1
|
Wang KL, Yu BK, Zhao HF, Liu YX, Wu CY, Zhang YH, Mu ZS. Preparation and characterization of microcapsules for tuna oil by maillard reaction products of whey protein isolate and Arabic gum via complex coacervation. Food Chem 2025; 475:143269. [PMID: 39956057 DOI: 10.1016/j.foodchem.2025.143269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/18/2025]
Abstract
This study aimed to prepare Maillard reaction products (MRPs) from whey protein isolate (WPI) and different reducing sugars (glucose, fructose, maltose, lactose), and utilize the optimal MRPs to fabricate tuna oil (TO) microcapsules for enhancing TO's storage stability. The results showed that the optimal wet heat reaction duration of WPI and reducing sugar was 8 h at 75 °C. Glycosylation improves the functional properties of WPI. WPI-maltose coupling (WPI-M) and Arabic gum were selected as the wall material to prepare TO microcapsules by complex coacervation, and the encapsulation efficiency of microcapsules reached 87.41 %. Compared to WPI, WPI-M microcapsules have a more homogeneous emulsion morphology. The peroxide value of microencapsulated protected TO was 35.78 % lower than that of free TO after accelerated oxidation at 55 °C for 16 days. Microcapsules prepared with MRPs wall materials by complex coacervation offer a promising approach for the preservation of compounds.
Collapse
Affiliation(s)
- Kun-Long Wang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Bo-Kang Yu
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Hong-Fu Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Ye-Xuan Liu
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Chun-Ying Wu
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying-Hua Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China.
| | - Zhi-Shen Mu
- Inner Mongolia Enterprise Key Laboratory of Dairy Nutrition, Health & Safety, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Huhhot 011500, PR China.
| |
Collapse
|
2
|
Qin J, Shao J, Yin T, Duan Y, Zhang Y, Ye C, Wang H, Zhu B, Zhang Y. The role of Maillard reaction in increasing affinity between soybean protein isolate and phloretin and its effects on protein functionality. Int J Biol Macromol 2025; 306:141281. [PMID: 39986512 DOI: 10.1016/j.ijbiomac.2025.141281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/24/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
This study investigated the effects of the Maillard reaction on the interaction between soybean protein isolate (SPI) and phloretin (PHL), along with its impact on the functional properties of soybean protein isolate. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) results showed that sodium alginate (SA) was successfully grafted onto SPI. The fluorescence results indicated that the red shift and fluorescence burst of the ternary complexes were more pronounced, indicating that the proteins in the complexes had a more compact tertiary structure. The molecular docking showed that phloretin formed shorter hydrogen bonds with surrounding active amino acid residues after the Maillard reaction, suggesting that the Maillard reaction enhanced the stability of Phloretin's binding to proteins. The slight blue shifts observed in the amide I and amide II bands suggested hydrogen bonding and electrostatic interactions are also present. A decrease in α-helix and β-sheet content, along with an increase in irregular curl content, indicating protein unfolding. Also, the functional properties of SPI were improved due to the unfolding of the protein structure. These findings will provide valuable insights for the subsequent study of Maillard reaction products in the construction of nutrient delivery systems.
Collapse
Affiliation(s)
- Jiran Qin
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Juanjuan Shao
- Department of Science and Technology, Hebei Agricultural University, Hebei 061100, China
| | - Taorui Yin
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yufei Duan
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yubo Zhang
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chengxiang Ye
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongwu Wang
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Beibei Zhu
- College of Chinese Medicine Pharmaceutical Engineering, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yating Zhang
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
3
|
Yang X, Wei S, Hou K, Wei Y, Lin M, Hu X, Chen F, Zhu Y. Citral: A potent inhibitor of advanced glycation end products. Food Chem 2025; 463:141247. [PMID: 39305645 DOI: 10.1016/j.foodchem.2024.141247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/27/2024] [Accepted: 09/10/2024] [Indexed: 11/14/2024]
Abstract
Advanced glycation end products (AGEs), which are produced during food processing, pose health risks to humans. This study found that citral (Cit) effectively inhibited the formation of both fluorescent and non-fluorescent AGEs in the bovine serum albumin (BSA)-glucose (Glc) system. Cit achieved an average inhibition rate of over 80 % for fluorescent AGEs and reduced the levels of N-ε-carboxymethyllysine (CML) and N-ε-carboxyethyllysine (CEL) by up to 45.85 % and 59.32 %, respectively. The comprehensive characterizations and high-resolution mass spectrometry analysis demonstrated that the carbonyl group and CC group present on Cit could compete with Glc for the amino groups on BSA, thereby reducing the formation of AGEs. Additionally, the cytotoxicity assay demonstrated that the BSA-Cit adducts were non-toxic. This research indicated that Cit was a potent and safe inhibitor of AGEs.
