1
|
Kareem RA, Razavi SH, Mousavi ZE. Effect of Sodium Alginate-Bulk Chitosan/Chitosan Nanoparticle Wall Matrix on the Viability of Lactobacillus plantarum Under Simulated Gastrointestinal Fluids. Appl Biochem Biotechnol 2025; 197:1991-2011. [PMID: 39630335 DOI: 10.1007/s12010-024-05105-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
The viability of probiotic cells decreases during passage through the gastrointestinal tract. The process of probiotics encapsulation with sodium alginate and chitosan polymers was carried out to protect the Lactobacillus plantarum in adverse conditions. Lactobacillus plantarum was entrapped in sodium alginate/chitosan (SA/BChi) and sodium alginate/nano-chitosan (SA/NChi) wall materials. Encapsulating L. plantarum with SA/BChi and SA/NChi resulted in a high encapsulation efficiency % of ~ 86.41 to 91.09%. In addition, coating bacteria cells in encapsulants improved the survivability of the cells under the simulated gastrointestinal fluids by ~ 52.61% in SA/Chi and 58.04% in SA/NChi compared to 29% for unencapsulated forms. Probiotic beads under field emission-scanning electron microscopy (FE-SEM) were morphologically compact with a cracked appearance of SA/NChi beads. The Fourier transform-infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC) showed vigorous electrostatic interaction between polymers, as well as the high melting points, which corroborate the previous investigations in the field for using SA/BChi or SA/NChi as a promising encapsulating agent for ameliorating the survivability of probiotics under harsh conditions. The distinctive properties possessed by the two coatings make them excellent candidates for use as polymeric carriers in probiotic delivery systems.
Collapse
Affiliation(s)
- Raghda Abdulhussain Kareem
- Directorate of Agricultural Extension and Training, Ministry of Agriculture, Basrah, Iraq
- Department of Food Science, Engineering and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran
| | - Seyed Hadi Razavi
- Department of Food Science, Engineering and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran.
| | - Zeinab E Mousavi
- Department of Food Science, Engineering and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran
| |
Collapse
|
2
|
Lim JH, Kang JW. Assessing biofilm formation and resistance of vibrio parahaemolyticus on UV-aged microplastics in aquatic environments. WATER RESEARCH 2024; 254:121379. [PMID: 38422694 DOI: 10.1016/j.watres.2024.121379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
UV degradation of marine microplastics (MPs) could increase their vector potential for pathogenic bacteria and threaten human health. However, little is known about how the degree of UV aging affects interactions between MPs and pathogens and how various types of MPs differ in their impact on seafood safety. This study investigated five types of UV-aged MPs and their impact on Vibrio parahaemolyticus, a seafood pathogen. MPs exposed to UV for 60 days showed similar physicochemical changes such as surface cracking and hydrophobicity reduction. Regardless of the type, longer UV exposure of MPs resulted in more biofilm formation on the surface under the same conditions. V. parahaemolyticus types that formed biofilms on the MP surface showed 1.4- to 5.0-fold upregulation of virulence-related genes compared to those that did not form biofilms, independently of UV exposure. However, longer UV exposure increased resistance of V. parahaemolyticus on MPs to chlorine, heat, and human gastrointestinal environment. This study implies that the more UV degradation occurs on MPs, the more microbial biofilm formation is induced, which can significantly increase virulence and environmental resistance of bacteria regardless of the type of MP.
Collapse
Affiliation(s)
- Ji-Hwan Lim
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Jun-Won Kang
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea.
| |
Collapse
|
3
|
Khan WA, Butt MS, Yasmin I, Wadood SA, Mahmood A, Gad HA. Protein-polysaccharide based double network microbeads improves stability of Bifidobacterium infantis ATCC 15697 in a gastro-Intestinal tract model (TIM-1). Int J Pharm 2024; 652:123804. [PMID: 38220120 DOI: 10.1016/j.ijpharm.2024.123804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Microencapsulation of probiotics is a main technique employed to improve cell survival in gastrointestinal tract (GIT). The present study investigated the impact of utilizing proteins i.e. Whey Protein Isolates (WPI), Pea Protein Isolates (PPI) or (WPI + PPI) complex based microbeads as encapsulating agents on the encapsulation efficiency (EE), diameter, morphology along with the survival and viability of Bifidobacterium infantis ATCC 15697. Results revealed that WPI + PPI combination had the highest EE% of the probiotics up to 94.09 % and the smoothest surface with less visible holes. WPI based beads revealed lower EE% and smaller size than PPI based ones. In addition, WPI based beads showed rough surface with visible signs of cracks, while PPI beads showed dense surfaces with pores and depressions. In contrast, the combination of the two proteins resulted in compact and smooth beads with less visible pores/wrinkles. The survival in gastrointestinal tract (GIT) was observed through TNO in-vitro gastrointestinal model (TIM-1) and results illustrated that all microbeads shrank in gastric phase while swelled in intestinal phase. In addition, in-vitro survival rate of free cells was very low in gastric phase (18.2 %) and intestinal phase (27.5 %). The free cells lost their viability after 28 days of storage (2.66 CFU/mL) with a maximum log reduction of 6.76, while all the encapsulated probiotic showed more than 106-7 log CFU/g viable cell. It was concluded that encapsulation improved the viability of probiotics in GIT and utilization of WPI + PPI in combination provided better protection to probiotics.
Collapse
Affiliation(s)
- Wahab Ali Khan
- Department of Food Science and Technology, University of Home Economics Lahore, 54660 Pakistan.
| | - Masood Sadiq Butt
- National Institute of Food Science & Technology, Faculty of Food, Nutrition & Home Sciences, University of Agriculture Faisalabad, 38040 Pakistan.
| | - Iqra Yasmin
- Department of Human Nutrition and Dietetics, University of Chakwal, Chakwal, 48800 Pakistan.
| | - Syed Abdul Wadood
- Department of Food Science and Technology, University of Home Economics Lahore, 54660 Pakistan; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China.
| | - Asif Mahmood
- Department of Pharmacy, University of Chakwal, Chakwal 48800, Pakistan.
| | - Heba A Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia.
| |
Collapse
|
4
|
Gruskiene R, Lavelli V, Sereikaite J. Application of inulin for the formulation and delivery of bioactive molecules and live cells. Carbohydr Polym 2024; 327:121670. [PMID: 38171683 DOI: 10.1016/j.carbpol.2023.121670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/06/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Inulin is a fructan biosynthesized mainly in plants of the Asteraceae family. It is also found in edible vegetables and fruits such as onion, garlic, leek, and banana. For the industrial production of inulin, chicory and Jerusalem artichoke are the main raw material. Inulin is used in the food, pharmaceutical, cosmetic as well biotechnological industries. It has a GRAS status and exhibits prebiotic properties. Inulin can be used as a wall material in the encapsulation process of drugs and other bioactive compounds and the development of their delivery systems. In the review, the use of inulin for the encapsulation of probiotics, essential and fatty oils, antioxidant compounds, natural colorant and other bioactive compounds is presented. The encapsulation techniques, materials and the properties of final products suitable for the delivery into food are discussed. Research limitations are also highlighted.
