1
|
Bontoux C, Hofman V, Abboute M, Lespinet-Fabre V, Lalvée S, Goffinet S, Bordone O, Long-Mira E, Lassalle S, Murcy F, Rignol G, Heeke S, Ilie M, Hofman P. c-Met immunohistochemistry as reflex test at diagnosis for non-small cell lung cancer: a real-world experience from a monocentric case series. J Clin Pathol 2024; 78:35-41. [PMID: 37940375 DOI: 10.1136/jcp-2023-209202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023]
Abstract
AIMS Recent clinical trials have shown promising results with drugs targeting the hepatocyte growth factor receptor (c-Met) for advanced non-small cell lung cancers overexpressing c-Met. We assessed reflex testing of c-Met immunohistochemistry (IHC) at diagnosis for NSCLC in the real-world. METHODS We retrospectively collected clinical, pathological and molecular data of cases diagnosed with NSCLC in our institution from January 2021 to June 2023. We performed c-Met IHC (SP44 clone) and scored the expression using a H-score and a three-tier classification. RESULTS 391 cases with interpretable c-Met IHC staining were included. The median age at diagnosis was 70 years (range 25-89 years) including 234 males (male/female ratio 1:5). 58% of the samples came from surgical resections, 35% from biopsies and 8% from cytological procedures. 52% of cases were classified as c-Met-positive (H-score≥150) and 19% were classified as c-Methigh (≥50%, 3+). 43% of the c-Metneg presented with lymph node and/or visceral metastases at diagnosis vs 55% for c-Methigh (p=0.042). 23% of the adenocarcinomas showed c-Methigh expression vs 3% for squamous cell carcinomas (p=0.004). 27% of the c-Metneg cases had a high PD-L1 expression vs 58% of c-Methigh cases (p<0.001). MET ex14 skipping was present in 8% of the c-Methigh cases. CONCLUSIONS Systematic c-Met testing in daily routine for NSCLC patients is feasible, highlighting a potential correlation with clinicopathological and molecular features.
Collapse
Affiliation(s)
- Christophe Bontoux
- IHU RespirERA, FHU OncoAge, Hospital-Integrated Biobank (BB-0033-00025), University Hospital Centre Nice Laboratory of Clinical and Experimental Pathology, Nice, France
- Team 4, Inserm U1081, CNRS 7284, Université Côte d'Azur, Antoine Lacassagne Cancer Center, IRCAN, Nice, France
| | - Veronique Hofman
- Team 4, Inserm U1081, CNRS 7284, Université Côte d'Azur, Antoine Lacassagne Cancer Center, IRCAN, Nice, France
- IHU RespirERA, FHU OncoAge, Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, University Hospital Centre Nice Laboratory of Clinical and Experimental Pathology, Nice, France
| | - Milissa Abboute
- IHU RespirERA, FHU OncoAge, Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, University Hospital Centre Nice Laboratory of Clinical and Experimental Pathology, Nice, France
| | - Virginie Lespinet-Fabre
- IHU RespirERA, FHU OncoAge, Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, University Hospital Centre Nice Laboratory of Clinical and Experimental Pathology, Nice, France
| | - Salomé Lalvée
- Team 4, Inserm U1081, CNRS 7284, Université Côte d'Azur, Antoine Lacassagne Cancer Center, IRCAN, Nice, France
- IHU RespirERA, FHU OncoAge, Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, University Hospital Centre Nice Laboratory of Clinical and Experimental Pathology, Nice, France
| | - Samantha Goffinet
- Team 4, Inserm U1081, CNRS 7284, Université Côte d'Azur, Antoine Lacassagne Cancer Center, IRCAN, Nice, France
- IHU RespirERA, FHU OncoAge, Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, University Hospital Centre Nice Laboratory of Clinical and Experimental Pathology, Nice, France
| | - Olivier Bordone
- IHU RespirERA, FHU OncoAge, Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, University Hospital Centre Nice Laboratory of Clinical and Experimental Pathology, Nice, France
| | - Elodie Long-Mira
- Team 4, Inserm U1081, CNRS 7284, Université Côte d'Azur, Antoine Lacassagne Cancer Center, IRCAN, Nice, France
- IHU RespirERA, FHU OncoAge, Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, University Hospital Centre Nice Laboratory of Clinical and Experimental Pathology, Nice, France
| | - Sandra Lassalle
- Team 4, Inserm U1081, CNRS 7284, Université Côte d'Azur, Antoine Lacassagne Cancer Center, IRCAN, Nice, France
- IHU RespirERA, FHU OncoAge, Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, University Hospital Centre Nice Laboratory of Clinical and Experimental Pathology, Nice, France
| | - Florent Murcy
- IHU RespirERA, FHU OncoAge, Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, University Hospital Centre Nice Laboratory of Clinical and Experimental Pathology, Nice, France
| | - Guylène Rignol
- Team 4, Inserm U1081, CNRS 7284, Université Côte d'Azur, Antoine Lacassagne Cancer Center, IRCAN, Nice, France
- IHU RespirERA, FHU OncoAge, Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, University Hospital Centre Nice Laboratory of Clinical and Experimental Pathology, Nice, France
| | - Simon Heeke
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marius Ilie
- IHU RespirERA, FHU OncoAge, Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, University Hospital Centre Nice Laboratory of Clinical and Experimental Pathology, Nice, France
| | - Paul Hofman
- Team 4, Inserm U1081, CNRS 7284, Université Côte d'Azur, Antoine Lacassagne Cancer Center, IRCAN, Nice, France
- IHU RespirERA, FHU OncoAge, Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, University Hospital Centre Nice Laboratory of Clinical and Experimental Pathology, Nice, France
| |
Collapse
|
2
|
Zhan S, Li J, Cheng B, Li C, Feng Y, Fan L, Xiong S, Zeng W, Cai Q, Xiang Y, Wang H, Li C, Chen P, Zheng X, Fu W, Hao Z, He J, Liang W. Landscape of C-MET overexpression in non-small cell lung cancer: a large-scale study of clinicomolecular features and prognosis based on Chinese data. Ther Adv Med Oncol 2024; 16:17588359241279715. [PMID: 39371619 PMCID: PMC11452854 DOI: 10.1177/17588359241279715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/14/2024] [Indexed: 10/08/2024] Open
Abstract
Background Real-world data on C-MET protein overexpression in non-small cell lung cancer (NSCLC) patients, particularly among the Asian Chinese population, are limited. Objectives This study aimed to evaluate the clinicomolecular characteristics and prognosis of C-MET overexpression in Chinese NSCLC patients, focusing on those with positive C-MET overexpression (immunohistochemistry (IHC) 3+). Design A retrospective and observational study. Methods Data were collected from NSCLC patients diagnosed at the First Affiliated Hospital of Guangzhou Medical University between November 2006 and April 2021. We identified C-MET overexpression using IHC and C-MET overexpression positivity was defined as IHC 3+ with ⩾50% tumor cells. Additionally, patient genotypes were collected for subgroup analysis. Results Data from 9785 NSCLC patients were collected. C-MET (-) accounted for 5% (503/9785), C-MET (+) for 27% (2654/9785), C-MET (++) for 36% (3464/9785), and C-MET (+++) for 32% (3164/9785). Genetic testing was available for 4326 patients. Wild-type was observed in 37% (1591 cases), with epidermal growth factor receptor (EGFR) abnormalities being the most common at 49% (2127 cases). Positive C-MET overexpression correlated significantly with women (p < 0.001), early-stage (p = 0.003), adenocarcinoma (p < 0.001), and driver mutations (p < 0.001). Patients with anaplastic lymphoma kinase (ALK) alterations had a higher occurrence of C-MET overexpression positivity (57.1%). Positive C-MET overexpression was significantly associated with EGFR (p < 0.001), ALK (p < 0.001), and KRAS alterations (p = 0.024). Compared to C-MET overexpression (IHC 0), C-MET overexpression (IHC 2+) (hazard ratio (HR) = 0.455, p < 0.001) and C-MET overexpression (IHC 3+) (HR = 0.569, p < 0.001) were correlated with better overall survival in overall NSCLC patients, especially for C-MET overexpression (IHC 2+). Conclusion Our study elucidates the clinicomolecular characteristics and prognosis of C-MET overexpression in NSCLC patients, particularly those with positive C-MET overexpression (IHC 3+). This provides insight into the prevalence of C-MET overexpression in Chinese NSCLC patients and offers a basis for considering C-MET overexpression as a prognostic and predictive marker in NSCLC.