Collapse
Affiliation(s)
- Xin Yang
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Siyu Wei
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Kangdi Hou
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Yumeng Wei
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Mengyi Lin
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Yuchen Zhu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
4
|
Xu X, Xiao S, Wang L, Niu D, Gao W, Zeng XA, Woo M, Han Z, Wang R. Pulsed electric field enhances glucose glycation and emulsifying properties of bovine serum albumin: Focus on polarization and ionization effects at a high reaction temperature. Int J Biol Macromol 2024; 257:128509. [PMID: 38052285 DOI: 10.1016/j.ijbiomac.2023.128509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
Previous studies demonstrated that the non-thermal effects of pulsed electric fields can promote protein glycation below 40 °C, but it does not always enhance the emulsifying properties of proteins, such as in the bovine serum albumin/glucose model. Therefore, the aim of this study was to investigate the impact of non-thermal effects on the glucose glycation and emulsification properties of bovine serum albumin at 90 °C. The results of circular dichroism, surface hydrophobicity, and molecular dynamics simulations showed that the polarization effect increased the degree of glycation of bovine serum albumin-glucose conjugates from 12.82 % to 21.10 % by unfolding protein molecule, while the emulsifying stability index was increased from 79.17 to 100.73 compared with the control. Furthermore, the results of principal component analysis and Pearson correlation analysis indicated that the ionization effect and the free radicals generated by pulsed electric fields significantly (p < 0.05) inhibited browning and reduced free sulfhydryl content. This study demonstrated that pulsed electric fields combined with heating can prepare glycated proteins with good emulsifying properties in a short period of time and at temperatures lower than conventional heating while reducing energy consumption. This processing strategy has potential applications in improving the emulsifying performance of highly stable proteins.
Collapse
Affiliation(s)
- Xindong Xu
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Siyao Xiao
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Langhong Wang
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Debao Niu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Wenhong Gao
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xin-An Zeng
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; China-Singapore International Joint Research Institute, Guangzhou 510700, China; Research Institute of Yangjiang, South China University of Technology, Yangjiang 529500, China
| | - Mengwai Woo
- Department of Chemical and Materials Engineering, University of Auckland, Auckland, New Zealand
| | - Zhong Han
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; China-Singapore International Joint Research Institute, Guangzhou 510700, China.
| | - Ruoyong Wang
- Air Force Medical Center of People's Liberation Army, Beijing 100142, China.
| |
Collapse
|
5
|
Salel S, Iyisan B. Polymer-lipid hybrid nanoparticles as potential lipophilic anticancer drug carriers. DISCOVER NANO 2023; 18:114. [PMID: 37713009 PMCID: PMC10504175 DOI: 10.1186/s11671-023-03897-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
Nanocarrier systems are widely used for drug delivery applications, but limitations such as the use of synthetic surfactants, leakage of toxic drugs, and a poor encapsulation capacity remain as challenges. We present a new hybrid nanocarrier system that utilizes natural materials to overcome these limitations and improve the safety and efficacy of drug delivery. The system comprises a biopolymeric shell and a lipid core, encapsulating the lipophilic anticancer drug paclitaxel. Bovine serum albumin and dextran, in various molecular weights, are covalently conjugated via Maillard reaction to form the shell which serves as a stabilizer to maintain nanoparticle integrity. The properties of the system, such as Maillard conjugate concentration, protein/polysaccharide molar ratio, and polysaccharide molecular weight, are optimized to enhance nanoparticle size and stability. The system shows high stability at different pH conditions, high drug loading capacity, and effective in vitro drug release through the trigger of enzymes and passive diffusion. Serine proteases are used to digest the protein portion of the nanoparticle shell to enhance the drug release. This nanocarrier system represents a significant advancement in the field of nanomedicine, offering a safe and effective alternative for the delivery of lipophilic drugs.
Collapse
Affiliation(s)
- Sedef Salel
- Biofunctional Nanomaterials Design (BiND) Laboratory, Institute of Biomedical Engineering, Bogazici University, 34684, Istanbul, Turkey
| | - Banu Iyisan
- Biofunctional Nanomaterials Design (BiND) Laboratory, Institute of Biomedical Engineering, Bogazici University, 34684, Istanbul, Turkey.