Collapse
Affiliation(s)
- Ruta Gruskiene
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Vera Lavelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Jolanta Sereikaite
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania.
| |
Collapse
|
5
|
Adeel M, Afzaal M, Saeed F, Ahmed A, Mahmood K, Abbas Shah Y, Ateeq H, Sibat A, Khan MR, Busquets R. Encapsulation of probiotic bacteria using polyelectrolytes stabilized nanoliposomes for improved viability under hostile conditions. J Food Sci 2023; 88:3839-3848. [PMID: 37530623 DOI: 10.1111/1750-3841.16709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/19/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023]
Abstract
Probiotics viability and stability is a core challenge for the food processing industry. To prolong the viability of probiotics (Lactobacillus acidophilus), gelatin (GE)-chitosan (CH) polyelectrolytes-coated nanoliposomes were developed and characterized. The average particle size of the nanoliposomes was in the range of 131.7-431.6 nm. The mean zeta potential value of the nanoliposomes differed significantly from -42.2 to -9.1 mV. Scanning electron micrographs indicated that the nanoliposomes were well distributed and had a spherical shape with a smooth surface. The Fourier transform infrared spectra revealed that the GE-CH polyelectrolyte coating has been effectively applied on the surface of nanoliposomes and L. acidophilus cells were successfully encapsulated in the lipid-based nanocarriers. X-ray diffraction results indicated that nanoliposomes are semicrystalline and GE-CH polyelectrolyte coating had an influence on the crystalline nature of nanoliposomes. Moreover, the coating of L. acidophilus-loaded nanoliposomes with GE-CH polyelectrolytes significantly improved its viability when exposed to simulated gastrointestinal environments. The findings of the current study indicated that polyelectrolyte-coated nanoliposomes could be used as an effective carrier for the delivery of probiotics and their application to food matrix for manufacturing functional foods.
Collapse
Affiliation(s)
- Muhammad Adeel
- Food Safety and Biotechnology Laboratory, Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Food Safety and Biotechnology Laboratory, Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Farhan Saeed
- Food Safety and Biotechnology Laboratory, Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Aftab Ahmed
- Department of Nutritional Sciences, Government College University, Faisalabad, Pakistan
| | - Kaiser Mahmood
- School of Industrial Technology, Universiti Sains Malaysia, George Town, Malaysia
| | - Yasir Abbas Shah
- Food Safety and Biotechnology Laboratory, Department of Food Science, Government College University, Faisalabad, Pakistan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Huda Ateeq
- Food Safety and Biotechnology Laboratory, Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Amaima Sibat
- Department of Food Science and Technology, Government College Women University, Faisalabad, Pakistan
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rosa Busquets
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, Surrey, UK
| |
Collapse
|
6
|
Ali M, Cybulska J, Frąc M, Zdunek A. Application of polysaccharides for the encapsulation of beneficial microorganisms for agricultural purposes: A review. Int J Biol Macromol 2023; 244:125366. [PMID: 37327939 DOI: 10.1016/j.ijbiomac.2023.125366] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/25/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Intensive farming practices have increased the consumption of chemical-based pesticides and fertilizers thereby creating health issues for humans and animals and also causing a deterioration in the natural ecosystem. The promotion of biomaterials synthesis could potentially lead to the replacement of synthetic products and improve soil fertility, protect plants from pathogen attacks, and enhance the productivity of the agricultural sector resulting in less environmental pollution. Microbial bioengineering involving the use and improvement of encapsulation using polysaccharides has the required potential to address environmental issues and promote green chemistry. This article describes various encapsulation techniques and polysaccharides which have an immense applicable capability to encapsulate microbial cells. The review elucidates the factors that may result in a reduced viable cell count during encapsulation, particularly using the spray drying method, where a high temperature is required to dry the suspension, this may damage the microbial cells. The environmental advantage of the application of polysaccharides as carriers of beneficial microorganisms, which do not pose a risk for soil due to their full biodegradability, was also shown. The encapsulated microbial cells may assist in addressing certain environmental problems such as ameliorating the unfavourable effects of plant pests and pathogens, and promoting agricultural sustainability.
Collapse
Affiliation(s)
- Mohsin Ali
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Justyna Cybulska
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland.
| | - Madgalena Frąc
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| |
Collapse
|
7
|
Afzaal M, Saeed F, Ateeq H, Shah YA, Hussain M, Javed A, Ikram A, Raza MA, Nayik GA, Alfarraj S, Ansari MJ, Karabagias IK. Effect of Cellulose–Chitosan Hybrid-Based Encapsulation on the Viability and Stability of Probiotics under Simulated Gastric Transit and in Kefir. Biomimetics (Basel) 2022; 7:biomimetics7030109. [PMID: 35997429 PMCID: PMC9397047 DOI: 10.3390/biomimetics7030109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Encapsulation comprises a promising potential for the targeted delivery of entrapped sensitive agents into the food system. A unique combination of cellulose/chitosan (Cl-Ch)-based hybrid wall material was employed to encapsulate L. plantarum by emulsion technique. The developed beads were further subjected to morphological and in vitro studies. The viability of free and encapsulated probiotics was also evaluated in kefir during storage. The developed beads presented porous spherical structures with a rough surface. A 1.58 ± 0.02 log CFU/mL, 1.26 ± 0.01 log CFU/mL, and 1.82 ± 0.01 log CFU/mL reduction were noticed for Cl-Ch hybrid cells under simulated gastro-intestinal and thermal conditions, respectively. The encapsulated cells were found to be acidic and thermally resistant compared to the free cells. Similarly, encapsulated probiotics showed better viability in kefir at the end of the storage period compared to free cells. In short, the newly developed Cl-Ch hybrid-based encapsulation has a promising potential for the targeted delivery of probiotics, as career agents, in gastric transit, and in foods.
Collapse
Affiliation(s)
- Muhammad Afzaal
- Department of Food Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Huda Ateeq
- Department of Food Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Yasir Abbas Shah
- Department of Food Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ahsan Javed
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea
| | - Ali Ikram
- Department of Food Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Ahtisham Raza
- Department of Food Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Gulzar Ahmad Nayik
- Department of Food Science & Technology, Government Degree College Shopian, J&K 192303, India
- Correspondence: (G.A.N.); (I.K.K.)