Collapse
Affiliation(s)
- Shuting Zhan
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University and Guangzhou Institute of Respiratory Health, Guangzhou, China
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Jianfu Li
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University and Guangzhou Institute of Respiratory Health, Guangzhou, China
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Bo Cheng
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University and Guangzhou Institute of Respiratory Health, Guangzhou, China
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Caichen Li
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University and Guangzhou Institute of Respiratory Health, Guangzhou, China
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Yi Feng
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University and Guangzhou Institute of Respiratory Health, Guangzhou, China
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Lei Fan
- Department of Pathology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shan Xiong
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University and Guangzhou Institute of Respiratory Health, Guangzhou, China
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Wenchuang Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qi Cai
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University and Guangzhou Institute of Respiratory Health, Guangzhou, China
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Yang Xiang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University and Guangzhou Institute of Respiratory Health, Guangzhou, China
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Huiting Wang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University and Guangzhou Institute of Respiratory Health, Guangzhou, China
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Chunyan Li
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University and Guangzhou Institute of Respiratory Health, Guangzhou, China
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Peiling Chen
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University and Guangzhou Institute of Respiratory Health, Guangzhou, China
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Xin Zheng
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University and Guangzhou Institute of Respiratory Health, Guangzhou, China
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Wenhai Fu
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University and Guangzhou Institute of Respiratory Health, Guangzhou, China
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Zhexue Hao
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University and Guangzhou Institute of Respiratory Health, Guangzhou, China
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University and Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University and Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
- State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
- Department of Respiratory and Critical Care Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, China
| |
Collapse
|
3
|
Chen SY, Wang CT, Huang TH, Tsai JL, Wang HT, Yen YT, Tseng YL, Wu CL, Chang JM, Shiau AL. Advancing Lung Cancer Treatment with Combined c-Met Promoter-Driven Oncolytic Adenovirus and Rapamycin. Cells 2024; 13:1597. [PMID: 39329778 PMCID: PMC11430802 DOI: 10.3390/cells13181597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Lung cancer remains a formidable health challenge due to its high mortality and morbidity rates. Non-small cell lung cancer (NSCLC) constitutes approximately 85% of all lung cancer cases, with small cell lung cancer (SCLC) accounting for the remainder. Both NSCLC and SCLC cells express receptor tyrosine kinases, which may be overexpressed or mutated in lung cancer, leading to increased activation. The c-Met receptor tyrosine kinase, crucial for cell transformation and tumor growth, invasion, and metastasis, became the focus of our study. We used an E1B55KD-deleted, replication-selective oncolytic adenovirus (Ad.What), driven by the c-Met promoter, targeting lung cancer cells with c-Met overexpression, thus sparing normal cells. Previous studies have shown the enhanced antitumor efficacy of oncolytic adenoviruses when combined with chemotherapeutic agents. We explored combining rapamycin, a selective mTOR inhibitor with promising clinical trial outcomes for various cancers, with Ad.What. This combination increased infectivity by augmenting the expression of coxsackievirus and adenovirus receptors and αV integrin on cancer cells and induced autophagy. Our findings suggest that combining a c-Met promoter-driven oncolytic adenovirus with rapamycin could be an effective lung cancer treatment strategy, offering a targeted approach to exploit lung cancer cells' vulnerabilities, potentially marking a significant advancement in managing this deadly disease.
Collapse
Affiliation(s)
- Shih-Yao Chen
- Department of Nursing, College of Nursing, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan;
| | - Chung-Teng Wang
- Tong Yuan Diabetes Center, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (C.-T.W.); (C.-L.W.)
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tang-Hsiu Huang
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Jeng-Liang Tsai
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hao-Tien Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Ting Yen
- Division of Thoracic Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (Y.-T.Y.); (Y.-L.T.)
| | - Yau-Lin Tseng
- Division of Thoracic Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (Y.-T.Y.); (Y.-L.T.)
| | - Chao-Liang Wu
- Tong Yuan Diabetes Center, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (C.-T.W.); (C.-L.W.)
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 60002, Taiwan
| | - Jia-Ming Chang
- Thoracic Division, Department of Surgery, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 60002, Taiwan
- Institute of Molecular Biology, National Chung Cheng University, Chiayi 62102, Taiwan
| | - Ai-Li Shiau
- Tong Yuan Diabetes Center, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (C.-T.W.); (C.-L.W.)
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
4
|
Bontoux C, Hofman V, Chamorey E, Schiappa R, Lassalle S, Long-Mira E, Zahaf K, Lalvée S, Fayada J, Bonnetaud C, Goffinet S, Ilié M, Hofman P. Reproducibility of c-Met Immunohistochemical Scoring (Clone SP44) for Non-Small Cell Lung Cancer Using Conventional Light Microscopy and Whole Slide Imaging. Am J Surg Pathol 2024; 48:1072-1081. [PMID: 38980727 DOI: 10.1097/pas.0000000000002274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Emerging therapies for non-small cell lung cancer targeting c-Met overexpression have recently demonstrated promising results. However, the evaluation of c-Met expression can be challenging. We aimed to study the inter and intraobserver reproducibility of c-Met expression evaluation. One hundred ten cases with non-small cell lung cancer (40 biopsies and 70 surgical specimens) were retrospectively selected in a single laboratory (LPCE) and evaluated for c-Met expression. Six pathologists (4 seniors and 2 juniors) evaluated the H-score and made a 3-tier classification of c-Met expression for all cases, using conventional light microscopy (CLM) and whole slide imaging (WSI). The interobserver reproducibility with CLM gave global Cohen Kappa coefficients (ƙ) ranging from 0.581 (95% CI: 0.364-0.771) to 0.763 (95% CI: 0.58-0.92) using the c-Met 3-tier classification and H-score, respectively. ƙ was higher for senior pathologists and biopsy samples. The interobserver reproducibility with WSI gave a global ƙ ranging from 0.543 (95% CI: 0.33-0.724) to 0.905 (95% CI: 0.618-1) using the c-Met H-score and 2-tier classification (≥25% 3+), respectively. ƙ for intraobserver reproducibility between CLM and WSI ranged from 0.713 to 0.898 for the c-Met H-score and from 0.600 to 0.779 for the c-Met 3-tier classification. We demonstrated a moderate to excellent interobserver agreement for c-Met expression with a substantial to excellent intraobserver agreement between CLM and WSI, thereby supporting the development of digital pathology. However, some factors (scoring method, type of tissue samples, and expertise level) affect reproducibility. Our findings highlight the importance of establishing a consensus definition and providing further training, particularly for inexperienced pathologists, for c-Met immunohistochemistry assessment in clinical practice.