- Partner Group of Max Planck Institute for Polymer Research Mainz (Germany) at Bogazici University, 34684, Istanbul, Turkey.
| |
Collapse
|
6
|
Ding Z, Jiang F, Liu K, Gong F, Liu Y, Zheng Z, Xu Y. Structural and Functional Characteristics of Hemp Protein Isolate–Pullulan Polysaccharide Glycosylation Conjugate in an Aqueous Model System. Foods 2023; 12:foods12071416. [PMID: 37048237 PMCID: PMC10093956 DOI: 10.3390/foods12071416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Hemp protein, with its important nutritional and industrial value, has trickled into the aisles of protein demand; however, its poor functional properties have largely limited its implementation in food. Herein, we aimed to modify hemp protein isolate (HPI) via glycosylation coupling with pullulan polysaccharide, and we subsequently characterized its structural and functional properties. The conjugation variables were HPI to pullulan ratio (i.e., 3:1, 2:1, 1:1, 1:2, and 1:3 w/w), incubation temperature (i.e., 50, 60, 70, 80, and 90 °C), and incubation time (i.e., 3, 6, 12, 24, and 48 h). Native HPI was used as a control for comparison purposes. We found that DG tended to decrease when the pullulan to HPI ratio was greater than 1:1 and when the temperature exceeded 80 °C. SDS-PAGE analysis shows that when the DG is increased, wider and heavier molecular weight bands emerge near the top of the running gel, while such observations were absent in the control. Further, glycosylation could loosen the HPI’s secondary and tertiary structures, as well as increase surface hydrophobicity. The solubility of HPI after glycosylation significantly increased (p < 0.05) at pH 7.0 compared to HPI without glycosylation. Emulsifying activity improved significantly (p < 0.05), with glycosylation with HPI–pullulan at a ratio of 1:3 showing maximum emulsifying activity of 118.78 ± 4.48 m2/g (HPI alone: 32.38 ± 3.65 m2/g). Moreover, the HPI–pullulan glycosylation time of 24 h showed maximum foaming activity (23.04 ± 0.95%) compared to HPI alone (14.20 ± 1.23%). The foaming stability of HPI (79.61 ± 3.33%) increased to 97.78 ± 3.85% when HPI–pullulan was conjugated using a glycosylation temperature of 80 °C. Compared with the un-glycated HPI, HPI–pullulan also increased WHC (4.41 ± 0.73 versus 9.59 ± 0.36 g/g) and OHC (8.48 ± 0.51 versus 13.73 ± 0.59 g/g). Intriguingly, correlation analysis showed that protein functional characteristics were significantly and positively correlated with DG. Overall, our findings support the notion that pullulan conjugation provides further functional attributes to the HPI, thereby broadening its potential implementation in complicated food systems.
Collapse
|
7
|
Kong Y, Dong Q, Yu Z, Yan H, Liu L, Shen Y. The effect of lactose and its isomerization product lactulose on functional and structural properties of glycated casein. Food Res Int 2023; 168:112683. [PMID: 37120184 DOI: 10.1016/j.foodres.2023.112683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Lactulose is an isomer of lactose, formed under thermal processing of milk. Alkaline conditions favor the isomerization of lactose. As reducing sugar, lactose and lactulose could participate in the Maillard reaction and cause protein glycation in milk products. In this study, the influence of lactose and lactulose on the functional and structural properties of glycated casein was investigated. The results demonstrated that compared with lactose, lactulose led to severer changes in molecular weight, more disordered spatial structure and decrease of tryptophan fluorescence intensity of casein. Besides, the glycation degree and advanced glycation end products (AGEs) results suggested that lactulose exhibited stronger glycation ability than lactose due to the higher proportion of open chain in solution. Furthermore, higher glycation degree induced by lactulose resulted in lower solubility, surface hydrophobicity, digestibility and emulsifying capacity of casein-glycoconjugates compared with lactose. The results of this study are essential for tracking the effects of harmful Maillard reaction products on the quality of milk and dairy products.
Collapse
|
8
|
Cui H, Zang Z, Jiang Q, Bao Y, Wu Y, Li J, Chen Y, Liu X, Yang S, Si X, Li B. Utilization of ultrasound and glycation to improve functional properties and encapsulated efficiency of proteins in anthocyanins. Food Chem 2023; 419:135899. [PMID: 37023676 DOI: 10.1016/j.foodchem.2023.135899] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/28/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023]
Abstract
The purpose of this study is to explore the optimal conditions for the preparation of bovine serum albumin (BSA)/casein (CA)-dextran (DEX) conjugates by ultrasonic pretreatment combined with glycation (U-G treatment). When BSA and CA were treated with ultrasound (40% amplitude, 10 min), the grafting degree increased 10.57% and 6.05%, respectively. Structural analysis revealed that ultrasonic pretreatment changed the secondary structure, further affected functional properties of proteins. After U-G treatment, the solubility and thermal stability of BSA and CA was significantly increased, and the foaming and emulsifying capacity of proteins were also changed. Moreover, ultrasonic pretreatment and glycation exhibited a greater impact on BSA characterized with highly helical structure. Complexes fabricated by U-G-BSA/CA and carboxymethyl cellulose (CMC) exhibited protection on anthocyanins (ACNs), delaying the thermal degradation of ACNs. In conclusion, the protein conjugates treated by ultrasonic pretreatment combined with glycation have excellent functionality and are potential carrier materials.