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad, Mahatma Jyotiba Phule Rohilkhand University, Bareilly 244001, India
| | - Ioannis K. Karabagias
- Department of Food Science & Technology, School of Agricultural Sciences, University of Patras, G. Seferi 2, 30100 Agrinio, Greece
- Correspondence: (G.A.N.); (I.K.K.)
| |
Collapse
|
8
|
The Protein-Rich Powdered Beverages Stabilized with Flax Seeds Gum—Antioxidant and Antiproliferative Properties of the Potentially Bioaccessible Fraction. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The functional beverages market is one of the fastest-growing sectors of functional food production. An innovative recipe for powdered fruit and vegetable drinks fortified with lentil proteins (AGF) and stabilized with flax seed gums (FSG) was developed. The study focused on the analysis of potentially bioaccessible fractions from the produced beverages in terms of their antioxidant, antiproliferative activities and physicochemical properties. The contents of bioactive components were tailored by the incorporation of lyophilized fruits and vegetables, the FSG and the AGF. Digestion in vitro effectively released phenolics from all matrices. The highest contents of potentially bioavailable polyphenols were recorded for the AGF based beverages enriched with 5% of FSG and green-leafy vegetables (58 mg/100 mL) and those with lyophilized fruit (54 mg/100 mL). The reducing power of the beverages was mainly affected by the presence of the AGF, while the FSG and lyophilized fruit improved the chelating power. The digests applied in the concentrations mimicking physiological concentrations showed antiproliferative properties against gastric and colon adenocarcinoma—they seemed to be tailored by bioactive peptides and phenolics, respectively. The addition of the FSG improved the stability of the beverages increasing the time required for a reduction of 20% of the initial optical density by 16- and 28-times in the beverages without additives or enriched with vegetables. Both, the AGF and FSG stabilize the beverages after rehydration and are sources of bioaccessible antioxidant and anticancer components, which create their functionality.
Collapse
|
9
|
Hosseini SF, Ansari B, Gharsallaoui A. Polyelectrolytes-stabilized liposomes for efficient encapsulation of Lactobacillus rhamnosus and improvement of its survivability under adverse conditions. Food Chem 2022; 372:131358. [PMID: 34655826 DOI: 10.1016/j.foodchem.2021.131358] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/20/2021] [Accepted: 10/05/2021] [Indexed: 01/17/2023]
Abstract
To improve the survivability of Lactobacillus rhamnosus probiotics, nanoliposomes (NLs) coated with chitosan (CH)-gelatin (GE) polyelectrolytes have been synthesized and characterized. The produced CH-GE-coated NLs containing L. rhamnosus had mean sizes in the range of 134.8-495.8 nm. HRTEM showed the smooth spherical shape of the vesicles. ATR-FTIR findings indicated the successful coating of the produced NLs by the used CH-GE polyelectrolytes. According to DSC results, CH-GE polyelectrolytes desorption on the surface of NLs altered the physical characteristics of the phospholipid bilayers. Here, an increase in the melting temperature (Tm) from 119.9 to 127.5 °C in L. rhamnosus-loaded CH-GE-coated NLs made this system more stable than uncoated liposomes. Furthermore, the CH-GE coated nanoparticles loaded with L. rhamnosus exhibited a significant enhancement in the viability of cells under simulated gastrointestinal fluids (SGF/SIF). These results may guide the potential application of polyelectrolytes-coated NLs as a carrier of probiotic cells in functional food development.
Collapse
Affiliation(s)
- Seyed Fakhreddin Hosseini
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356 Noor, Iran.
| | - Bentolhoda Ansari
- Department of Food Science & Industries, Khazar Institute of Higher Education, P.O. 46315-389 Mazandaran, Mahmoodabad, Iran
| | | |
Collapse
|
10
|
Azam M, Saeed M, Ahmad T, Yamin I, Khan WA, Iqbal MW, Mahmood S, Rizwan M, Riaz T. Characterization of biopolymeric encapsulation system for improved survival of Lactobacillus brevis. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01334-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
de Marins AR, de Campos TAF, Pereira Batista AF, Correa VG, Peralta RM, Graton Mikcha JM, Gomes RG, Feihrmann AC. Effect of the addition of encapsulated Lactiplantibacillus plantarum Lp-115, Bifidobacterium animalis spp. lactis Bb-12, and Lactobacillus acidophilus La-5 to cooked burger. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Microencapsulation of a potential probiotic Lactiplantibacillus pentosus and its impregnation onto table olives. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Viability, Storage Stabilityand In Vitro Gastrointestinal Tolerance of Lactiplantibacillus plantarum Grown in Model Sugar Systems with Inulin and Fructooligosaccharide Supplementation. FERMENTATION 2021. [DOI: 10.3390/fermentation7040259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study aims to investigate the effects of inulin and fructooligosaccharides (FOS) supplementation on the viability, storage stability, and in vitro gastrointestinal tolerance of Lactiplantibacillus plantarum in different sugar systems using 24 h growth and 10 days survival studies at 37 °C, inulin, and FOS (0%, 0.5%, 1%, 2%, 3% and 4%) supplementation in 2%, 3%, and 4% glucose, fructose, lactose, and sucrose systems. Based on the highest percentage increase in growth index, sucrose and lactose were more suitable sugar substrates for inulin and FOS supplementation. In survival studies, based on cell viability, inulin supplementation showed a better protective effect than FOS in 3% and 4% sucrose and lactose systems. Four selected sucrose and lactose systems supplemented with inulin and FOS were used in a 12-week storage stability study at 4 °C. Inulin (3%, 4%) and FOS (2%, 4%) supplementation in sucrose and lactose systems greatly enhanced the refrigerated storage stability of L. plantarum. In the gastrointestinal tolerance study, an increase in the bacterial survival rate (%) showed that the supplementation of FOS in lactose and sucrose systems improved the storage viability of L. plantarum. Both inulin and FOS supplementation in sucrose and lactose systems improved the hydrophobicity, auto-aggregation, co-aggregation ability of L. plantarum with Escherichia coli and Enterococcus faecalis.
