1
|
Pell LG, Horne RG, Huntley S, Rahman H, Kar S, Islam MS, Evans KC, Saha SK, Campigotto A, Morris SK, Roth DE, Sherman PM. Antimicrobial susceptibilities and comparative whole genome analysis of two isolates of the probiotic bacterium Lactiplantibacillus plantarum, strain ATCC 202195. Sci Rep 2021; 11:15893. [PMID: 34354117 PMCID: PMC8342526 DOI: 10.1038/s41598-021-94997-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022] Open
Abstract
A synbiotic containing Lactiplantibacillus plantarum [American Type Culture Collection (ATCC) strain identifier 202195] and fructooligosaccharide was reported to reduce the risk of sepsis in young infants in rural India. Here, the whole genome of two isolates of L. plantarum ATCC 202195, which were deposited to the ATCC approximately 20 years apart, were sequenced and analyzed to verify their taxonomic and strain-level identities, identify potential antimicrobial resistant genes and virulence factors, and identify genetic characteristics that may explain the observed clinical effects of L. plantarum ATCC 202195. Minimum inhibitory concentrations for selected antimicrobial agents were determined using broth dilution and gradient strip diffusion techniques. The two L. plantarum ATCC 202195 isolates were genetically identical with only three high-quality single nucleotides polymorphisms identified, and with an average nucleotide identity of 99.99%. In contrast to previously published reports, this study determined that each isolate contained two putative plasmids. No concerning acquired or transferable antimicrobial resistance genes or virulence factors were identified. Both isolates were sensitive to several clinically important antibiotics including penicillin, ampicillin and gentamicin, but resistant to vancomycin. Genes involved in stress response, cellular adhesion, carbohydrate metabolism and vitamin biosynthesis are consistent with features of probiotic organisms.
Collapse
Affiliation(s)
- Lisa G Pell
- Centre for Global Child Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Rachael G Horne
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Stuart Huntley
- International Flavors & Fragrances Inc., Madison, WI, USA
| | | | - Sanchita Kar
- Child Health Research Foundation, Dhaka, Bangladesh
| | | | - Kara C Evans
- International Flavors & Fragrances Inc., Madison, WI, USA
| | - Samir K Saha
- Child Health Research Foundation, Dhaka, Bangladesh
| | - Aaron Campigotto
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Microbiology, Hospital for Sick Children, Toronto, ON, Canada
| | - Shaun K Morris
- Centre for Global Child Health, Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Division of Infectious Diseases, Hospital for Sick Children, Toronto, ON, Canada
| | - Daniel E Roth
- Centre for Global Child Health, Hospital for Sick Children, Toronto, ON, Canada.
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
- Paediatric Medicine and Child Health Evaluative Sciences, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada.
| | - Philip M Sherman
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
2
|
Gut microbiota metabolism of functional carbohydrates and phenolic compounds from soaked and germinated purple rice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103787] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
3
|
Analysis of Health Benefits Conferred by Lactobacillus Species from Kefir. Nutrients 2019; 11:nu11061252. [PMID: 31159409 PMCID: PMC6627492 DOI: 10.3390/nu11061252] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 02/07/2023] Open
Abstract
Lactobacilli are among the most common microorganisms found in kefir; a traditional fermented milk beverage produced locally in many locations around the world. Kefir has been associated with a wide range of purported health benefits; such as antimicrobial activity; cholesterol metabolism; immunomodulation; anti-oxidative effects; anti-diabetic effects; anti-allergenic effects; and tumor suppression. This review critically examines and assesses these claimed benefits and mechanisms with regard to particular Lactobacillus species and/or strains that have been derived from kefir; as well as detailing further potential avenues for experimentation.
Collapse
|
4
|
De Montijo-Prieto S, Castro DJ, Reina JC, Jimenez-Valera M, Ruiz-Bravo A. Draft genome sequence of Lactobacillus plantarum C4 (CECT 9567), a potential probiotic strain isolated from kefir. Arch Microbiol 2019; 201:409-414. [PMID: 30759265 DOI: 10.1007/s00203-019-01629-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/21/2019] [Accepted: 02/04/2019] [Indexed: 12/30/2022]
Abstract
Lactobacillus plantarum C4 (CECT 9567) was isolated from kefir and has been extensively studied because of its probiotic properties. Here we report the genome sequence of this strain. The genome consists of 3,221,350 bp, and contains 3058 CDSs with an average G + C content of 44.5%. The genome harbors genes encoding the AraC-family transcription regulator, the penicillin-binding protein Pbp2A, and the Na+/H+ antiporter NapA3, which have important roles in the survival of lactobacilli in the gastrointestinal tract. Also, the genome encodes the catalase KatE, NADH peroxidase and glutathione peroxidase, which enable anaerobic respiration, and a nitrate reductase complex, which enable anaerobic respiration. Additionally, genes encoding plantaricins and sactipeptides, and genes involved in the use of fructooligosaccharides and in the production of butyric acid were also identified. BLASTn analysis revealed that 91.4% of CDSs in C4 genome aligned with those of the reference strain L. plantarum WCFS1, with a mean identity of 98.96%. The genome information of L. plantarum C4 provides the basis for understanding the probiotic properties of C4 and to consider its use as a potential component of functional foods.