Collapse
Affiliation(s)
- Huijun Cui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zhihuan Zang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Qiao Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yiwen Bao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yunan Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jiaxin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xiaoli Liu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014 China
| | - Shufang Yang
- Zhejiang Lanmei Technology Co., Ltd., Zhuji, Zhejiang 311800, China
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
9
|
Evodiamine-loaded rhEGF-conjugated bovine serum albumin nanoparticles alleviate indomethacin-associated gastric mucosal injury in male SD rats. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
10
|
Song Y, Huang D, Guo W, Gao Y, Xue F, Xiong X, Li C. Physicochemical and Structural Properties of Gluten-Konjac glucomannan Conjugates Prepared by Maillard Reaction. Polymers (Basel) 2023; 15:polym15030631. [PMID: 36771931 PMCID: PMC9921320 DOI: 10.3390/polym15030631] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Gluten (Glu) is important to wheat products by forming a three-dimensional matrix. This study aimed to investigate the physicochemical and structural properties of gluten after conjugation with konjac glucomannan (KGM) through the Maillard reaction. The study revealed that the degree of graft increased with the prolonged reaction time. The Glu-KGM conjugates were possessed of increased β-sheet but decreased α-helix and β-turn, as well as unfolding and loose tertiary structures as the reaction proceeded. Among three different proportions, the Glu-KGM 1:1 conjugate was proved to have the most excellent foaming and emulsifying properties, and could form more rigid and firm gelation structures, which could be related to the decreased particle size and increased zeta potential of the conjugate. Overall, the physicochemical and structural properties of gluten were significantly related to the KGM ratios as well as the reaction period.
Collapse
Affiliation(s)
- Yukang Song
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Danping Huang
- Nanjing Station of National Light Industry Food Quality Supervision and Inspection, Nanjing 211816, China
| | - Wanchun Guo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yiqing Gao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Feng Xue
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaohui Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Chen Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
- Correspondence: ; Tel.: +86-138-13362715
| |
Collapse
|
11
|
Cold gelation of whey protein isolate with sugars in an ultrasound environment. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
12
|
Choudhury K, Chattopadhyay A, Ghosh SS. Mannosylated Gold Nanoclusters Incorporated with a Repurposed Antihistamine Drug Promethazine for Antibacterial and Antibiofilm Applications. ACS APPLIED BIO MATERIALS 2022; 5:5911-5923. [PMID: 36417570 DOI: 10.1021/acsabm.2c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Drug repurposing presents a workable strategy in tackling antibiotic resistance. Many known drugs have been repurposed for their applications against different targets. Antihistamines that are usually used to treat allergy symptoms can be combined with nanoscale materials to enhance their efficiency. Herein, we explored the antimicrobial properties of a common antihistamine drug, promethazine, in Gram-positive and Gram-negative bacteria. Being positively charged, promethazine was easily incorporated into the mannose-conjugated bovine serum albumin-stabilized promethazine hydrochloride gold nanoclusters. Capping with d-mannose helped in targeting the bacteria by inhibiting their adhesive appendage called pili. Following their uptake, drugs released inside the bacteria caused reactive oxygen species production and membrane permeability alteration, ultimately resulting in bacterial inhibition. Additionally, they were also explored for biofilm eradication. As observed through staining assays, the number of dead cells increased with increasing concentration of drug-loaded gold nanoclusters in the biofilm mass. Therefore, the as-synthesized mannosylated gold nanoclusters incorporated with promethazine were analyzed for potential antibacterial and antibiofilm applications.
Collapse
Affiliation(s)
- Konika Choudhury
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Arun Chattopadhyay
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.,Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Siddhartha Sankar Ghosh
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.,Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
13
|
Zeng J, Sun Y, Sun S, Jiang M, Zhang D, Li W, Liu Z, Shang H, Guan X, Zhang W. Leveraging Nanodrug Delivery System for Simultaneously Targeting Tumor Cells and M2 Tumor-Associated Macrophages for Efficient Colon Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50475-50484. [PMID: 36327132 DOI: 10.1021/acsami.2c11534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tumor-associated macrophages (TAMs) widely exist in the solid tumors, which participate in the entire course of tumor development and execute momentous impacts. Therefore, manipulating TAMs has been identified as an expecting strategy with immense potential for cancer therapy. Herein, a nanodrug delivery system was leveraged for simultaneously targeting tumor cells and M2-type TAMs for efficient colon cancer therapy. The broad-spectrum anticancer chemotherapeutic drug doxorubicin (DOX) was hitchhiked in a mannose-modified bovine serum albumin (MAN-BSA) carrier. The DOX@MAN-BSA nanodrug delivery system was verified to possess feasible physical performances for unhindered systemic circulation and active targeting on colon tumors. DOX@MAN-BSA nanoparticles could be preferentially swallowed by colon tumor cells and M2 TAMs through mannose receptor-mediated endocytosis. Further in vivo antitumor therapy in CT26 colon tumor-bearing mice has achieved remarkable suppression efficacy with satisfactory biosafety. Leveraging the nanodrug delivery system for simultaneously targeting tumor cells and M2 TAMs has contributed a feasible strategy to collaboratively repress the malignant tumor cells and the collusive M2 TAMs for efficient cancer therapy.