Collapse
|
14
|
Ahmed S, Ashraf F, Tariq M, Zaidi A. Aggrandizement of fermented cucumber through the action of autochthonous probiotic cum starter strains of Lactiplantibacillus plantarum and Pediococcus pentosaceus. ANN MICROBIOL 2021; 71:33. [PMID: 34483789 PMCID: PMC8406656 DOI: 10.1186/s13213-021-01645-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose Cucumber fermentation is traditionally done using lactic acid bacteria. The involvement of probiotic cultures in food fermentation guarantees enhanced organoleptic properties and protects food from spoilage. Methods Autochthonous lactic acid bacteria were isolated from spontaneously fermented cucumber and identified to species level. Only strains adjudged as safe for human consumption were examined for their technological and functional characteristics. Strain efficiency was based on maintaining high numbers of viable cells during simulated GIT conditions and fermentation, significant antioxidant activity, EPS production, nitrite degradation, and antimicrobial ability against Gram-positive and Gram-negative foodborne pathogens. Result Two strains, Lactiplantibacillus plantarum NPL 1258 and Pediococcus pentosaceus NPL 1264, showing a suite of promising functional and technological attributes, were selected as a mixed-species starter for carrying out a controlled lactic acid fermentations of a native cucumber variety. This consortium showed a faster lactic acid-based acidification with more viable cells, at 4% NaCl and 0.2% inulin (w/v) relative to its constituent strains when tested individually. Sensory evaluation rated the lactofermented cucumber acceptable based on texture, taste, aroma, and aftertaste. Conclusion The results suggest that the autochthonous LAB starter cultures can shorten the fermentation cycle and reduce pathogenic organism’ population, thus improving the shelf life and quality of fermented cucumber. The development of these new industrial starters would increase the competitiveness of production and open the country’s frontiers in the fermented vegetable market.
Collapse
Affiliation(s)
- Sadia Ahmed
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000 Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650 Pakistan
| | - Fatima Ashraf
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000 Pakistan
| | - Muhammad Tariq
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000 Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650 Pakistan
| | - Arsalan Zaidi
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000 Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650 Pakistan
| |
Collapse
|
15
|
Ahmed S, Muhammad T, Zaidi A. Cottage cheese enriched with lactobacilli encapsulated in alginate–chitosan microparticles forestalls perishability and augments probiotic activity. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sadia Ahmed
- National Probiotic Laboratory National Institute for Biotechnology and Genetic Engineering (NIBGE) Jhang Road Faisalabad38000Pakistan
- NIBGE_C, Pakistan Institute of Engineering and Applied Sciences (PIEAS) Lehtrar Road Islamabad45650Pakistan
| | - Tariq Muhammad
- National Probiotic Laboratory National Institute for Biotechnology and Genetic Engineering (NIBGE) Jhang Road Faisalabad38000Pakistan
- NIBGE_C, Pakistan Institute of Engineering and Applied Sciences (PIEAS) Lehtrar Road Islamabad45650Pakistan
| | - Arsalan Zaidi
- National Probiotic Laboratory National Institute for Biotechnology and Genetic Engineering (NIBGE) Jhang Road Faisalabad38000Pakistan
- NIBGE_C, Pakistan Institute of Engineering and Applied Sciences (PIEAS) Lehtrar Road Islamabad45650Pakistan
| |
Collapse
|
16
|
Wang C, Li D, Wang H, Guo M. Formulation and storage properties of symbiotic rice-based yogurt-like product using polymerized whey protein as a gelation agent. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1923573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Cuina Wang
- Department of Food Science, Northeast Agriculture University, Harbin, China
- Department of Food Science, Jilin University, Changchun, China
| | - Dan Li
- Department of Food Science, Jilin University, Changchun, China
| | - Hao Wang
- Department of Food Science, Northeast Agriculture University, Harbin, China
| | - Mingruo Guo
- Department of Food Science, Northeast Agriculture University, Harbin, China
- Department of Nutrition and Food Sciences, University of Vermont, Burlington, VT, USA
| |
Collapse
|
17
|
da Conceição RCN, Batista RD, Leal Zimmer FMDA, Trindade IKM, de Almeida AF, Santos CCADA. Effect of co-encapsulation using a calcium alginate matrix and fructooligosaccharides with gelatin coating on the survival of Lactobacillus paracasei cells. Braz J Microbiol 2021; 52:1503-1512. [PMID: 33840071 DOI: 10.1007/s42770-021-00484-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/29/2021] [Indexed: 11/30/2022] Open
Abstract
The demand for functional foods is increasing each year because consumers are gaining awareness about the importance of a healthy diet in the proper functioning of the body. Probiotics are among the most commonly known, commercialized, and studied foods. However, the loss of viability of probiotic products is observed during their formulation, processing, and storage. This study aimed to investigate the co-encapsulation of two Lactobacillus paracasei probiotic strains (LBC81 and ELBAL) with fructooligosaccharides (FOS) in a calcium alginate matrix using extrusion technology with gelatin as a coating material. The viability of the strains under gastrointestinal conditions and in storage at low temperature was also assessed. An immobilization yield of more than 59% was observed for both bacterial strains. Exposure to 2% biliary salts led to a decrease in the viability of free cells in the two L. paracasei strains, whereas the viability of microencapsulated cells increased up to 47%. After 35 days of storage at 4°C, the population of free cells was reduced, but microencapsulated cells remained stable after storage at low temperature. LBC81 bacteria microencapsulated with 1.5% FOS coated with gelatin were the most resistant to the stressful environments tested. Therefore, these results showed that co-encapsulation with FOS in a calcium alginate matrix coated with gelatin improved L. paracasei survival and may be useful for the development of more resistant probiotics and new functional foods.
Collapse
Affiliation(s)
| | - Rayssa Dias Batista
- Laboratory of Food Biotechnology and Protein Purification, Federal University of Tocantins (UFT), Gurupi, TO, Brazil
| | | | | | - Alex Fernando de Almeida
- Laboratory of Food Biotechnology and Protein Purification, Federal University of Tocantins (UFT), Gurupi, TO, Brazil
| | | |
Collapse
|
18
|
Kyereh E, Sathivel S. Viability of Lactobacillus plantarum NCIMB 8826 immobilized in a cereal-legume complementary food “weanimix” with simulated gastrointestinal conditions. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Luca L, Oroian M. Influence of Different Prebiotics on Viability of Lactobacillus casei, Lactobacillus plantarum and Lactobacillus rhamnosus Encapsulated in Alginate Microcapsules. Foods 2021; 10:foods10040710. [PMID: 33810507 PMCID: PMC8065779 DOI: 10.3390/foods10040710] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 01/01/2023] Open
Abstract
As the production and maintenance of a sufficient number of microencapsulated probiotics is still a test for the food industry, the present study addressed the testing of three prebiotics: chicory inulin, soluble potato starch, oligofructose and a control carbon source, namely glucose, as a component part of the encapsulation matrix. Using the extrusion encapsulation technique, it was possible to obtain microcapsules whose matrix composition and dimensions correspond to the requirements of the food industry. The microcapsules obtained showed significantly different physicochemical properties, with different survival rates during processing, storage and in simulated gastrointestinal conditions. The encapsulation efficiency was very high in relation to the dimensions of the microcapsules and the technique used (between 87.00–88.19%). The microcapsules obtained offered a very good viability (between 8.30 ± 0.00–9.00 ± 0, 02 log10 cfu/g) during the 30 days of storage at 2–8 degrees and also in the simulated gastrointestinal conditions (between 7.98–8.22 log10 cfu/g). After 30 days, the lowest viability was registered in the microcapsules with glucose 6.78 ± 0.15 log10 cfu/g. It was found that after 4 h of action of gastrointestinal juices on the microcapsules stored for 30 days, cell viability falls within the limits recommended by the Food and Agriculture Organization of the United Nations (FAO) (106–107 CFU/mL or g of food. This study demonstrated that using prebiotic encapsulation matrix increases cell viability and protection and that the extrusion encapsulation method can be used in the production of probiotic microcapsules for the food industry.