Collapse
Affiliation(s)
- Soumi De Montijo-Prieto
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071, Granada, Spain
| | - David J Castro
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Jose C Reina
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Maria Jimenez-Valera
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Alfonso Ruiz-Bravo
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
5
|
Kansandee W, Moonmangmee D, Moonmangmee S, Itsaranuwat P. Characterization and Bifidobacterium sp. growth stimulation of exopolysaccharide produced by Enterococcus faecalis EJRM152 isolated from human breast milk. Carbohydr Polym 2019; 206:102-109. [DOI: 10.1016/j.carbpol.2018.10.117] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 01/10/2023]
|
6
|
Ashaolu TJ, Saibandith B, Yupanqui CT, Wichienchot S. Human colonic microbiota modulation and branched chain fatty acids production affected by soy protein hydrolysate. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13916] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Bandhita Saibandith
- Interdisciplinary Graduate School of Nutraceutical and Functional Food (IGS-NFF); Prince of Songkla University; Hat Yai, Songkhla 90112 Thailand
| | - Chutha Takahashi Yupanqui
- Interdisciplinary Graduate School of Nutraceutical and Functional Food (IGS-NFF); Prince of Songkla University; Hat Yai, Songkhla 90112 Thailand
| | - Santad Wichienchot
- Interdisciplinary Graduate School of Nutraceutical and Functional Food (IGS-NFF); Prince of Songkla University; Hat Yai, Songkhla 90112 Thailand
| |
Collapse
|
7
|
Moreno-Montoro M, Navarro-Alarcón M, Bergillos-Meca T, Giménez-Martínez R, Sánchez-Hernández S, Olalla-Herrera M. Physicochemical, Nutritional, and Organoleptic Characterization of a Skimmed Goat Milk Fermented with the Probiotic Strain Lactobacillus plantarum C4. Nutrients 2018; 10:nu10050633. [PMID: 29772827 PMCID: PMC5986512 DOI: 10.3390/nu10050633] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/09/2018] [Accepted: 05/16/2018] [Indexed: 12/16/2022] Open
Abstract
The benefits of goat milk, fermented milks, and probiotics for the humans are well documented. In this study, a novel fermented goat milk was manufactured with the putative probiotic strain Lactobacillus plantarum C4 together with L. bulgaricus and Streptococcus thermophilus. Ultrafiltration was chosen as the skimmed milk concentration method because it produced the best viscosity and syneresis and a high casein content. The viability rate of all bacterial strains was >107 cfu/mL, even after 5 weeks of storage or after in vitro gastrointestinal digestion, which is especially important for exertion of the probiotic strain functionalities. This fermented milk is also a good source of nutrients, having a low lactose and fat content, high protein proportion, and good mineral concentration. According to these data and the overall acceptability described by panelists, this fermented milk is a healthy dairy product comparable with commercially available fermented milks.
Collapse
Affiliation(s)
- Miriam Moreno-Montoro
- Department of Nutrition and Food Chemistry, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain.
| | - Miguel Navarro-Alarcón
- Department of Nutrition and Food Chemistry, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain.
| | - Triana Bergillos-Meca
- Department of Nutrition and Food Chemistry, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain.
| | - Rafael Giménez-Martínez
- Department of Nutrition and Food Chemistry, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain.
| | - Silvia Sánchez-Hernández
- Department of Nutrition and Food Chemistry, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain.
| | - Manuel Olalla-Herrera
- Department of Nutrition and Food Chemistry, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain.
