that glycosylated cathepsin C and transferrin might be able to serve as potential biomarkers for the noninvasive diagnosis of SCLC patients.
Collapse
Affiliation(s)
- Zhiyu Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China; Medical School of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Xinyu Cheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China; Medical School of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Honglv Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Jingyu Gu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China; Medical School of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Yunfei Yin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China; Medical School of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Zhijia Shen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China; Medical School of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Changgang Xu
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Zhongjian Pu
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu 226600, China
| | - Jia-Bin Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
24
|
Chen F, Han B, Meng Y, Han Y, Liu B, Zhang B, Chang Y, Cao P, Fan Y, Tan K. Ceruloplasmin correlates with immune infiltration and serves as a prognostic biomarker in breast cancer. Aging (Albany NY) 2021; 13:20438-20467. [PMID: 34413268 PMCID: PMC8436892 DOI: 10.18632/aging.203427] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 08/02/2021] [Indexed: 12/29/2022]
Abstract
Breast-invasive carcinoma (BRCA) is the most frequent and malignant tumor in females. Ceruloplasmin (CP) is a multifunctional molecule involved in iron metabolism, but its expression profile, prognostic potential and relationship with immune cell infiltration in BRCA are unknown. Ceruloplasmin mRNA and protein expression was significantly decreased in BRCA patients according to the Oncomine, UALCAN, GEPIA and TCGA databases. Ceruloplasmin expression was strongly correlated with various clinicopathological features of BRCA patients. BRCA patients with high ceruloplasmin expression exhibited shorter survival times than those with low ceruloplasmin expression based on the Kaplan-Meier plotter and PrognoScan databases. GO and KEGG analyses and GSEA revealed a strong correlation between ceruloplasmin and various immune-related pathways. Ceruloplasmin expression was significantly associated with the infiltration of immune cells into tumor sites by analyzing the TIMER and CIBERSORT. Additionally, ceruloplasmin was positively correlated with immune checkpoints in BRCA. These findings suggest that low ceruloplasmin expression correlates with a favorable prognosis and tumor immune cell infiltration in BRCA patients. Ceruloplasmin may serve as a therapeutic target and predict the efficacy of immunotherapy for BRCA.
Collapse
Affiliation(s)
- Fei Chen
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Bihui Han
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Yanxiu Meng
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Yu Han
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Bing Liu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Bo Zhang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Yanzhong Chang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Pengxiu Cao
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Yumei Fan
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Ke Tan
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| |
Collapse
|
25
|
Shiba-Ishii A. Significance of stratifin in early progression of lung adenocarcinoma and its potential therapeutic relevance. Pathol Int 2021; 71:655-665. [PMID: 34324245 DOI: 10.1111/pin.13147] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/06/2021] [Indexed: 12/21/2022]
Abstract
Lung cancer is the most common cause of global cancer-related mortality, and the main histological type is adenocarcinoma, accounting for 50% of non-small cell lung cancer. In 2015, the World Health Organization (WHO) histological classification defined the concepts of "adenocarcinoma in situ" (AIS) and "minimally invasive adenocarcinoma" (MIA), which are considered to be adenocarcinomas at a very early stage. Although AIS and MIA have a very favorable outcome, once they progress to early but invasive adenocarcinoma (eIA), they can sometimes have a fatal outcome. We previously compared the expression profiles of eIA and AIS, and identified stratifin (SFN; 14-3-3 sigma) as a protein showing significantly higher expression in eIA than in AIS. Expression of SFN is controlled epigenetically by DNA demethylation, and its overexpression is significantly correlated with poorer outcome. In vitro and in vivo analyses have shown that SFN facilitates early progression of adenocarcinoma by enhancing cell proliferation. This review summarizes genetic and epigenetic abnormalities that can occur in early-stage lung adenocarcinoma and introduces recent findings regarding the biological significance of SFN overexpression during the course of lung adenocarcinoma progression. Therapeutic strategies for targeting SFN are also discussed.
Collapse
Affiliation(s)
- Aya Shiba-Ishii
- Department of Diagnostic Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| |
Collapse
|
26
|
Aibara N, Miyata Y, Araki K, Sagara Y, Mitsunari K, Matsuo T, Ohba K, Mochizuki Y, Sakai H, Ohyama K. Detection of Novel Urine Markers Using Immune Complexome Analysis in Bladder Cancer Patients: A Preliminary Study. In Vivo 2021; 35:2073-2080. [PMID: 34182482 DOI: 10.21873/invivo.12476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND/AIM Little is known on urine biomarkers that are associated with malignant behavior in patients with bladder cancer (BC). Our aim was to identify BC-related factors in urine samples using our original method "immune complexome analysis", based on detecting the immune complex (IC). PATIENTS AND METHODS Immune complexome analysis was performed using urine samples from 97 BC patients, including 67 with non-muscle invasive BC (NMIBC). RESULTS Eight IC-antigens were recognized as candidates for BC-related factors from 20,165 proteins. IC-serum albumin, -fibrinogen γ chain, -hemoglobin subunit α, -hemoglobin subunit β, -ceruloplasmin, and fibrinogen β chain were significantly associated with either pathological features and/or outcome. IC-ceruloplasmin was most widely associated with pathological features in all BC patients and lamina propria invasion and urinary tract recurrence in NMIBC. CONCLUSION Based on detection of IC-antigens it was demonstrated that six IC-antigens, especially IC-ceruloplasmin, are potential urine biomarkers in BC.