Collapse
|
20
|
Malmo C, Giordano I, Mauriello G. Effect of Microencapsulation on Survival at Simulated Gastrointestinal Conditions and Heat Treatment of a Non Probiotic Strain, Lactiplantibacillus plantarum 48M, and the Probiotic Strain Limosilactobacillus reuteri DSM 17938. Foods 2021; 10:foods10020217. [PMID: 33494235 PMCID: PMC7909834 DOI: 10.3390/foods10020217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 12/23/2022] Open
Abstract
Cells of the probiotic strain Limosilactobacillus reuteri DSM 17938 and of the non-probiotic strain Lactiplantibacillus plantarum 48M were microencapsulated in alginate matrix by emulsion technique. Survival of microorganisms in the microcapsules was tested against gastrointestinal (GI) simulated conditions and heat stress. Results demonstrated that the microencapsulation process improved vitality of Lactiplantibacillus plantarum 48M cells after GI conditions exposure, allowing survival similarly to the probiotic Limosilactobacillus reuteri DSM 17938. Moreover, microencapsulation was able to protect neither Limosilactobacillus reuteri DSM 17938 nor Lactiplantibacillus plantarum 48M cells when exposed to heat treatments. Microencapsulated Limosilactobacillus reuteri DSM 17938 cells were still able to produce reuterin, an antimicrobial agent, as well as free cells.
Collapse
|
21
|
Rashidinejad A, Bahrami A, Rehman A, Rezaei A, Babazadeh A, Singh H, Jafari SM. Co-encapsulation of probiotics with prebiotics and their application in functional/synbiotic dairy products. Crit Rev Food Sci Nutr 2020; 62:2470-2494. [PMID: 33251846 DOI: 10.1080/10408398.2020.1854169] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Oral administration of live probiotics along with prebiotics has been suggested with numerous beneficial effects for several conditions including certain infectious disorders, diarrheal illnesses, some inflammatory bowel diseases, and most recently, irritable bowel syndrome. Though, delivery of such viable bacteria to the host intestine is a major challenge, due to the poor survival of the ingested probiotic bacteria during the gastric transit, especially within the stomach where the pH is highly acidic. Although microencapsulation has been known as a promising approach for improving the viability of probiotics in the human digestive tract, the success rate is not satisfactory. For this reason, co-encapsulation of probiotics with probiotics has been practised as a novel alternative approach for further improvement of the oral delivery of viable probiotics toward their targeted release in the host intestine. This paper discusses the co-encapsulation technologies used for delivery of probiotics toward better stability and viability, as well the incorporation of co-encapsulated probiotics and prebiotics in functional/synbiotic dairy foods. The common encapsulation technologies (and the materials) used for this purpose, the stability and survival of co-encapsulated probiotics in the food, and the release behavior of the co-encapsulated probiotics in the gastrointestinal tract have also been explained. Most studies reported a significant improvement particularly in the viability of bacteria associated with the presence of prebiotics. Nevertheless, the previous research has mostly been carried out in the simulated digestion, meaning that future systematic research is to be carried out to investigate the efficacy of the co-encapsulation on the survival of the bacteria in the gut in vivo.
Collapse
Affiliation(s)
- Ali Rashidinejad
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Akbar Bahrami
- Program of Applied Science and Technology, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, North Carolina, USA
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Jiangsu, People's Republic of China
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afshin Babazadeh
- Center for Motor Neuron Disease Research, Faculty of medicine, health and human sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Seid Mahdi Jafari
- Department of Food Materials & Process Design Engendering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
22
|
Azam M, Saeed M, Pasha I, Shahid M. A prebiotic-based biopolymeric encapsulation system for improved survival of Lactobacillus rhamnosus. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100679] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
23
|
Viability improvement of Bifidobacterium animalis Bb12 by encapsulation in chitosan/poly(vinyl alcohol) hybrid electrospun fiber mats. Carbohydr Polym 2020; 241:116278. [DOI: 10.1016/j.carbpol.2020.116278] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/26/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022]
|
24
|
Cheng Y, Wu T, Chu X, Tang S, Cao W, Liang F, Fang Y, Pan S, Xu X. Fermented blueberry pomace with antioxidant properties improves fecal microbiota community structure and short chain fatty acids production in an in vitro mode. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109260] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Raddatz GC, Poletto G, Deus CD, Codevilla CF, Cichoski AJ, Jacob-Lopes E, Muller EI, Flores EMM, Esmerino EA, de Menezes CR. Use of prebiotic sources to increase probiotic viability in pectin microparticles obtained by emulsification/internal gelation followed by freeze-drying. Food Res Int 2020; 130:108902. [DOI: 10.1016/j.foodres.2019.108902] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 12/08/2019] [Accepted: 12/15/2019] [Indexed: 12/28/2022]
|
26
|
Lv H, Ren D, Yan W, Wang Y, Liu H, Shen M. Linoleic acid inhibits Lactobacillus activity by destroying cell membrane and affecting normal metabolism. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2057-2064. [PMID: 31875968 DOI: 10.1002/jsfa.10228] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 12/06/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The reason why dietary polyunsaturated fatty acids (PUFAs) affect the activity of Lactobacillus remains unclear. In this study, linoleic acid was used to study the mechanism underlying its inhibition function against Lactobacillus activity. RESULTS The growth curve of Lactobacillus rhamnosus LGG and the metabolite content in bacterial liquid were determined at varying linoleic acid concentration. The degree of cell membrane damage of L. rhamnosus LGG was determined by flow cytometry and fluorescence microscopy, and the cell structure was observed by scanning electron microscopy and transmission electron microscopy. The effect of linoleic acid on Lactobacillus activity was assessed in a simulated gut environment. Results showed that L. rhamnosus LGG grew slowly, cell metabolites leaked into the liquid, cell membrane was damaged, and the cell structure changed at a linoleic acid concentration of 50 μg mL-1 . CONCLUSION The mechanism of action of linoleic acid on Lactobacillus showed that that linoleic acid destroyed the cell membrane of bacteria, thereby affecting the normal metabolism of the bacteria and ultimately leading to their death. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huijuan Lv
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Dayong Ren
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Wei Yan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Hongyan Liu
- College of Chinese Herbal Medicine, Jilin Agricultural University, Changchun, China
| | - Minghao Shen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| |
Collapse
|
27
|