Collapse
Affiliation(s)
- Christophe Bontoux
- Laboratory of Clinical and Experimental Pathology
- Hospital-Integrated Biobank
- Team 4, Institute of Research on Cancer and Aging of Nice Inserm U1081, CNRS UMR7284, Côte d'Azur University
- FHU OncoAge, Côte d'Azur University
- University Hospital Institute RespirERA, Côte d'Azur University, Pasteur Hospital, CHU of Nice
| | - Véronique Hofman
- Laboratory of Clinical and Experimental Pathology
- Hospital-Integrated Biobank
- Team 4, Institute of Research on Cancer and Aging of Nice Inserm U1081, CNRS UMR7284, Côte d'Azur University
- FHU OncoAge, Côte d'Azur University
- University Hospital Institute RespirERA, Côte d'Azur University, Pasteur Hospital, CHU of Nice
| | - Emmanuel Chamorey
- Department of Statistics, Antoine Lacassagne Cancer Center, Nice, France
| | - Renaud Schiappa
- Department of Statistics, Antoine Lacassagne Cancer Center, Nice, France
| | - Sandra Lassalle
- Laboratory of Clinical and Experimental Pathology
- Hospital-Integrated Biobank
- Team 4, Institute of Research on Cancer and Aging of Nice Inserm U1081, CNRS UMR7284, Côte d'Azur University
- FHU OncoAge, Côte d'Azur University
- University Hospital Institute RespirERA, Côte d'Azur University, Pasteur Hospital, CHU of Nice
| | - Elodie Long-Mira
- Laboratory of Clinical and Experimental Pathology
- Hospital-Integrated Biobank
- Team 4, Institute of Research on Cancer and Aging of Nice Inserm U1081, CNRS UMR7284, Côte d'Azur University
- FHU OncoAge, Côte d'Azur University
- University Hospital Institute RespirERA, Côte d'Azur University, Pasteur Hospital, CHU of Nice
| | - Katia Zahaf
- Laboratory of Clinical and Experimental Pathology
- Hospital-Integrated Biobank
- FHU OncoAge, Côte d'Azur University
- University Hospital Institute RespirERA, Côte d'Azur University, Pasteur Hospital, CHU of Nice
| | - Salomé Lalvée
- Laboratory of Clinical and Experimental Pathology
- Hospital-Integrated Biobank
- FHU OncoAge, Côte d'Azur University
- University Hospital Institute RespirERA, Côte d'Azur University, Pasteur Hospital, CHU of Nice
| | - Julien Fayada
- Laboratory of Clinical and Experimental Pathology
- Hospital-Integrated Biobank
- FHU OncoAge, Côte d'Azur University
- University Hospital Institute RespirERA, Côte d'Azur University, Pasteur Hospital, CHU of Nice
| | - Christelle Bonnetaud
- Laboratory of Clinical and Experimental Pathology
- Hospital-Integrated Biobank
- FHU OncoAge, Côte d'Azur University
- University Hospital Institute RespirERA, Côte d'Azur University, Pasteur Hospital, CHU of Nice
| | | | - Marius Ilié
- Laboratory of Clinical and Experimental Pathology
- Hospital-Integrated Biobank
- Team 4, Institute of Research on Cancer and Aging of Nice Inserm U1081, CNRS UMR7284, Côte d'Azur University
- FHU OncoAge, Côte d'Azur University
- University Hospital Institute RespirERA, Côte d'Azur University, Pasteur Hospital, CHU of Nice
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology
- Hospital-Integrated Biobank
- Team 4, Institute of Research on Cancer and Aging of Nice Inserm U1081, CNRS UMR7284, Côte d'Azur University
- FHU OncoAge, Côte d'Azur University
- University Hospital Institute RespirERA, Côte d'Azur University, Pasteur Hospital, CHU of Nice
| |
Collapse
|
5
|
Wang N, Zhang Y, Wu J, Zhu Y, Wu Y, Huang B, Zhang R, Fan J, Nie X. MET overexpression correlated with prognosis of EGFR-mutant treatment‑naïve advanced lung adenocarcinoma: a real‑world retrospective study. Clin Transl Oncol 2024; 26:1696-1707. [PMID: 38430418 DOI: 10.1007/s12094-024-03391-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/12/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND About 50-60% treatment-naïve advanced non-small-cell lung cancers were coexistence of epidermal growth factor receptor (EGFR) and mesenchymal epithelial transition (MET) overexpression. However, few studies demonstrated the prognostic value of MET protein expression in untreated EGFR-mutant lung adenocarcinoma (LUAD). METHODS A total of 235 EGFR-mutant untreated advanced LUAD patients were retrospectively enrolled. MET expression was determined using immunohistochemistry, and MET positivity was defined as 2 + or 3 + using the METmab scoring algorithm. Progression-free survival (PFS) and overall survival (OS) were analysed according to MET expression status. Independent factors predicting prognosis were identified using multivariate Cox regression analyses. RESULTS Of the 235 patients, 113 (48.1%) harboured exon 19 deletion (19_del), 103 (43.8%) had exon 21 L858R mutations, and 19 (8.1%) had other mutation types, including exon 21 L861Q, exon 18 G719A/C, exon 20 S768I, and L858R/19_del double mutations. MET-positive expression was observed in 192 (81.7%) cases. There was no significant difference in baseline clinicopathological characteristics between MET positivity and MET negativity groups. Patients were stratified by different EGFR mutation subtypes. MET-positive patients in the L858R mutation subgroup had markedly shorter PFS and OS than MET-negative patients (median PFS: 13 versus 27.5 months, p < 0.001; median OS: 29 versus not reached, p = 0.008), but no significant difference was observed in the 19_del subgroup. Multivariate Cox regression analyses indicated that MET positivity was an independent predictor for poor PFS and OS in L858R subgroup (PFS: HR = 3.059, 95% CI 1.552-6.029, p = 0.001; OS: HR = 3.511, 95% CI 1.346-9.160, p = 0.010). Additionally, an inferior survival outcome of MET positivity was observed in the L858R mutation subgroup when treated with EGFR-tyrosine kinase inhibitor (TKI) monotherapy as the first-line regimen (median PFS: 13 versus 36.5 months, p < 0.001; median OS: 29 versus not reached, p = 0.012) but not with EGFR-TKI plus platinum doublet chemotherapy. CONCLUSIONS MET positive expression was an independent predictor of poor outcomes in untreated EGFR L858R mutation advanced LUAD patients treated with first-line EGFR-TKI monotherapy.
Collapse
Affiliation(s)
- Na Wang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, China
| | - Yuan Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Junhua Wu
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, China
| | - Yili Zhu
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Ying Wu
- Department of Pathology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, Hubei, China
| | - Bo Huang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, China
| | - Ruiguang Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Jun Fan
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, China.
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Hashimoto T, Nakamura Y, Mishima S, Nakayama I, Kotani D, Kawazoe A, Kuboki Y, Bando H, Kojima T, Iida N, Shibuki T, Imai M, Fujisawa T, Nagamine M, Sakamoto N, Kuwata T, Yoshino T, Shitara K. Whole-transcriptome sequencing in advanced gastric or gastroesophageal cancer: A deep dive into its clinical potential. Cancer Sci 2024; 115:1622-1633. [PMID: 38429886 DOI: 10.1111/cas.16109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 03/03/2024] Open
Abstract
Advanced gastric and gastroesophageal junction cancers (GC/GEJCs) harbor diverse molecular signatures, highlighting the need for intricate evaluations to identify potential therapeutic targets. Although whole-transcriptome sequencing (WTS) has emerged as a useful tool for understanding these molecular intricacies, its clinical implications have yet to be fully elucidated. This study evaluated the correlation between immunohistochemistry (IHC) and WTS, compared their clinical significance, and identified potential therapeutic targets undetectable through IHC alone. We enrolled 140 patients with advanced GC/GEJC and assessed them using IHC for six pivotal biomarkers: claudin-18 (CLDN18), human epidermal growth factor receptor 2 (HER2), multiple receptor tyrosine kinases (RTKs), and programmed death ligand 1 (PD-L1). Concurrently, WTS was employed as part of the analyses in MONSTAR-SCREEN-2, a multicenter multiomics study. IHC analysis revealed 16.4% HER2, 39.3% CLDN18 (2+/3 + ≥75%), and 15.8% PD-L1 (combined positive score ≥ 10) positivity, among other molecular markers. Significant correlations were observed between IHC and WTS for all six pivotal biomarkers. Among nineteen HER2 IHC-positive patients treated with anti-HER2 therapeutics, ERBB2 status in WTS was significantly associated with progression-free survival (ERBB2-high vs. -low: median 9.0 vs. 5.6 months, log-rank p = 0.046). IHC-based molecular profiling revealed significantly high expression of CLDN18 in RTK-negative patients, with 78.4% positive for either CLDN18 or PD-L1. Additionally, WTS revealed elevated expression of pivotal biomarkers in patients displaying negative targetable biomarkers via IHC. Our findings highlighted the significant correlation between IHC and WTS, reinforcing the clinical utility of WTS. A subset with IHC-negative but WTS-positive status may benefit from specific biomarker-targeted therapies.