Collapse
Affiliation(s)
- Nozomi Aibara
- Department of Pharmacy Practice, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasuyoshi Miyata
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kyohei Araki
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuji Sagara
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kensuke Mitsunari
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohiro Matsuo
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kojiro Ohba
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasushi Mochizuki
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hideki Sakai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kaname Ohyama
- Department of Pharmacy Practice, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
27
|
He Y, Liu X, Wang H, Wu L, Jiang M, Guo H, Zhu J, Wu S, Sun H, Chen S, Zhu Y, Zhou C, Yang Y. Mechanisms of Progression and Heterogeneity in Multiple Nodules of Lung Adenocarcinoma. SMALL METHODS 2021; 5:e2100082. [PMID: 34927899 DOI: 10.1002/smtd.202100082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/27/2021] [Indexed: 06/14/2023]
Abstract
Lung cancer remains the leading cause of cancer-related death worldwide. Lung adenocarcinoma (LUAD) is thought to be caused by precursor lesions of atypical adenoma-like hyperplasia and may have extensive in situ growth before infiltration. To explore the relevant factors in heterogeneity and evolution of lung adenocarcinoma subtypes, the authors perform single-cell RNA sequencing (scRNA-seq) on tumor and normal tissue from five multiple nodules' LUAD patients and conduct a thorough gene expression profiling of cancer cells and cells in their microenvironment at single-cell level. This study gives a deep understanding of heterogeneity and evolution in early glandular neoplasia of the lung. This dataset leads to discovery of the changes in the immune microenvironment during the development of LUAD, and the development process from adenocarcinoma in situ (AIS) to invasive adenocarcinoma (IAC). This work sheds light on the direction of early tumor development and whether they are homologous.
Collapse
Affiliation(s)
- Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
| | - Xiaogang Liu
- Department of Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
| | - Liang Wu
- Department of Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
| | - Minlin Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
| | - Haoyue Guo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
| | - Junjie Zhu
- Department of Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
| | - Shengyu Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
| | - Hui Sun
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
| | - Shanhao Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
| | - Yuming Zhu
- Department of Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
| | - Yang Yang
- Department of Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, China
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| |
Collapse
|
28
|
Curcumin Treatment Identifies Therapeutic Targets within Biomarkers of Liver Colonization by Highly Invasive Mesothelioma Cells-Potential Links with Sarcomas. Cancers (Basel) 2020; 12:cancers12113384. [PMID: 33207594 PMCID: PMC7696465 DOI: 10.3390/cancers12113384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Aggressive sarcomatoid tumors designed in inbred strains of immunocompetent rats represent useful tools for both the identification of biomarkers of invasiveness and evaluation of innovative therapies. Our aim was to investigate the molecular determinants of liver colonization and potential common biomarkers of sarcomas and sarcomatoid tumors, using the most invasive (M5-T1) of our four experimental models of peritoneal sarcomatoid malignant mesothelioma in the F344 rat. Using an advanced and robust technique of quantitative proteomics and a bank of paraffin-embedded tumor and tissue samples, we analyzed changes in the proteotype patterns of the liver from normal rats, adjacent non-tumorous liver from untreated tumor-bearing rats, and liver from tumor-bearing rats positively responding to repeated administrations of curcumin given intraperitoneally. The identification of proteome alterations accounting for the antitumor effects of curcumin and changes in the liver microenvironment, which favored the induction of an immune response, could be useful to the research community. Abstract Investigations of liver metastatic colonization suggest that the microenvironment is preordained to be intrinsically hospitable to the invasive cancer cells. To identify molecular determinants of that organotropism and potential therapeutic targets, we conducted proteomic analyses of the liver in an aggressive model of sarcomatoid peritoneal mesothelioma (M5-T1). The quantitative changes between SWATH-MS (sequential window acquisition of all theoretical fragmentation spectra) proteotype patterns of the liver from normal rats (G1), adjacent non-tumorous liver from untreated tumor-bearing rats (G2), and liver from curcumin-treated rats without hepatic metastases (G3) were compared. The results identified 12 biomarkers of raised immune response against M5-T1 cells in G3 and 179 liver biomarker changes in (G2 vs. G1) and (G3 vs. G2) but not in (G3 vs. G1). Cross-comparing these 179 candidates with proteins showing abundance changes related to increasing invasiveness in four different rat mesothelioma tumor models identified seven biomarkers specific to the M5-T1 tumor. Finally, analysis of correlations between these seven biomarkers, purine nucleoside phosphorylase being the main biomarker of immune response, and the 179 previously identified proteins revealed a network orchestrating liver colonization and treatment efficacy. These results highlight the links between potential targets, raising interesting prospects for optimizing therapies against highly invasive cancer cells exhibiting a sarcomatoid phenotype and sarcoma cells.