Liu H, Xie M, Nie S. Recent trends and applications of polysaccharides for microencapsulation of probiotics. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.11] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Huan Liu
- State Key Laboratory of Food Science and Technology China–Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology China–Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology China–Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| |
Collapse
|
28
|
Yasmin I, Saeed M, Pasha I, Zia MA. Development of Whey Protein Concentrate-Pectin-Alginate Based Delivery System to Improve Survival of B. longum BL-05 in Simulated Gastrointestinal Conditions. Probiotics Antimicrob Proteins 2020; 11:413-426. [PMID: 29572754 DOI: 10.1007/s12602-018-9407-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bifidobacterium longum BL-05 encapsulated beads were developed by using whey protein concentrate (WPC) and pectin (PE) as encapsulating material through extrusion/ionic gelation technique with the objective to improve survival of probiotics in harsh gastrointestinal conditions. B. longum BL-05 was grown in MRS (de man rogosa and sharpe) broth, centrifuged and mixed with polymeric gel solution. Bead formulations E4 (2.5% WPC + 1.5% PE) and E5 (2% PE) showed the highest value for encapsulation efficiency, size, and textural properties (hardness, cohesiveness, springiness) due to increasing PE concentration. The survivability and viability of free and encapsulated B. longum BL-05 was assessed through their resistance to simulated gastric juice (SGJ), tolerance to bile salt, release profile in simulated intestinal fluid (SIF), and storage stability during 28 days at 4 °C. The microencapsulation provided protection to B. longum BL-05 and encapsulated cells were exhibited significant (p < 0.05) resistance to SGJ and SIF as compared to free cells. Bead formulations E3 (5.0% WPC + 1.0% PE) and E4 (2.5% WPC + 1.5% PE) exhibited more resistance to SGJ (at pH 2 for 2 h) and at 2% bile salt solution but comparatively slow release as compared to other bead formulations. Free cells lost their viability when stored at 4 °C after 28 days but microencapsulated cells demonstrated promising results during storage and viable cell count was > 107 CFU/g. This study revealed that extrusion using WPC and PE as encapsulating material could be considered as one of the novel technologies for protection and effective delivery of probiotics.
Collapse
Affiliation(s)
- Iqra Yasmin
- National Institute of Food Science and Technology, Faculty of Food, Nutrition and Home Sciences, University of Agriculture, Faisalabad, 38040, Pakistan. .,Department of Food Science and Technology, University of Nebraska, Lincoln, NE, 68588-6205, USA.
| | - Muhammad Saeed
- National Institute of Food Science and Technology, Faculty of Food, Nutrition and Home Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Imran Pasha
- National Institute of Food Science and Technology, Faculty of Food, Nutrition and Home Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Anjum Zia
- Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| |
Collapse
|
29
|
Lactobacillus acidophilus loaded pickering double emulsion with enhanced viability and colon-adhesion efficiency. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108928] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
30
|
A Brief Review of Edible Coating Materials for the Microencapsulation of Probiotics. COATINGS 2020. [DOI: 10.3390/coatings10030197] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The consumption of probiotics has been associated with a wide range of health benefits for consumers. Products containing probiotics need to have effective delivery of the microorganisms for their consumption to translate into benefits to the consumer. In the last few years, the microencapsulation of probiotic microorganisms has gained interest as a method to improve the delivery of probiotics in the host as well as extending the shelf life of probiotic-containing products. The microencapsulation of probiotics presents several aspects to be considered, such as the type of probiotic microorganisms, the methods of encapsulation, and the coating materials. The aim of this review is to present an updated overview of the most recent and common coating materials used for the microencapsulation of probiotics, as well as the involved techniques and the results of research studies, providing a useful knowledge basis to identify challenges, opportunities, and future trends around coating materials involved in the probiotic microencapsulation.
Collapse
|
31
|
Protective effects of the use of taro and rice starch as wall material on the viability of encapsulated Lactobacillus paracasei subsp. Paracasei. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108686] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Lin T, Chen B, Chen C, Chen Y, Wu H. Comparative analysis of spray‐drying microencapsulation of
Bifidobacterium adolescentis
and
Lactobacillus acidophilus
cultivated in different growth media. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ta‐Chen Lin
- College of Food Engineering, Beibu Gulf University Qinzhou Guangxi China
- Guangxi Colleges and University Key Laboratory of Development and High‐value Utilization of Beibu Gulf Seafood ResourcesBeibu Gulf University Qinzhou China
- Qinzhou Key Laboratory of Characteristic Fruits and Vegetables FermentationBeibu Gulf University China
| | - Bang‐Yuan Chen
- Department of Food ScienceFu Jen Catholic University New Taipei City Taiwan
| | - Chun‐Yeh Chen
- Department of Food Science and TechnologyHungkuang University Taichung City Taiwan
| | - Yuh‐Shuen Chen
- Department of Food Science and TechnologyHungkuang University Taichung City Taiwan
| | - Haibo Wu
- College of Food Engineering, Beibu Gulf University Qinzhou Guangxi China
- Guangxi Colleges and University Key Laboratory of Development and High‐value Utilization of Beibu Gulf Seafood ResourcesBeibu Gulf University Qinzhou China
| |
Collapse
|
33
|
Jurado Gámez H, Sinsajoa Tepud M, Narváez Rodríguez M. Evaluación de Lactobacillus plantarum microencapsulado y su viabilidad bajo condiciones gastrointestinales simuladas e inhibición frente a Escherichia coli O157:H7. REVISTA DE LA FACULTAD DE MEDICINA VETERINARIA Y DE ZOOTECNIA 2019. [DOI: 10.15446/rfmvz.v66n3.84260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Se evaluó la viabilidad de Lactobacillus plantarum microencapsulado, su efecto de inhibición sobre Escherichia coli O157:H7 y crecimiento en condiciones gastrointestinales simuladas. Se utilizaron a L. plantarum ATCC 8014® y E. coli ATCC 43888®. Se realizó pruebas de Inhibición de L. plantarum sobre E. coli y test de susceptibilidad a CTX (30 µg), P (10 IU), GN (10 µg) DCX (1 µg), CIP (5 µg) y KF (30 µg) para ambas cepas. En la bacteria láctica se determinó la cinética de fermentación, y la presencia de péptidos y aminoácidos por HPLC en ambas cepas. Se evaluó el crecimiento a 37°C y 45°C de L. plantarum y se valoró la viabilidad de su microencapsulación mediante condiciones gastrointestinales (Bilis, Sales biliares y pH ácido), al igual que la supervivencia y estabilidad de preparado y sus características físicas y morfológicas. Los resultados indicaron que L. plantarum inhibió a E. coli y el microencapsulado resultados positivos con una viabilidad del 83,3%, eficiencia 88,4%, Humedad 7,79%, actividad de agua 0.4, humectabilidad de 1 min: 56 s, solubilidad del 96%, morfología esférica y tamaño entre 15,18 a 35,68 µm. Finalmente, se observó un alto potencial de L. plantarum como agente inhibidor para E. coli O157:H7.