Collapse
Affiliation(s)
- Tadayoshi Hashimoto
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yoshiaki Nakamura
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Saori Mishima
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Izuma Nakayama
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Daisuke Kotani
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Akihito Kawazoe
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yasutoshi Kuboki
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hideaki Bando
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takashi Kojima
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Naoko Iida
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Taro Shibuki
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Mitsuho Imai
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takao Fujisawa
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Michiko Nagamine
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Japan
| | - Naoya Sakamoto
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Japan
- Division of Pathology, Exploratory Oncology Research and Clinical Research Center, Kashiwa, Japan
| | - Takeshi Kuwata
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Genetic Medicine and Services, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kohei Shitara
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
7
|
Brazel D, Nagasaka M. The development of amivantamab for the treatment of non-small cell lung cancer. Respir Res 2023; 24:256. [PMID: 37880647 PMCID: PMC10601226 DOI: 10.1186/s12931-023-02558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) patients with sensitizing oncogenic driver mutations benefit from targeted therapies. Tyrosine kinase inhibitors are highly effective against classic sensitizing epidermal growth factor receptor (EGFR) mutations, such as exon 19 deletions and exon 21 L858R point mutations. Conversely, EGFR exon 20 insertions (exon20ins) are resistant to the traditional EGFR tyrosine kinase inhibitors (TKIs). In May 2021, the US Federal Drug Administration (FDA) provided accelerated approval to amivantamab (Rybrevant) in adults with locally advanced or metastatic NSCLC with EGFR exon20ins after treatment with platinum-based chemotherapy. Amivantamab was the first EGFR/MET bispecific antibody to be approved specifically for EGFR exon20ins where there was an unmet need. Furthermore, amivantamab is being evaluated in additional settings such as post osimertinib in sensitizing EGFR mutations as well as in MET altered NSCLC. Here we discuss amivantamab in regard to its mechanism of action, preclinical and clinical data, and clinical impact for patients with EGFR exon20ins NSCLC and beyond.
Collapse
Affiliation(s)
| | - Misako Nagasaka
- University of California Irvine Department of Medicine, Orange, CA, USA.
- Chao Family Comprehensive Cancer Center, Orange, CA, USA.
- St. Marianna University School of Medicine, Kawasaki, Japan.
| |
Collapse
|
8
|
Lim JU. Update on Adjuvant Treatment in Resectable Non-Small Cell Lung Cancer and Potential Biomarkers Predicting Postoperative Relapse. Tuberc Respir Dis (Seoul) 2023; 86:14-22. [PMID: 36594192 PMCID: PMC9816492 DOI: 10.4046/trd.2022.0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022] Open
Abstract
A significant proportion of patients with non-small cell lung cancer (NSCLC) is diagnosed in the early and resectable stage. Despite the use of platinum-based adjuvant chemotherapy, there was only a marginal increase in overall survival and a 15% decrease in relapse. With the advents of immunotherapy and epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), the landscape of adjuvant treatment in completely resectable NSCLC is changing. Postoperative radiotherapy can be beneficial to patients who underwent surgical resection in certain clinical settings. In addition, new biomarkers that predict efficacy of EGFR TKI and immunotherapy as adjuvant treatment are also necessary. In this review, recent updates in adjuvant treatment in resectable NSCLC were briefly explained.
Collapse
Affiliation(s)
- Jeong Uk Lim
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea,Address for correspondence Jeong Uk Lim, M.D., Ph.D. Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10 63(yuksam)-ro, Yeongdeungpo-gu, Seoul 07345, Republic of Korea Phone 82-2-3779-1035 Fax 82-2-784-5458 E-mail
| |
Collapse
|
9
|
Zhu L, Sun L, Xu G, Song J, Hu B, Fang Z, Dan Y, Li N, Shao G. The diagnostic value of has_circ_0006423 in non-small cell lung cancer and its role as a tumor suppressor gene that sponges miR-492. Sci Rep 2022; 12:13722. [PMID: 35962012 PMCID: PMC9374755 DOI: 10.1038/s41598-022-17816-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
The diagnosis and treatment of non-small cell lung cancer (NSCLC) are not ideal. We identified NSCLC-related has_circ_0006423 in database. qRT-PCR was used to measure expression levels of hsa_circ_0006423 and miR-492 in the plasma and tissue samples, and 3 NSCLC cell lines, respectively. We analyzed the relationship between expression levels of hsa_circ_0006423 and clinicopathological factors and miR-492 expression in plasma and tissue samples. Assess the diagnostic value of hsa_circ_0006423 and miR-492 in NSCLC. Cell function vitro experiment to explore the effect of has_circ_0006423 on NSCLC. We found has_circ_0006423 is lower expressed in NSCLC and miR-492 is opposite, has_circ_0006423 and miR-492 has diagnostic value in NSCLC. In A549 and NCI-H1299 cells, hsa_circ_0006423 inhibited the proliferation, migration, and invasion of NSCLC cells by sponging miR-492 and accelerating NSCLC cell apoptosis. This effect may be due to the combination of has_circ_0006423 and miR-492 affecting the progression of NSCLC.
Collapse
Affiliation(s)
- Linwen Zhu
- Department of Cardiothoracic Surgery, Ningbo Medical Center Lihuili Hospital, 57 Xingning Road, Yinzhou District, Ningbo City, 315040, Zhejiang, China.,Department of Cardiothoracic Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo City, Zhejiang, China
| | - Lebo Sun
- Department of Cardiothoracic Surgery, Ningbo Medical Center Lihuili Hospital, 57 Xingning Road, Yinzhou District, Ningbo City, 315040, Zhejiang, China.,Department of Cardiothoracic Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo City, Zhejiang, China
| | - Guodong Xu
- Department of Cardiothoracic Surgery, Ningbo Medical Center Lihuili Hospital, 57 Xingning Road, Yinzhou District, Ningbo City, 315040, Zhejiang, China.,Department of Cardiothoracic Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo City, Zhejiang, China
| | - Jie Song
- Department of Cardiothoracic Surgery, Ningbo Medical Center Lihuili Hospital, 57 Xingning Road, Yinzhou District, Ningbo City, 315040, Zhejiang, China.,Department of Cardiothoracic Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo City, Zhejiang, China
| | - Bingchuan Hu
- Department of Cardiothoracic Surgery, Ningbo Medical Center Lihuili Hospital, 57 Xingning Road, Yinzhou District, Ningbo City, 315040, Zhejiang, China.,Department of Cardiothoracic Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo City, Zhejiang, China
| | - Zhongjie Fang
- Department of Cardiothoracic Surgery, Ningbo Medical Center Lihuili Hospital, 57 Xingning Road, Yinzhou District, Ningbo City, 315040, Zhejiang, China.,Department of Cardiothoracic Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo City, Zhejiang, China
| | - Yanggang Dan
- Department of Cardiothoracic Surgery, Ningbo Medical Center Lihuili Hospital, 57 Xingning Road, Yinzhou District, Ningbo City, 315040, Zhejiang, China.,Department of Cardiothoracic Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo City, Zhejiang, China
| | - Ni Li
- Department of Cardiothoracic Surgery, Ningbo Medical Center Lihuili Hospital, 57 Xingning Road, Yinzhou District, Ningbo City, 315040, Zhejiang, China. .,Department of Cardiothoracic Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo City, Zhejiang, China. .,Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Guofeng Shao
- Department of Cardiothoracic Surgery, Ningbo Medical Center Lihuili Hospital, 57 Xingning Road, Yinzhou District, Ningbo City, 315040, Zhejiang, China. .,Department of Cardiothoracic Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo City, Zhejiang, China.