Collapse
Affiliation(s)
- Jun Zeng
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Yanju Sun
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Shuo Sun
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Mingxia Jiang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Daijuan Zhang
- Department of Pathology, Weifang Medical University, Weifang 261053, China
| | - Wentong Li
- Department of Pathology, Weifang Medical University, Weifang 261053, China
| | - Zhijun Liu
- Department of Medical Microbiology, Weifang Medical University, Weifang 261053, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xiuwen Guan
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Weifen Zhang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
14
|
Chen X, Zhao H, Wang H, Xu P, Chen M, Xu Z, Wen L, Cui B, Yu B, Zhao H, Jiao Y, Cheng Y. Preparation of high-solubility rice protein using an ultrasound-assisted glycation reaction. Food Res Int 2022; 161:111737. [DOI: 10.1016/j.foodres.2022.111737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/09/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
|
15
|
Yao X, McClements DJ, Su Y, Li J, Chang C, Wang J, Yang Y, Gu L. Fabrication, Structural and Emulsifying Properties of Egg White Protein-Dextran Conjugates through Maillard Reaction. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09745-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Liu L, Wang Q, Wu Y, Wang G, Geng F, Song H, Luo P, Huang Q. Effect of ball milling-assisted glycosylation modification on the structure and foaming property of egg white protein. J Food Sci 2022; 87:3117-3128. [PMID: 35703671 DOI: 10.1111/1750-3841.16218] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/07/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022]
Abstract
The effect of different glycosylation degrees on molecular structure and foaming property of egg white protein (EWP) was investigated using ball milling-assisted glycosylation. The results showed the foaming ability (FA) and foam stability (FS) of EWP improved when the degree of glycosylation was increased. In particular, FA of ball milling-assisted glycosylation of EWP enhanced by 39.9% and 28.8%, and the FS increased by 28.7% and 24.0% compared with EWP and ball milling egg white protein (BE) at 150 min of reaction. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis could reflect the grafting degree of EWP and glucose molecules from the side. When EWP was fully grafted with glucose, endogenous fluorescence and free sulfhydryl groups indicated that tertiary structure of EWP was depolymerized, and Fourier transform infrared spectroscopy showed the secondary structure tended to change from order to disorder. The results of this study indicated that ball milling-assisted glycosylation modification was a practical method to improve the foaming property of EWP. PRACTICAL APPLICATION: EWP has great FA and FS, making it indispensable in the baking industry. In this study, ball milling-assisted glycosylation was used to improve the foaming property of EWP, and the molecular structure of EWP with different degrees of glycosylation was fully resolved. The results demonstrated that ball milling, as a physical pretreatment, can fully unfold the structure of EWP. When sugar molecules were fully grafted, the particle size of EWP reduced, solubility increased, and the stability of system improved, thus enhancing the foaming property of EWP. The results can provide theoretical basis for improving the foaming property of EWP and provide a reference value for its industrial application.
Collapse
Affiliation(s)
- Lan Liu
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qia Wang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongyan Wu
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guoze Wang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Fang Geng
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Hongbo Song
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peng Luo
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Qun Huang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu, China.,Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China
| |
Collapse
|
17
|
Effect of carbon numbers and structures of monosaccharides on the glycosylation and emulsion stabilization ability of gelatin. Food Chem 2022; 389:133128. [PMID: 35512506 DOI: 10.1016/j.foodchem.2022.133128] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 11/21/2022]
Abstract
Herein, the effect of saccharide glycosylation by nine monosaccharides on bovine bone gelatin for the stabilization of fish oil-loaded emulsions was explored. The gelatin modification was analyzed and then the emulsifying properties of monosaccharide-modified gelatins were analyzed at pH 9.0 and 3.0. The results demonstrated that glycosylated gelatin structure, droplet stability, creaming stability, and liquid-gel transition time were dependent on monosaccharide carbon numbers, monosaccharide structures, and solution pH. Glycosylation modification of gelatins did not obviously change the emulsion droplet stability at pH 9.0, whereas it increased the emulsion droplet stability at pH 3.0. Glycosylation modification of gelatins did not obviously change the emulsion creaming index values (5.1%-8.4% at pH 9.0 and 25.8%-33.1% at pH 3.0). Three-carbon and four-carbon monosaccharides glycosylation significantly increased emulsion liquid-gel transition times. This work provided useful information to understand the effects of carbon numbers and structures of monosaccharides on the protein modification.