Collapse
|
29
|
Tsai YM, Wu KL, Chang YY, Chang WA, Huang YC, Jian SF, Tsai PH, Lin YS, Chong IW, Hung JY, Hsu YL. Loss of miR-145-5p Causes Ceruloplasmin Interference with PHD-Iron Axis and HIF-2α Stabilization in Lung Adenocarcinoma-Mediated Angiogenesis. Int J Mol Sci 2020; 21:ijms21145081. [PMID: 32708433 PMCID: PMC7404111 DOI: 10.3390/ijms21145081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022] Open
Abstract
For decades, lung cancer has been the leading cause of cancer-related death worldwide. Hypoxia-inducible factors (HIFs) play critical roles in mediating lung cancer development and metastasis. The present study aims to clarify how HIF’s over-activation affects lung cancer angiogenesis not only in a normoxic condition, but also a hypoxic niche. Our study shows that human lung cancer exhibits elevated levels of ceruloplasmin (CP), which has a negative impact on the prognosis of patients. CP affects the cellular Fe2+ level, which inactivates prolyl hydroxylase (PHD) 1 and 2, resulting in HIF-2α enhancement. Increased HIF-2α leads to vascular endothelial growth factor-A (VEGF-A) secretion and angiogenesis. The expression of CP is under the epigenetic control of miR-145-5p. Restoration of miR-145-5p by miRNA mimics transfection decreases CP expression, increases Fe2+ and PHD1/2 levels and HIF hydroxylation while reduced HIF-2α levels resulting in the inhibition of tumor angiogenesis. In contrast, inhibition of miR-145-5p by miRNA inhibitors increases the expression of CP and VEGF-A in lung cancer cells. Significantly, miR-145-5p expression is lost in the tumor samples of lung cancer patients, and low miR-145-5p expression is strongly correlated with a shorter overall survival time. In conclusion, the current study reveals the clinical importance and prognostic value of miR-145-5p and CP. It identifies a unique mechanism of HIF-2α over-activation, which is mediated by iron imbalance of the iron-PHD coupling that modulates tumor angiogenesis.
Collapse
Affiliation(s)
- Ying-Ming Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-C.H.); (S.-F.J.); (P.-H.T.); (Y.-S.L.); (I.-W.C.); (Y.-L.H.)
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-Y.C.); (W.-A.C.)
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Respiratory Care, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Kuan-Li Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-C.H.); (S.-F.J.); (P.-H.T.); (Y.-S.L.); (I.-W.C.); (Y.-L.H.)
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-Y.C.); (W.-A.C.)
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yung-Yun Chang
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-Y.C.); (W.-A.C.)
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wei-An Chang
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-Y.C.); (W.-A.C.)
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yung-Chi Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-C.H.); (S.-F.J.); (P.-H.T.); (Y.-S.L.); (I.-W.C.); (Y.-L.H.)
| | - Shu-Fang Jian
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-C.H.); (S.-F.J.); (P.-H.T.); (Y.-S.L.); (I.-W.C.); (Y.-L.H.)
| | - Pei-Hsun Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-C.H.); (S.-F.J.); (P.-H.T.); (Y.-S.L.); (I.-W.C.); (Y.-L.H.)
| | - Yi-Shiuan Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-C.H.); (S.-F.J.); (P.-H.T.); (Y.-S.L.); (I.-W.C.); (Y.-L.H.)
| | - Inn-Wen Chong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-C.H.); (S.-F.J.); (P.-H.T.); (Y.-S.L.); (I.-W.C.); (Y.-L.H.)
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-Y.C.); (W.-A.C.)
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Respiratory Care, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jen-Yu Hung
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-C.H.); (S.-F.J.); (P.-H.T.); (Y.-S.L.); (I.-W.C.); (Y.-L.H.)
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-Y.C.); (W.-A.C.)
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Respiratory Care, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-3121101 (ext. 2136); Fax: +886-7-3161210
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-C.H.); (S.-F.J.); (P.-H.T.); (Y.-S.L.); (I.-W.C.); (Y.-L.H.)
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|