| |
Collapse
|
10
|
Chen P, Li X, Yu X, Yang M. Ginsenoside Rg1 Suppresses Non-Small-Cell Lung Cancer via MicroRNA-126-PI3K-AKT-mTOR Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1244836. [PMID: 35815288 PMCID: PMC9270109 DOI: 10.1155/2022/1244836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/07/2022] [Accepted: 05/18/2022] [Indexed: 02/03/2023]
Abstract
As one of the most common cause of cancer death in the world, lung cancer causes approximately 1.6 million deaths annually. Among them, NSCLC accounts for approximately 85% of patients in whole lung cancer patients. Ginsenoside Rg1 has been confirmed to play an important role in various diseases including cancer. As one of miRNAs, miR-126 closely involves in pathogenesis of the several types of cancers including colorectal, prostate, bladder and gastric cancer, and so on. Thus, the present study aims to investigate effects of the Ginsenoside Rg1 on NSCLC and underlying mechanism. In the study, two lung cancer cell lines including A549 and H1650 were used. It was found that expression of miR-126 was decreased in PBMC of NSCLC patients compared to healthy control. Expression of miR-126 was decreased in cancer tissue compared to paracancerous tissues in NSCLC patients. Importantly, it was found Ginsenoside Rg1 could inhibit growth of lung cancer cells. miR-126 KD remarkably increased the expression of apoptosis genes including caspase 3 and caspase 9 and decreased cell viability in lung cancer cells including A549 and H1650 cells. Interesting, in silico analysis indicated that miR-126 could target PI3K signaling pathway, which was confirmed by WB assay. KD of PI3KR2 compromised promotion of miR-126 on cell apoptosis. Similarly, it was found that KD of mTOR compromised promotion of miR-126 on cell apoptosis. Inhibition of Ginsenoside Rg1 on growth of lung cancer cells was through miR-126 and mTOR. Thus, the present study confirmed that Ginsenoside Rg1 remarkably inhibit lung cancer, which is through microRNA-126-PI3K-AKT-mTOR pathway.
Collapse
Affiliation(s)
- Panfeng Chen
- Department of Respiratory and Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300192, China
| | - Xiaoping Li
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin 300192, China
| | - Xi Yu
- Department of Respiratory and Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300192, China
| | - Min Yang
- Department of Respiratory and Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300192, China
| |
Collapse
|
11
|
MET Expression Level in Lung Adenocarcinoma Loosely Correlates with MET Copy Number Gain/Amplification and Is a Poor Predictor of Patient Outcome. Cancers (Basel) 2022; 14:cancers14102433. [PMID: 35626038 PMCID: PMC9139916 DOI: 10.3390/cancers14102433] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/02/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary MET is a proto-oncogene and plays an important role on tumor cell survival, proliferation, metastasis, and drug resistance. Patient with MET amplification has shown an inferior outcome comparing to patients without MET amplification. Fluorescence in situ hybridization (FISH) is often used to detect MET amplification, and immunohistochemistry (IHC) is often used to assess MET expression level. Though some institutions provide both tests, IHC is more readily available in most pathology laboratories and is cheaper than FISH. This study evaluated the correlation of MET expression level with MET copy number gain/amplification, and the MET overexpression with patient’s outcome. By studying 446 patients with lung adenocarcinoma, we found that the concordance of MET expression and MET copy number gain/amplification was low; high-level of MET expression was associated with inferior outcome, but it was not an independent poor prognostic factor. These findings indicate that IHC for MET expression can’t substitute FISH analysis for MET amplification. Abstract MET amplification has been associated with shorter survival in cancer patients, however, the potential correlation of MET overexpression with either MET amplification or patient outcome is controversial. The aim of this study was to address these questions by correlating MET expression level with MET copy number and patient outcome in a cohort of 446 patients who had a lung adenocarcinoma: 88 with MET amplification, 118 with polysomy 7, and 240 with negative results by fluorescence in situ hybridization. MET expression assessed by immunohistochemistry was semi-quantified by expression level: absent (0+), weak (1+), moderate (2+) and strong (3+); or by H-score: 0–99, 100–199, and ≥200. MET expression level or H-score was positively but weakly correlated with MET copy number or MET/CEP7 ratio. Strong expression of MET (3+ or H-score ≥ 200) was associated with a shorter overall survival, but it was not an independent hazard for survival by multivariant analysis. We conclude that MET expression is loosely correlated with MET copy number gain/amplification. Strong expression of MET does not independently predict patient outcome.
Collapse
|
12
|
Brazel D, Zhang S, Nagasaka M. Spotlight on Tepotinib and Capmatinib for Non-Small Cell Lung Cancer with MET Exon 14 Skipping Mutation. LUNG CANCER (AUCKLAND, N.Z.) 2022; 13:33-45. [PMID: 35592355 PMCID: PMC9113513 DOI: 10.2147/lctt.s360574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/22/2022] [Indexed: 01/08/2023]
Abstract
Mesenchymal-epithelial transition (MET) receptor tyrosine kinase is overexpressed, amplified, or mutated in 1-20% of NSCLC. MET dysregulation is associated with a poor prognosis. Recently, development of targeted therapies against MET exon 14 mutations has demonstrated efficacy and tolerability in early trials. Here we focus on tepotinib and capmatinib in regards to molecular characteristics, early preclinical and clinical data, and the emerging role in future studies and clinical practice.
Collapse
Affiliation(s)
- Danielle Brazel
- Department of Medicine, University of California Irvine School of Medicine, Orange, CA, USA
| | - Shannon Zhang
- Department of Medicine, University of California Irvine School of Medicine, Orange, CA, USA
| | - Misako Nagasaka
- Department of Medicine, University of California Irvine School of Medicine, Orange, CA, USA
- Chao Family Comprehensive Cancer Center, Orange, CA, USA
- Department of Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
13
|
Lim JU, Yeo CD. Update on adjuvant therapy in completely resected NSCLC patients. Thorac Cancer 2021; 13:277-283. [PMID: 34898012 PMCID: PMC8807337 DOI: 10.1111/1759-7714.14277] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/25/2022] Open
Abstract
In patients with completely resected non‐small cell lung cancer (NSCLC), postoperative adjuvant chemotherapy has been associated with improvement in survival by minimizing the risk of recurrence. For years, systemic chemotherapy including platinum based regimen has been a mainstay treatment modality of adjuvant treatment after complete resection. ADAURA study showed that among completely resected IB to IIIA NSCLC, disease‐free survival was significantly better in patients under adjuvant osimertinib than a placebo group. After the advent of a variety of new treatment regimens, such as third generation TKI and immunotherapy, the landscape of postoperative adjuvant treatment has been changing. In this review, we discuss some key issues regarding choice of adjuvant treatment after complete resection in NSCLC, and provide further updates on recent advances in treatment modalities.