Collapse
|
34
|
Mixed fermentation of blueberry pomace with L. rhamnosus GG and L. plantarum-1: Enhance the active ingredient, antioxidant activity and health-promoting benefits. Food Chem Toxicol 2019; 131:110541. [DOI: 10.1016/j.fct.2019.05.049] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/19/2019] [Accepted: 05/27/2019] [Indexed: 12/18/2022]
|
35
|
Riaz T, Iqbal MW, Saeed M, Yasmin I, Hassanin HAM, Mahmood S, Rehman A. In vitro survival of Bifidobacterium bifidum microencapsulated in zein-coated alginate hydrogel microbeads. J Microencapsul 2019; 36:192-203. [DOI: 10.1080/02652048.2019.1618403] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tahreem Riaz
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
- Department of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Waheed Iqbal
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
- Department of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Saeed
- Department of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Iqra Yasmin
- Department of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
- Department of Diet and Nutritional Science, Faculty of Health and Allied Science, Imperial College of Business Studies, Lahore, Pakistan
- Department of Food Science and Technology, Government College Women University, Faisalabad, Pakistan
| | - Hinawi A. M. Hassanin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Shahid Mahmood
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
- Department of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
- Department of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
36
|
Andrade DP, Ramos CL, Botrel DA, Borges SV, Schwan RF, Ribeiro Dias D. Stability of microencapsulated lactic acid bacteria under acidic and bile juice conditions. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Cíntia Lacerda Ramos
- Department of Basic Science Federal University of the Vales do Jequitinhonha and Mucuri Diamantina MG 39.100‐000 Brazil
| | | | - Soraia Vilela Borges
- Department of Food Science Federal University of Lavras Lavras MG 37.200‐000 Brazil
| | | | - Disney Ribeiro Dias
- Department of Food Science Federal University of Lavras Lavras MG 37.200‐000 Brazil
| |
Collapse
|
37
|
Lactobacillus plantarum 299V improves the microbiological quality of legume sprouts and effectively survives in these carriers during cold storage and in vitro digestion. PLoS One 2018; 13:e0207793. [PMID: 30462723 PMCID: PMC6248997 DOI: 10.1371/journal.pone.0207793] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023] Open
Abstract
Probiotics improve consumers' health and additionally may positively influence the microbiological and organoleptic quality of food. In the study, legume sprouts were inoculated with Lactobacilllus plantarum 299V to produce a new functional product ensuring the growth and survival of the probiotic and high microbiological quality of the final product. Legume sprouts, which are an excellent source of nutrients, were proposed as alternative carriers for the probiotic. The key factors influencing the production of probiotic-rich sprouts include the temperature (25°C) of sprouting and methods of inoculation (soaking seeds in a suspension of probiotics). Compared to the control sprouts, the sprouts enriched with the probiotic were characterized by lower mesophilic bacterial counts. In the case of fresh and stored probiotic-rich sprouts, lactic acid bacteria (LAB) accounted for a majority of total microorganisms. The Lb. plantarum population was also stable during the cold storage. The high count of LAB observed in the digest confirmed the fact that the studied sprouts are effective carriers for probiotics and ensure their survival in the harmful conditions of the digestive tract in an in vitro model. Enrichment of legume sprouts with probiotics is a successful attempt and yields products for a new branch of functional foods.
Collapse
|
38
|
Encapsulation of Probiotics: Proper Selection of the Probiotic Strain and the Influence of Encapsulation Technology and Materials on the Viability of Encapsulated Microorganisms. Probiotics Antimicrob Proteins 2018; 10:1-10. [PMID: 29124564 DOI: 10.1007/s12602-017-9347-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Probiotic encapsulation is an entire system that not only involves but also depends on many factors. Elements such as the encapsulation method itself, materials, environmental conditions, and last, but not least, the strain; all play an important role in the encapsulation process. The current paper focuses on the right selection of probiotics, the various stress factors that impact the survival capacity of probiotics during and after encapsulation, and the rational selection of appropriate protection strategies to overcome these factors and achieve the highest possible encapsulation efficiency under optimal conditions. This review discusses the effects of temperature, moisture content, and water activity as well as pH, oxygen, and pressure on the viabilities of microorganisms. The effect of the surface and structure of the capsules on the encapsulated microorganisms and the impact of the materials used for the encapsulation are discussed as well. Last, but not least, the importance of choosing the right bacteria is reviewed.
Collapse
|
39
|
Fochesato AS, Cuello D, Poloni V, Galvagno MA, Dogi CA, Cavaglieri LR. Aflatoxin B 1 adsorption/desorption dynamics in the presence of Lactobacillus rhamnosus RC007 in a gastrointestinal tract-simulated model. J Appl Microbiol 2018; 126:223-229. [PMID: 30188600 DOI: 10.1111/jam.14101] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 08/16/2018] [Accepted: 09/03/2018] [Indexed: 11/27/2022]
Abstract
AIMS (i) To determine the aflatoxin B1 (AFB1 ) adsorption and desorption dynamics in the presence of Lactobacillus rhamnosus RC007 under simulated transit of AFB1 at each gastrointestinal tract (GIT-saliva, stomach and intestine) stage consecutively and then, separately, (ii) to study the ability of L. rhamnosus RC007 to biotransform AFB1 as a strategy that complements the adsorption process. METHODS AND RESULTS The AFB1 adsorption and desorption assay simulating the GIT passage of AFB1 (93·89 ng g-1 ) in the presence of L. rhamnosus RC007 (108 CFU per ml) was conducted. Moreover, lactic acid production was determined. Results demonstrated that predominant environmental conditions in salivary solution induced a low AFB1 adsorption, while the transit through the gastric solution and intestinal solution allowed high percentages of adsorption and did not generate significant AFB1 desorption. CONCLUSIONS The AFB1 adsorption and desorption dynamics in the presence of L. rhamnosus RC007 was favoured by gastric and intestinal environment. SIGNIFICANCE AND IMPACT OF THE STUDY The knowledge of the adsorption dynamics of AFB1 with a micro-organism of interest will allow predicting its behaviour at each stage of the GIT.