Collapse
|
18
|
Wang YT, Zhong BZ, Wang H. Analysis of the Structure and Antigenicity in Ovalbumin Modified with Six Disaccharides Through Liquid Chromatography-High-Resolution Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3096-3108. [PMID: 35253441 DOI: 10.1021/acs.jafc.1c03488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Melibiose, cellobiose, maltose, lactose, turanose, and isomaltulose were selected to be glycated with OVA. The number of free amino groups of OVA modified with different disaccharides decreased, and the secondary and tertiary structures of the modified OVA also changed greatly. Moreover, the glycation sites detected by HPLC-HCD-MS/MS were all on the sensitized epitopes of OVA, which reduced the binding ability of IgG and IgE of glycated OVA. In addition, the glycation sites with the highest DSP in different samples were located in the irregular coil region of OVA. Among the six disaccharides, the glycation reaction between melibiose and OVA was the most obvious. Through the analysis of disaccharide configuration, it was found that the glycation efficiency of the reducing disaccharide linked by a 1 → 6 glycoside bond was higher than that by a 1 → 4 glycoside bond, and reducing sugar with β type was better than that with α type. These findings would provide a theoretical reference for the use of different sugars in food production.
Collapse
Affiliation(s)
- Ya-Ting Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 East Nanjing Road, Nanchang 330047, Jiangxi, China
| | - Bi-Zhen Zhong
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 East Nanjing Road, Nanchang 330047, Jiangxi, China
- National R&D Center of Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China
- Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 East Nanjing Road, Nanchang 330047, Jiangxi, China
| |
Collapse
|
19
|
Maillard-Type Protein-Polysaccharide Conjugates and Electrostatic Protein-Polysaccharide Complexes as Delivery Vehicles for Food Bioactive Ingredients: Formation, Types, and Applications. Gels 2022; 8:gels8020135. [PMID: 35200516 PMCID: PMC8871776 DOI: 10.3390/gels8020135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/29/2022] Open
Abstract
Due to their combination of featured properties, protein and polysaccharide-based carriers show promising potential in food bioactive ingredient encapsulation, protection, and delivery. The formation of protein–polysaccharide complexes and conjugates involves non-covalent interactions and covalent interaction, respectively. The common types of protein–polysaccharide complex/conjugate-based bioactive ingredient delivery systems include emulsion (conventional emulsion, nanoemulsion, multiple emulsion, multilayered emulsion, and Pickering emulsion), microcapsule, hydrogel, and nanoparticle-based delivery systems. This review highlights the applications of protein–polysaccharide-based delivery vehicles in common bioactive ingredients including polyphenols, food proteins, bioactive peptides, carotenoids, vitamins, and minerals. The loaded food bioactive ingredients exhibited enhanced physicochemical stability, bioaccessibility, and sustained release in simulated gastrointestinal digestion. However, limited research has been conducted in determining the in vivo oral bioavailability of encapsulated bioactive compounds. An in vitro simulated gastrointestinal digestion model incorporating gut microbiota and a mucus layer is suggested for future studies.
Collapse
|
20
|
Tang T, Liu J, Tang S, Xiao N, Jiang Y, Tu Y, Xu M. Effects of soy peptides and pH on foaming and physicochemical properties of egg white powder. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
21
|
Wang K, Li W, Wang K, Hu Z, Xiao H, Du B, Zhao L. Structural and inflammatory characteristics of Maillard reaction products from litchi thaumatin-like protein and fructose. Food Chem 2021; 374:131821. [PMID: 34920401 DOI: 10.1016/j.foodchem.2021.131821] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 12/11/2022]
Abstract
The structural characteristics and inflammatory activity of Maillard reaction products (MRPs) from fructose (Fru) and litchi thaumatin-like protein (LcTLP) with a pro-inflammatory activity were investigated. The structural changes of LcTLP-Fru MRPs were divided into two stages during the Maillard reaction. In 0-6 h, the unfolding and degradation of the LcTLP were dominant, resulting in a looser structure; the increase of β-sheets was 13.02%; the decrease of α-helices was 9.21%; and both the molecular weight and gyration radius Rg decreased. After 6 h, the enhanced glycosylation caused the molecular weight to increase, while Rg remained low, implying that the molecular structure became more compact. In addition, LcTLP-Fru MRPs reduced the inflammation response by significantly reducing the gene and protein expressions of tumor necrosis factor-α, interleukin-1β, and interleukin-6 compared with the LcTLP group in RAW264.7 macrophages. The findings provided a theoretical foundation for addressing the inflammatory response caused by litchi products consumption.