Collapse
Affiliation(s)
- Jeong Uk Lim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Chang Dong Yeo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
14
|
Design, Synthesis and Biological Evaluation of Novel
α‐Acyloxycarboxamide‐Based
Derivatives as
c‐Met
Inhibitors. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Tsakonas G, Martín-Bernabé A, Rounis K, Moreno-Ruiz P, Botling J, De Petris L, Ylipää A, Mezheyeuski A, Micke P, Östman A, Ekman S. High Density of NRF2 Expression in Malignant Cells Is Associated with Increased Risk of CNS Metastasis in Early-Stage NSCLC. Cancers (Basel) 2021; 13:cancers13133151. [PMID: 34202448 PMCID: PMC8268817 DOI: 10.3390/cancers13133151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 01/14/2023] Open
Abstract
Simple Summary We retrospectively analyzed 304 patients with surgically removed non-small cell lung cancer (NSCLC). Multiplex antibody staining of nuclear factor erythroid 2-related factor 2 (NRF2) and thioredoxin reductase 1 (TrxR1) was conducted and scored in cytokeratin-positive (CK+) cells within the whole-tissue core as well as the tumor and stromal compartments of each tissue microarray (TMA) core. A high density of NRF2+/CK+ cells in the whole-tissue core compartment was an independent prognostic factor, with an eightfold increase in odds regarding the risk of relapse in the central nervous system (CNS). This is the first study to report a tumor-cell-associated protein biomarker for CNS relapse in early-stage lung cancer and the first trial to report the correlation between NRF2 expression and risk of CNS relapse. The results of our study may have an impact on the follow-up strategy for early-stage NSCLC patients and eventually improve their prognosis. Abstract Nuclear factor erythroid 2-related factor 2 (NRF2) protein expression promotes cancer progression in non-small cell lung cancer (NSCLC). However, its role in the clinical setting has not been established. We retrospectively analyzed data from 304 patients with surgically removed NSCLC. Multiplex antibody staining of NRF2 and thioredoxin reductase 1 (TrxR1) was conducted and scored in cytokeratin-positive (CK+) cells within the whole-tissue core as well as the tumor and stromal compartments of each tissue microarray (TMA) core. A high density of NRF2+/CK+ cells in the whole-tissue core compartment was correlated with a higher risk of central nervous system (CNS) relapse OR = 7.36 (95% CI: 1.64–33.06). The multivariate analysis showed an OR = 8.00 (95% CI: 1.70–37.60) for CNS relapse in NRF2+/CK+ high-density cases. The density of TrxR1+/CK+ cells failed to show any statistically significant risk of relapse. The OS analyses for NRF2+/CK+ and TrxR1+/CK+ cell density failed to show any statistical significance. This is the first study to report a correlation between NRF2+/CK+ cell density and the risk of CNS relapse in early-stage NSCLC. The results of our study may impact the follow-up strategy for early-stage NSCLC patients and eventually improve their prognosis.
Collapse
Affiliation(s)
- Georgios Tsakonas
- Thoracic Oncology Center, Theme Cancer, Karolinska University Hospital, Solna, 17164 Stockholm, Sweden; (K.R.); (L.D.P.); (S.E.)
- Department of Oncology–Pathology, Karolinska Institutet, 17164 Stockholm, Sweden; (A.M.-B.); (P.M.-R.); (A.Ö.)
- Correspondence: ; Tel.: +46-(0)762129941
| | - Alfonso Martín-Bernabé
- Department of Oncology–Pathology, Karolinska Institutet, 17164 Stockholm, Sweden; (A.M.-B.); (P.M.-R.); (A.Ö.)
| | - Konstantinos Rounis
- Thoracic Oncology Center, Theme Cancer, Karolinska University Hospital, Solna, 17164 Stockholm, Sweden; (K.R.); (L.D.P.); (S.E.)
| | - Pablo Moreno-Ruiz
- Department of Oncology–Pathology, Karolinska Institutet, 17164 Stockholm, Sweden; (A.M.-B.); (P.M.-R.); (A.Ö.)
| | - Johan Botling
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (J.B.); (A.M.); (P.M.)
| | - Luigi De Petris
- Thoracic Oncology Center, Theme Cancer, Karolinska University Hospital, Solna, 17164 Stockholm, Sweden; (K.R.); (L.D.P.); (S.E.)
- Department of Oncology–Pathology, Karolinska Institutet, 17164 Stockholm, Sweden; (A.M.-B.); (P.M.-R.); (A.Ö.)
| | - Antti Ylipää
- Genevia Technologies Oy, 33100 Tampere, Finland;
| | - Artur Mezheyeuski
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (J.B.); (A.M.); (P.M.)
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (J.B.); (A.M.); (P.M.)
| | - Arne Östman
- Department of Oncology–Pathology, Karolinska Institutet, 17164 Stockholm, Sweden; (A.M.-B.); (P.M.-R.); (A.Ö.)
| | - Simon Ekman
- Thoracic Oncology Center, Theme Cancer, Karolinska University Hospital, Solna, 17164 Stockholm, Sweden; (K.R.); (L.D.P.); (S.E.)
- Department of Oncology–Pathology, Karolinska Institutet, 17164 Stockholm, Sweden; (A.M.-B.); (P.M.-R.); (A.Ö.)
| |
Collapse
|
16
|
Jiang W, Xing XL, Zhang C, Yi L, Xu W, Ou J, Zhu N. MET and FASN as Prognostic Biomarkers of Triple Negative Breast Cancer: A Systematic Evidence Landscape of Clinical Study. Front Oncol 2021; 11:604801. [PMID: 34123778 PMCID: PMC8190390 DOI: 10.3389/fonc.2021.604801] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 04/30/2021] [Indexed: 12/31/2022] Open
Abstract
Background To know the expression of Mesenchymal–Epithelial Transition factor (MET) and Fatty Acid Synthase (FASN) in Triple Negative Breast Cancer (TNBC) patients, as well as its relationship with clinical pathological characteristic and prognosis. Methods we used immunohistochemistry staining to detect the expression of MET and FASN for those 218 TNBC patients, and analyze their relationship with the clinical pathological characteristic and prognosis. Results 130 and 65 out of 218 TNBC patients were positive for MET in the cancer and adjacent tissues respectively. 142 and 30 out of 218 TNBC patients were positive for FASN in the cancer and adjacent tissues respectively. Positive expression of MET and FASN were significantly correlated with lymph node metastasis, pathological TNM, and pathological Stage. In addition, the positive expression of MET and FASN were correlated with recurrence and metastasis. The combined use of MET and FASN can better predict the survival condition. Conclusions Our results indicated that MET and FASN showed good predictive ability for TNBC. Combined use of MET and FASN were recommended in order to make a more accurate prognosis for TNBC.
Collapse
Affiliation(s)
- Weihua Jiang
- The Affiliated Tumor Hospital of Xinjiang Medical University, Wulumuqi, China
| | | | - Chenguang Zhang
- The Affiliated Tumor Hospital of Xinjiang Medical University, Wulumuqi, China
| | - Lina Yi
- The Affiliated Tumor Hospital of Xinjiang Medical University, Wulumuqi, China
| | - Wenting Xu
- The Affiliated Tumor Hospital of Xinjiang Medical University, Wulumuqi, China
| | - Jianghua Ou
- The Affiliated Tumor Hospital of Xinjiang Medical University, Wulumuqi, China
| | - Ning Zhu
- Hunan University of Medicine, Huaihua, China
| |
Collapse
|
17
|
Wang S, Ma H, Yan Y, Chen Y, Fu S, Wang J, Wang Y, Chen H, Liu J. cMET promotes metastasis and epithelial-mesenchymal transition in colorectal carcinoma by repressing RKIP. J Cell Physiol 2021; 236:3963-3978. [PMID: 33151569 DOI: 10.1002/jcp.30142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/01/2020] [Accepted: 10/23/2020] [Indexed: 02/05/2023]
Abstract
Increasing evidence indicates that c-mesenchymal-epithelial transition factor (cMET) plays an important role in the malignant progression of colorectal cancer (CRC). However, the underlying mechanism is not fully understood. As a metastasis suppressor, raf kinase inhibitory protein (RKIP) loss has been reported in many cancer types. In this study, the expression levels of cMET and RKIP in CRC tissues and cell lines were determined, and their crosstalk and potential biological effects were explored in vitro and in vivo. Our results showed that cMET was inversely correlated with RKIP. Both cMET upregulation and RKIP downregulation indicated poor clinical outcomes. Moreover, the MAPK/ERK signaling pathway was implicated in the regulation of cMET and RKIP. Overexpression of cMET promoted tumor cell epithelial-mesenchymal transition, invasion, migration, and chemoresistance, whereas the effects could be efficiently inhibited by increased RKIP. Notably, small hairpin RNA-mediated cMET knockdown dramatically suppressed cell proliferation, although no RKIP-induced influence on cell growth was observed in CRC. Altogether, cMET overexpression may contribute to tumor progression by inhibiting the antioncogene RKIP, providing preclinical justification for targeting RKIP to treat cMET-induced metastasis of CRC.