Collapse
Affiliation(s)
- A S Fochesato
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - D Cuello
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - V Poloni
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - M A Galvagno
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - C A Dogi
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - L R Cavaglieri
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
40
|
Pavli F, Tassou C, Nychas GJE, Chorianopoulos N. Probiotic Incorporation in Edible Films and Coatings: Bioactive Solution for Functional Foods. Int J Mol Sci 2018; 19:E150. [PMID: 29300362 PMCID: PMC5796099 DOI: 10.3390/ijms19010150] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 12/25/2017] [Accepted: 01/03/2018] [Indexed: 12/12/2022] Open
Abstract
Nowadays, the consumption of food products containing probiotics, has increased worldwide due to concerns regarding healthy diet and wellbeing. This trend has received a lot of attention from the food industries, aiming to produce novel probiotic foods, and from researchers, to improve the existing methodologies for probiotic delivery or to develop and investigate new possible applications. In this sense, edible films and coatings are being studied as probiotic carriers with many applications. There is a wide variety of materials with film-forming ability, possessing different characteristics and subsequently affecting the final product. This manuscript aims to provide significant information regarding probiotics and active/bioactive packaging, to review applications of probiotic edible films and coatings, and to discuss certain limitations of their use as well as the current legislation and future trends.
Collapse
Affiliation(s)
- Foteini Pavli
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-DEMETER, Lycovrissi, 14123 Attica, Greece.
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
| | - Chrysoula Tassou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-DEMETER, Lycovrissi, 14123 Attica, Greece.
| | - George-John E Nychas
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
| | - Nikos Chorianopoulos
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-DEMETER, Lycovrissi, 14123 Attica, Greece.
| |
Collapse
|
41
|
Ashwar BA, Gani A, Gani A, Shah A, Masoodi FA. Production of RS4 from rice starch and its utilization as an encapsulating agent for targeted delivery of probiotics. Food Chem 2018; 239:287-294. [DOI: 10.1016/j.foodchem.2017.06.110] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/03/2017] [Accepted: 06/20/2017] [Indexed: 11/30/2022]
|
42
|
Valero-Cases E, Nuncio-Jáuregui N, Frutos MJ. Influence of Fermentation with Different Lactic Acid Bacteria and in Vitro Digestion on the Biotransformation of Phenolic Compounds in Fermented Pomegranate Juices. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6488-6496. [PMID: 28274113 DOI: 10.1021/acs.jafc.6b04854] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study describes the effect of fermentation and the impact of simulated gastrointestinal digestion (SGD) of four fermented pomegranate juices with different lactic acid bacteria (LAB) on the biotransformation of phenolic compounds. The changes of the antioxidant capacity (AOC) and of LAB growth and survival in different fermented juices were also studied. Two new phenolic derivatives (catechin and α-punicalagin) were identified only in fermented juices. During SGD, the AOC increased together with the phenolic derivatives concentration mainly in the juices fermented with Lactobacillus. These derivatives were formed due to the LAB metabolism of the ellagitannins, epicatechin, and catechin after fermentation and during SGD. The FRAP assay performance might be associated with the degradation and biotransformation of catechin. The fermented pomegranate juices with these LAB increased the bioaccessibility of phenolic compounds, ensuring the survival of LAB after SGD, suggesting a possible prebiotic effect of phenolic compounds on LAB.
Collapse
Affiliation(s)
- Estefanía Valero-Cases
- Research Group on Food Quality and Safety, Food Technology Department, Miguel Hernandez University , Ctra. Beniel, km 3.2, 03312 Orihuela, Alicante, Spain
| | - Nallely Nuncio-Jáuregui
- Research Group on Food Quality and Safety, Food Technology Department, Miguel Hernandez University , Ctra. Beniel, km 3.2, 03312 Orihuela, Alicante, Spain
| | - María José Frutos
- Research Group on Food Quality and Safety, Food Technology Department, Miguel Hernandez University , Ctra. Beniel, km 3.2, 03312 Orihuela, Alicante, Spain
| |
Collapse
|
43
|
Development of prebiotic nectars and juices as potential substrates for Lactobacillus acidophilus: Special reference to physicochemical characterization and consumer acceptability during storage. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.03.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Valero-Cases E, Frutos MJ. Effect of Inulin on the Viability of L. plantarum during Storage and In Vitro Digestion and on Composition Parameters of Vegetable Fermented Juices. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2017; 72:161-167. [PMID: 28161879 DOI: 10.1007/s11130-017-0601-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The prebiotic effect of different concentrations of inulin (0, 1 and 2%) on the growth and survival of Lactobacillus plantarum (LP) CECT 220 in blended carrot and orange juices was investigated after 24 h of fermentation, during 30 days of storage at 4 °C and through the phases of gastrointestinal digestion after different storage periods. Microbiological and chemical determinations were also carried out in all juices. The lactic fermentation increased the shelf life of the fermented juices with inulin. The hygienic-sanitary quality in fermented juices was better than the control juices. During storage, the inulin improved the viability of LP and the monosaccharide concentration remained higher with respect to the juice without inulin (40% lower). At 30 days, the fermented juices with 2% inulin after in vitro digestion presented the highest survival of L. plantarum.
Collapse
Affiliation(s)
- Estefanía Valero-Cases
- Agro-Food Technology Department, Miguel Hernández University, Ctra. Beniel, Km. 3.2, 03312, Orihuela, Alicante, Spain
| | - María José Frutos
- Agro-Food Technology Department, Miguel Hernández University, Ctra. Beniel, Km. 3.2, 03312, Orihuela, Alicante, Spain.
| |
Collapse
|
45
|
Micro- and nano bio-based delivery systems for food applications: In vitro behavior. Adv Colloid Interface Sci 2017; 243:23-45. [PMID: 28395856 DOI: 10.1016/j.cis.2017.02.010] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 01/02/2023]
Abstract
Micro- and nanoencapsulation is an emerging technology in the food field that potentially allows the improvement of food quality and human health. Bio-based delivery systems of bioactive compounds have a wide variety of morphologies that influence their stability and functional performance. The incorporation of bioactive compounds in food products using micro- and nano-delivery systems may offer extra health benefits, beyond basic nutrition, once their encapsulation may provide protection against undesired environmental conditions (e.g., heat, light and oxygen) along the food chain (including processing and storage), thus improving their bioavailability, while enabling their controlled release and target delivery. This review provides an overview of the bio-based materials currently used for encapsulation of bioactive compounds intended for food applications, as well as the main production techniques employed in the development of micro- and nanosystems. The behavior of such systems and of bioactive compounds entrapped into, throughout in vitro gastrointestinal systems, is also tracked in a critical manner. Comparisons between various in vitro digestion systems (including the main advantages and disadvantages) currently in use, as well as correlations between the behavior of micro- and nanosystems studied through in vitro and in vivo systems were highlighted and discussed here for the first time. Finally, examples of bioactive micro- and nanosystems added to food simulants or to real food matrices are provided, together with a revision of the main challenges for their safe commercialization, the regulatory issues involved and the main legislation aspects.
Collapse
|
46
|
Peredo A, Beristain C, Pascual L, Azuara E, Jimenez M. The effect of prebiotics on the viability of encapsulated probiotic bacteria. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.06.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|