| |
Collapse
|
8
|
Moreno-Montoro M, Jauregi P, Navarro-Alarcón M, Olalla-Herrera M, Giménez-Martínez R, Amigo L, Miralles B. Bioaccessible peptides released by in vitro gastrointestinal digestion of fermented goat milks. Anal Bioanal Chem 2018. [PMID: 29523944 DOI: 10.1007/s00216-018-0983-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this study, ultrafiltered goat milks fermented with the classical starter bacteria Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus salivarus subsp. thermophilus or with the classical starter plus the Lactobacillus plantarum C4 probiotic strain were analyzed using ultra-high performance liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) and/or high performance liquid chromatography-ion trap (HPLC-IT-MS/MS). Partial overlapping of the identified sequences with regard to fermentation culture was observed. Evaluation of the cleavage specificity suggested a lower proteolytic activity of the probiotic strain. Some of the potentially identified peptides had been previously reported as angiotensin-converting enzyme (ACE) inhibitory, antioxidant, and antibacterial and might account for the in vitro activity previously reported for these fermented milks. Simulated digestion of the products was conducted in the presence of a dialysis membrane to retrieve the bioaccessible peptide fraction. Some sequences with reported physiological activity resisted digestion but were found in the non-dialyzable fraction. However, new forms released by digestion, such as the antioxidant αs1-casein 144YFYPQL149, the antihypertensive αs2-casein 90YQKFPQY96, and the antibacterial αs2-casein 165LKKISQ170, were found in the dialyzable fraction of both fermented milks. Moreover, in the fermented milk including the probiotic strain, the k-casein dipeptidyl peptidase IV inhibitor (DPP-IV) 51INNQFLPYPY60 as well as additional ACE inhibitory or antioxidant sequences could be identified. With the aim of anticipating further biological outcomes, quantitative structure activity relationship (QSAR) analysis was applied to the bioaccessible fragments and led to potential ACE inhibitory sequences being proposed. Graphical abstract Ultrafiltered goat milks were fermented with the classical starter bacteria (St) and with St plus the L. plantarum C4 probiotic strain. Samples were analyzed using HPLC-IT-MS/MS and UPLC-Q-TOF-MS/MS. After simulated digestion and dialysis, some of the active sequences remained and new peptides with reported beneficial activities were released.
Collapse
Affiliation(s)
- Miriam Moreno-Montoro
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain
| | - Paula Jauregi
- Department of Food and Nutritional Sciences, The University of Reading, Whiteknights, PO Box 226, Reading, RG6 6AP, UK
| | - Miguel Navarro-Alarcón
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain
| | - Manuel Olalla-Herrera
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain
| | - Rafael Giménez-Martínez
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain
| | - Lourdes Amigo
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM), c/Nicolas Cabrera 9, 28049, Madrid, Spain
| | - Beatriz Miralles
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM), c/Nicolas Cabrera 9, 28049, Madrid, Spain.
| |
Collapse
|
9
|
Palachum W, Chisti Y, Choorit W. In-vitro assessment of probiotic potential of Lactobacillus plantarum WU-P19 isolated from a traditional fermented herb. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1318-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
10
|
Rokana N, Mallappa RH, Batish VK, Grover S. Interaction between putative probiotic Lactobacillus strains of Indian gut origin and Salmonella: Impact on intestinal barrier function. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Plongbunjong V, Graidist P, Knudsen KEB, Wichienchot S. Starch-based carbohydrates display the bifidogenic and butyrogenic properties in pH-controlled faecal fermentation. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13553] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Vijitra Plongbunjong
- Interdisciplinary Graduate School of Nutraceutical and Functional Food (IGS-NFF); Prince of Songkla University; Hat Yai Songkhla 90112 Thailand
| | - Potchanapond Graidist
- Department of Biomedical Science; Faculty of Medicine; Prince of Songkla University; Hat Yai Songkhla 90112 Thailand
| | - Knud Erik Bach Knudsen
- Department of Animal Science; Faculty of Science and Technology; Aarhus University; 8830 Tjele Denmark
| | - Santad Wichienchot
- Interdisciplinary Graduate School of Nutraceutical and Functional Food (IGS-NFF); Prince of Songkla University; Hat Yai Songkhla 90112 Thailand
| |
Collapse
|
12
|