Collapse
Affiliation(s)
- Kun Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Weichao Li
- Intensive Care Unit, Sun Yat-sen Memorical Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Kai Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agricultural, 510642, China
| | - Zhuoyan Hu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agricultural, 510642, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agricultural, 510642, China
| | - Lei Zhao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agricultural, 510642, China.
| |
Collapse
|
22
|
Li J, Yang X, Swallah MS, Fu H, Ji L, Meng X, Yu H, Lyu B. Soy protein isolate: an overview on foaming properties and air–liquid interface. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiaxin Li
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
- Soybean Research & Development Centre Division of Soybean Processing Chinese Agricultural Research System Changchun 130118 China
| | - Xiaoqing Yang
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
- Soybean Research & Development Centre Division of Soybean Processing Chinese Agricultural Research System Changchun 130118 China
| | - Mohammed Sharif Swallah
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
| | - Hongling Fu
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
- Soybean Research & Development Centre Division of Soybean Processing Chinese Agricultural Research System Changchun 130118 China
| | - Lei Ji
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
- Soybean Research & Development Centre Division of Soybean Processing Chinese Agricultural Research System Changchun 130118 China
| | - Xiangze Meng
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
- Soybean Research & Development Centre Division of Soybean Processing Chinese Agricultural Research System Changchun 130118 China
| | - Hansong Yu
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
- Soybean Research & Development Centre Division of Soybean Processing Chinese Agricultural Research System Changchun 130118 China
| | - Bo Lyu
- Soybean Research & Development Centre Division of Soybean Processing Chinese Agricultural Research System Changchun 130118 China
- College of Food Science Northeast Agricultural University Harbin 150030 China
| |
Collapse
|
23
|
Fu GM, Xu ZW, Luo C, Xu LY, Chen YR, Guo SL, Wu XD, Wan Y. Modification of soy protein isolate by Maillard reaction and its application in microencapsulation of Limosilactobacillusreuteri. J Biosci Bioeng 2021; 132:343-350. [PMID: 34344604 DOI: 10.1016/j.jbiosc.2021.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/01/2022]
Abstract
Limosilactobacillusreuteri was encapsulated using Maillard-reaction-products (MRPs) of soy protein isolate (SPI) and α-lactose monohydrate by freeze-drying. The mixed solution of SPI and α-lactose monohydrate was placed in a water bath at 89°C for 160 min for Maillard reaction, and then freeze-dried to obtain MRPs. The effects of Maillard reaction on functional characteristics of MRPs and the properties of MRPs-microcapsules were studied. SDS-PAGE indicated that SPI subunit reacted with lactose to form a polymer, and the band of MRPs disappeared around the molecular weights of 33, 40, 63, and 100 kDa. Compared with SPI, the emulsion stability, emulsion activity, foaming capacity, foam stability, and gel strength of MRPs were increased by 259%, 55.71%, 82.32%, 58.53%, and 3266%, respectively. The results of Fourier transform infrared spectroscopy, circular dichroism spectroscopy, and scanning electron micrographs confirmed that the protein structure also changed significantly. Then, MRPs were used as wall material to prepare L. reuteri microcapsules. Physical properties and viable counts of L. reuteri during the simulated gastrointestinal digestion and storage period were determined. The particle size of MRPs-microcapsules (68 μm) was smaller than that of SPI-microcapsules (91 μm). The viable counts of L. reuteri in simulated gastrointestinal digestion and after storage for 30 days were improved. The modifications with Maillard reaction can improve emulsification, foaming, and gel strength of SPI, and MRPs could be used as a new type of wall material in the production of L. reuteri microcapsules.