Collapse
Affiliation(s)
- Siyun Wang
- Department of PET Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Haiqing Ma
- Department of Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yan Yan
- Department of Oncology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Yu Chen
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Sirui Fu
- Department of Interventional Therapy, Zhuhai Interventional Medical Center, Zhuhai City People's Hospital/Zhuhai Hospital of Jinan University, Zhuhai, Guangdong, China
| | - Junjiang Wang
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ying Wang
- Department of Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jianhua Liu
- Department of Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Xu X, Yao L. Recent Patents on the Development of c-Met Kinase Inhibitors. Recent Pat Anticancer Drug Discov 2020; 15:228-238. [PMID: 32603284 DOI: 10.2174/1574892815666200630102344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/14/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
Background :
Receptor Tyrosine Kinases (RTKs) play critical roles in a variety of cellular
processes including growth, differentiation and angiogenesis, and in the development and progression
of many types of cancer. Mesenchymal-Epithelial Transition Factor (c-Met) kinase is one
of the types of RTKs and has become an attractive target for anti-tumor drug designing. c-Met inhibitors
have a broad prospect in tumor prevention, chemotherapy, biotherapy, and especially in tumor
resistance.
Objective:
The purpose of this article is to review recent research progress of c-Met inhibitors reported
in patents since 2015.
Methods:
A comprehensive Scifinder and Web of Science literature review was conducted to identify
all c-Met inhibitors published in patents since 2015.
Results:
There are two kinds of c-Met inhibitors, one is from natural products, and the other one is
of synthetic origin. Most of these c-Met inhibitors show potent in vivo and in vitro antitumor activities
and have potential in the treatment of cancers.
Conclusion:
c-Met kinase inhibitors have emerged as an exciting new drug class for the treatment
of all kinds of cancers, especially the Non-Small Cell Lung Cancer (NSCLC) with tumor resistance.
More studies should be conducted on natural products to find novel c-Met kinase inhibitors.
Collapse
Affiliation(s)
- Xiangming Xu
- Department of Gastroenterology, Linyi People's Hospital, No. 27, Eastern Jiefang Road, Lanshan District, Linyi 276000, Shandong, China
| | - Lei Yao
- School of Pharmacy, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, China
| |
Collapse
|
19
|
(-)-Oleocanthal as a Dual c-MET-COX2 Inhibitor for the Control of Lung Cancer. Nutrients 2020; 12:nu12061749. [PMID: 32545325 PMCID: PMC7353354 DOI: 10.3390/nu12061749] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022] Open
Abstract
Lung cancer (LC) represents the topmost mortality-causing cancer in the U.S. LC patients have overall poor survival rate with limited available treatment options. Dysregulation of the mesenchymal epithelial transition factor (c-MET) and cyclooxygenase 2 (COX2) initiates aggressive LC profile in a subset of patients. The Mediterranean extra-virgin olive oil (EVOO)-rich diet already documented to reduce multiple malignancies incidence. (-)-Oleocanthal (OC) is a naturally occurring phenolic secoiridoid exclusively occurring in EVOO and showed documented anti-breast and other cancer activities via targeting c-MET. This study shows the novel ability of OC to suppress LC progression and metastasis through dual targeting of c-MET and COX-2. Western blot analysis and COX enzymatic assay showed significant reduction in the total and activated c-MET levels and inhibition of COX1/2 activity in the lung adenocarcinoma cells A549 and NCI-H322M, in vitro. In addition, OC treatment caused a dose-dependent inhibition of the HGF-induced LC cells migration. Daily oral treatment with 10 mg/kg OC for 8 weeks significantly suppressed the LC A549-Luc progression and prevented metastasis to brain and other organs in a nude mouse tail vein injection model. Further, microarray data of OC-treated lung tumors showed a distinct gene signature that confirmed the dual targeting of c-MET and COX2. Thus, the EVOO-based OC is an effective lead with translational potential for use as a prospective nutraceutical to control LC progression and metastasis.
Collapse
|
20
|
Design, synthesis and biological evaluation of novel N-sulfonylamidine-based derivatives as c-Met inhibitors via Cu-catalyzed three-component reaction. Eur J Med Chem 2020; 200:112470. [PMID: 32505087 DOI: 10.1016/j.ejmech.2020.112470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/09/2020] [Accepted: 05/13/2020] [Indexed: 12/28/2022]
Abstract
In our continuing efforts to develop novel c-Met inhibitors as potential anticancer candidates, a series of new N-sulfonylamidine derivatives were designed, synthesized via Cu-catalyzed multicomponent reaction (MCR) as the key step, and evaluated for their in vitro biological activities against c-Met kinase and four cancer cell lines (A549, HT-29, MKN-45 and MDA-MB-231). Most of the target compounds showed moderate to significant potency at both the enzyme-based and cell-based assay and possessed selectivity for A549 and HT-29 cancer cell lines. The preliminary SAR studies demonstrated that compound 26af (c-Met IC50 = 2.89 nM) was the most promising compound compared with the positive foretinib, which exhibited the remarkable antiproliferative activities, with IC50 values ranging from 0.28 to 0.72 μM. Mechanistic studies of 26af showed the anticancer activity was closely related to the blocking phosphorylation of c-Met, leading to cell cycle arresting at G2/M phase and apoptosis of A549 cells by a concentration-dependent manner. The promising compound 26af was further identified as a relatively selective inhibitor of c-Met kinase, which also possessed an acceptable safety profile and favorable pharmacokinetic properties in BALB/c mouse. The favorable drug-likeness of 26af suggested that N-sulfonylamidines may be used as a promising scaffold for antitumor drug development. Additionally, the docking study and molecular dynamics simulations of 26af revealed a common mode of interaction with the binding site of c-Met. These positive results indicated that compound 26af is a potential anti-cancer candidate for clinical trials, and deserves further development as a selective c-Met inhibitor.
Collapse
|
21
|
Nan X, Li HJ, Fang SB, Li QY, Wu YC. Structure-based discovery of novel 4-(2-fluorophenoxy)quinoline derivatives as c-Met inhibitors using isocyanide-involved multicomponent reactions. Eur J Med Chem 2020; 193:112241. [DOI: 10.1016/j.ejmech.2020.112241] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/01/2020] [Accepted: 03/13/2020] [Indexed: 11/29/2022]
|
22
|
Tsakonas G, Lewensohn R, Botling J, Ortiz-Villalon C, Micke P, Friesland S, Nord H, Lindskog M, Sandelin M, Hydbring P, Ekman S. An immune gene expression signature distinguishes central nervous system metastases from primary tumours in non-small-cell lung cancer. Eur J Cancer 2020; 132:24-34. [PMID: 32325417 DOI: 10.1016/j.ejca.2020.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/08/2020] [Accepted: 03/18/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Dissemination of non-small-cell lung cancer (NSCLC) in the central nervous system is a frequent and challenging clinical problem. Systemic or local therapies rarely prolong survival and have modest activity regarding local control. Alterations in gene expression in brain metastasis versus primary tumour may increase aggressiveness and impair therapeutic efforts. METHODS We identified 25 patients with surgically removed NSCLC brain metastases in two different patient cohorts. For 13 of these patients, primary tumour samples were available. Gene expression analysis using the nCounter® PanCancer Immune Profiling gene expression panel (nanoString technologies Inc.) was performed in brain metastases and primary tumour samples. Identification of differentially expressed genes was conducted on normalized data using the nSolver analysis software. RESULTS We compared gene expression patterns in brain metastases with primary tumours. Brain metastasis samples displayed a distinct clustering pattern compared to primary tumour samples with a statistically significant downregulation of genes related to immune response and immune cell activation. Results from KEGG term analysis on differentially expressed genes revealed a concomitant enrichment of multiple KEGG terms associated with the immune system. We identified a 12-gene immune signature that clearly separated brain metastases from primary tumours. CONCLUSIONS We identified a unique gene downregulation pattern in brain metastases compared with primary tumours. This finding may explain the lower intracranial efficacy of systemic therapy, especially immunotherapy, in brain metastasis of patients with NSCLC.