Moreno-Montoro M, Olalla-Herrera M, Rufián-Henares JÁ, Martínez RG, Miralles B, Bergillos T, Navarro-Alarcón M, Jauregi P. Antioxidant, ACE-inhibitory and antimicrobial activity of fermented goat milk: activity and physicochemical property relationship of the peptide components. Food Funct 2017; 8:2783-2791. [PMID: 28702643 DOI: 10.1039/c7fo00666g] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Increasing evidence on goat milk and the health benefits of its derived products beyond its nutritional value show its potential as a functional food. In this study, goat milk fractions were tested for their total antioxidant capacity using different methods (ORAC, ABTS, DPPH and FRAP), as well as their angiotensin-I-converting-enzyme inhibitory and antimicrobial (against Escherichia coli and Micrococcus luteus) activities. Different whey fractions (whey, cation exchange membrane permeate P and retentate R) of two fermented skimmed goat milks (ultrafiltered goat milk fermented with the classical starter bacteria or with the classical starter plus the Lactobacillus plantarum C4 probiotic strain) were assessed. Additionally, P fractions were divided into two sub-fractions after being passed through a 3 kDa cut-off membrane: (a) the permeate with peptides of MW <3 kDa (P < 3); and (b) the retentate with peptides and proteins of MW >3 kDa (P > 3). No differences in biological activities were observed between the two fermented milks. However, the biological peptides present in the P < 3 fraction showed the highest total antioxidant capacity (for the ORAC assay) and angiotensin-I-converting-enzyme inhibitory activity. Those present in the R fraction showed the highest total antioxidant capacity against ABTS˙+ and DPPH˙ radicals. Some antimicrobial activity against E. coli was observed for the fermented milk containing the probiotic, which could be due to some peptides being released by the probiotic strain. In conclusion, small and non-basic bioactive peptides could be responsible for most of the angiotensin-I-converting-enzyme inhibitory and antioxidant activities. These findings reinforce the potential benefits of the consumption of fermented goat milk in the prevention of cardiovascular diseases associated with oxidative stress and hypertension.
Collapse
Affiliation(s)
- Miriam Moreno-Montoro
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain
| | - Manuel Olalla-Herrera
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain
| | - José Ángel Rufián-Henares
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain
| | - Rafael Giménez Martínez
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain
| | - Beatriz Miralles
- Instituto de Investigaciones en Ciencias de la Alimentación (CIAL, CSIC-UAM, CEI-UAM+CSIC), Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Triana Bergillos
- Department of Food and Nutritional Sciences, The University of Reading, Whiteknights, PO Box 226, Reading, RG6 6AP, UK.
| | - Miguel Navarro-Alarcón
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain
| | - Paula Jauregi
- Department of Food and Nutritional Sciences, The University of Reading, Whiteknights, PO Box 226, Reading, RG6 6AP, UK.
| |
Collapse
|
13
|
In vitro fermentation and prebiotic potential of selected extracts from seaweeds and mushrooms. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.06.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Jovanović JN, Nikolić B, Šeatović S, Zavišić G, Mitić-Ćulafić D, Vuković-Gačić B, Knežević-Vukčević J. Characterization of some potentially probiotic Lactobacillus strains of human origin. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0232-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
15
|
De Montijo-Prieto S, Moreno E, Bergillos-Meca T, Lasserrot A, Ruiz-López MD, Ruiz-Bravo A, Jiménez-Valera M. A Lactobacillus plantarum strain isolated from kefir protects against intestinal infection with Yersinia enterocolitica O9 and modulates immunity in mice. Res Microbiol 2015; 166:626-32. [PMID: 26272025 DOI: 10.1016/j.resmic.2015.07.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/20/2015] [Accepted: 07/20/2015] [Indexed: 12/29/2022]
Abstract
Lactobacillus plantarum C4, previously isolated from kefir and characterized as a potential probiotic strain, was tested for its protective and immunomodulatory capacity in a murine model of yersiniosis. The inoculation of BALB/c mice with a low pathogenicity serotype O9 strain of Yersinia enterocolitica results in a prolonged intestinal infection with colonization of Peyer's patches. Pretreatment with C4 was without effect on fecal excretion of yersiniae, but shortened the colonization of Peyer's patches. This protective effect was associated with pro-inflammatory status in the intestinal mucosa (TNF-α production in infected mice was increased by C4) and an increase in total IgA secretion. At a systemic level, C4 did not promote a pro-inflammatory response, although production of the immunoregulatory cytokine IFN-γ was enhanced. These findings suggest that L. plantarum C4 can increase resistance to intestinal infections through its immunomodulatory activity.
Collapse
Affiliation(s)
- Soumi De Montijo-Prieto
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
| | - Encarnación Moreno
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
| | - Triana Bergillos-Meca
- Department of Nutrition and Bromatology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
| | - Agustín Lasserrot
- Biotmicrogren S. L., Parque tecnológico de Ciencias de la Salud, BIC nave 6, 18100, Armilla, Granada, Spain.
| | - María-Dolores Ruiz-López
- Department of Nutrition and Bromatology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
| | - Alfonso Ruiz-Bravo
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
| | - María Jiménez-Valera
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
| |
Collapse
|