Collapse
MESH Headings
- Adenocarcinoma of Lung/genetics
- Adenocarcinoma of Lung/pathology
- Adenocarcinoma of Lung/therapy
- Biomarkers, Tumor/genetics
- Brain Neoplasms/genetics
- Brain Neoplasms/secondary
- Brain Neoplasms/therapy
- Carcinoma, Large Cell/genetics
- Carcinoma, Large Cell/pathology
- Carcinoma, Large Cell/therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/therapy
- Combined Modality Therapy
- Female
- Follow-Up Studies
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/therapy
- Lymphatic Metastasis
- Male
- Middle Aged
- Prognosis
- Small Cell Lung Carcinoma/genetics
- Small Cell Lung Carcinoma/pathology
- Small Cell Lung Carcinoma/therapy
- Transcriptome
Collapse
Affiliation(s)
- Georgios Tsakonas
- Thoracic Oncology Center, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology and Pathology, Karolinska Institutet, Visionsgatan 4, 17164 Stockholm, Sweden
| | - Rolf Lewensohn
- Thoracic Oncology Center, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology and Pathology, Karolinska Institutet, Visionsgatan 4, 17164 Stockholm, Sweden
| | - Johan Botling
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala Sweden
| | - Cristian Ortiz-Villalon
- Department of Oncology and Pathology, Karolinska Institutet, Visionsgatan 4, 17164 Stockholm, Sweden
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala Sweden
| | - Signe Friesland
- Thoracic Oncology Center, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology and Pathology, Karolinska Institutet, Visionsgatan 4, 17164 Stockholm, Sweden
| | - Helena Nord
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Magnus Lindskog
- Department of Immunology, Genetics and Pathology, Uppsala University/Department of Oncology, Uppsala University Hospital, Sweden
| | - Martin Sandelin
- Department of Medical Sciences, Uppsala University/ Department of Oncology, Uppsala University Hospital, Sweden
| | - Per Hydbring
- Department of Oncology and Pathology, Karolinska Institutet, Visionsgatan 4, 17164 Stockholm, Sweden
| | - Simon Ekman
- Thoracic Oncology Center, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology and Pathology, Karolinska Institutet, Visionsgatan 4, 17164 Stockholm, Sweden.
| |
Collapse
|
23
|
Russo A, Lopes AR, McCusker MG, Garrigues SG, Ricciardi GR, Arensmeyer KE, Scilla KA, Mehra R, Rolfo C. New Targets in Lung Cancer (Excluding EGFR, ALK, ROS1). Curr Oncol Rep 2020; 22:48. [PMID: 32296961 DOI: 10.1007/s11912-020-00909-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Over the last two decades, the identification of targetable oncogene drivers has revolutionized the therapeutic landscape of non-small cell lung cancer (NSCLC). The extraordinary progresses made in molecular biology prompted the identification of several rare molecularly defined subgroups. In this review, we will focus on the novel and emerging actionable oncogenic drivers in NSCLC. RECENT FINDINGS Recently, novel oncogene drivers emerged as promising therapeutic targets besides the well-established EGFR mutations, and ALK/ROS1 rearrangements, considerably expanding the list of potential exploitable genetic aberrations. However, the therapeutic algorithm in these patients is far less defined. The identification of uncommon oncogene drivers is reshaping the diagnostic and therapeutic approach to NSCLC. The introduction of novel highly selective inhibitors is expanding the use of targeted therapies to rare and ultra-rare subsets of patients, further increasing the therapeutic armamentarium of advanced NSCLC.
Collapse
Affiliation(s)
- Alessandro Russo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S Greene Street Rm. N9E08, Baltimore, MD, 21201, USA.,Medical Oncology Unit, A.O. Papardo & Department of Human Pathology, University of Messina, Contrada Papardo, 98158, Messina, Italy
| | - Ana Rita Lopes
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S Greene Street Rm. N9E08, Baltimore, MD, 21201, USA.,Portuguese Institute of Oncology (IPO), Porto, Portugal
| | - Michael G McCusker
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S Greene Street Rm. N9E08, Baltimore, MD, 21201, USA
| | - Sandra Gimenez Garrigues
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S Greene Street Rm. N9E08, Baltimore, MD, 21201, USA
| | - Giuseppina R Ricciardi
- Medical Oncology Unit, A.O. Papardo & Department of Human Pathology, University of Messina, Contrada Papardo, 98158, Messina, Italy
| | - Katherine E Arensmeyer
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S Greene Street Rm. N9E08, Baltimore, MD, 21201, USA
| | - Katherine A Scilla
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S Greene Street Rm. N9E08, Baltimore, MD, 21201, USA
| | - Ranee Mehra
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S Greene Street Rm. N9E08, Baltimore, MD, 21201, USA
| | - Christian Rolfo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S Greene Street Rm. N9E08, Baltimore, MD, 21201, USA.
| |
Collapse
|
24
|
Ma G, Deng Y, Chen W, Liu Z, Ai C, Li X, Zhou Q. The Prognostic Role of MET Protein Expression Among Surgically Resected Non-small Cell Lung Cancer Patients: A Meta-Analysis. Front Oncol 2020; 9:1441. [PMID: 31921688 PMCID: PMC6933606 DOI: 10.3389/fonc.2019.01441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/03/2019] [Indexed: 02/05/2023] Open
Abstract
Objectives: MET protein expression has been reported to be in relevance with the survival of NSCLC patients in various studies, yet the results were inconsistent. The purpose of our study set out to determine the prognostic role of both c-MET and p-MET expression among NSCLC that underwent surgical resection. Methods: Data were obtained from retrospective cohort studies by searching on PubMed, Cochrane Library, EMBASE and Web of Science, and a meta-analysis was performed to assess the prognostic role of MET expression among NSCLC. Results: Totally 18 literatures including 5,572 surgically resected NSCLC cases staged I-IV were included for data synthesis. The positive rate of c-MET and p-MET was 1,753/4,315 and 135/1,257. The pooled hazard ratios (HRs) regarding c-MET and p-MET expression for overall survival (OS) was 1.623 (95% CI: 1.176–2.240, p = 0.003) and 1.710 (95% CI: 0.823–3.533, p = 0.15), respectively. Subgroup analysis results on Asian (HR = 2.115, p < 0.001), adenocarcinoma (HR = 2.220, p < 0.001) and rabbit polyclonal antibodies (HR = 2.107, p < 0.001) etc. were also indicative. Conclusion: C-MET over-expression among NSCLC patients that underwent surgical resection is a prognostic factor that indicated adverse survival on OS. Whereas, p-met didn't appear to have an impact on the prognosis of NSCLC. The studies are need and the topic could be re-valued by then.
Collapse
Affiliation(s)
- Guangzhi Ma
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yunfu Deng
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjie Chen
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenkun Liu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Ai
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xuebing Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Qinghua Zhou
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|