Collapse
Affiliation(s)
- Gui-Ming Fu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zi-Wen Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Cheng Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Li-Yun Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yan-Ru Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Shuai-Ling Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xiao-Dan Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yin Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
24
|
Effects of incorporating different kinds of peptides on the foaming properties of egg white powder. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102742] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
25
|
Guo X, Cai Q, Lian X, Fan S, Hu W, Cui W, Zhao X, Wu Y, Wang H, Wu Y, Li Z, Zhang Z. Novel Fe(III)-Polybasic acid coordination polymer nanoparticles with targeted retention for photothermal and chemodynamic therapy of tumor. Eur J Pharm Biopharm 2021; 165:174-184. [PMID: 34015471 DOI: 10.1016/j.ejpb.2021.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 12/23/2022]
Abstract
The development of Fe-coordination polymer-based nanoparticles, with safe and high anti-tumor effects, for the treatment of tumor is facing challenges such as limited resources and poor targeting. In this study, we prepared Fe-polyhydroxy coordination polymer nanoparticles (TA-Fe@MNPs), based on tartaric acid (TA)-Fe(III) coordination polymer as the new photothermal agent, mannose (M) as the target, and bovine serum albumin (BSA) and polyethyleneimine (PEI) as the carrier materials, and investigated them for targeting the multifunctional therapy of tumors. The TA-Fe@MNPs synthesized via a simple coordination of Fe3+ with TA, bovine serum albumin, and polyethyleneimine under ambient conditions exhibited an appropriate size (~125 nm), electrically neutral surfaces, good biocompatibility, and low normal cell toxicity. The TA-Fe@MNPs are the first to exhibit a remarkable photothermal performance. They also showed a pH-sensitive Fenton-like response that was further enhanced via glutathione response. Interestingly, after a single injection, the TA-Fe@MNPs could be retained at the tumor site for 36 h with an effective photothermal dose, which was attributed to the reduced protein adsorption and slow elimination in tumor cells with the aid of M modification and carrier materials, while that for the TA-Fe@NPs did so for only 2 h. Tumor ablation was demonstrated by in vivo photothermal and chemokinetic therapy using TA-Fe@MNPs, and their safety was evident from the weight changes and blood parameters. These results indicated that the TA-Fe@MNPs, as new photothermal and CDT agents, have the potential to be used in clinical tumor therapy nanoplatforms.
Collapse
Affiliation(s)
- Xinhong Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeted Therapy and Diagnosis of Tumor and Major Diseases, Henan Province, Zhengzhou 450001, China
| | - Qingqing Cai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xinjie Lian
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shuting Fan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wentao Hu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Weiwei Cui
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyu Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yizhe Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Haojin Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuan Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhi Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeted Therapy and Diagnosis of Tumor and Major Diseases, Henan Province, Zhengzhou 450001, China.
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeted Therapy and Diagnosis of Tumor and Major Diseases, Henan Province, Zhengzhou 450001, China.
| |
Collapse
|
26
|
Hermetia illucens Protein Conjugated with Glucose via Maillard Reaction: Antioxidant and Techno-Functional Properties. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:5572554. [PMID: 33981767 PMCID: PMC8088349 DOI: 10.1155/2021/5572554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/19/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022]
Abstract
The food industry is considering novel sources of proteins with enhanced functionalities to meet the increasing demand and population growth. Edible insect proteins have emerged as an alternative that is environmentally friendly and economically viable and thus could make a significant contribution to global food security. This study was aimed to establish the effect of conjugation via the Maillard reaction on the antioxidant and techno-functional properties of black soldier fly larvae protein concentrate. Reaction mixtures containing black soldier fly larvae protein concentrate and glucose (2 : 1 weight ratio) were wet-heated at 50, 70, and 90°C for 2, 4, 6, 8, and 10 h, respectively, with an initial pH of 9. The results showed that the browning indices of the black soldier fly larvae-glucose (BSFL-Glu) model system increased with an increase in reaction time and temperature, with conjugates formed at 90°C exhibiting the highest browning intensity at 420 nm. At 50°C, the DPPH-RS of the conjugates ranged from 15.47 to 32.37%. The ABTS+ radical scavenging activity of BSFL-Glu conjugates produced at 90°C exhibited significantly (p < 0.05) higher scavenging activity as a function of reaction time. The foaming capacity of BSFL-Glu conjugates produced at 70°C showed a significant increase (p < 0.05) as a function of reaction time. Principal component analysis was applied to browning and antioxidant indices. Component 1 of the score plot accounted for 89%, while component 2 accounted for 8% of the observed variability and allowed discrimination/differentiation of the samples based on the heating temperature. These findings provide a practical means to improve the functionality of novel edible insect proteins for food application.
Collapse
|
27
|
Arogundade LA, Mu T, Zhang M, Khan NM. Impact of dextran conjugation on physicochemical and gelling properties of sweet potato protein through Maillard reaction. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lawrence A. Arogundade
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109 Beijing100193China
- Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109 Beijing100193China
- Chemistry Department College of Physical Sciences Federal University of Agriculture Alabata Abeokuta Ogun State110109Nigeria
| | - Tai‐Hua Mu
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109 Beijing100193China
- Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109 Beijing100193China
| | - Miao Zhang
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109 Beijing100193China
- Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109 Beijing100193China
| | - Nasir M. Khan
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109 Beijing100193China
- Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109 Beijing100193China
- Department of Chemistry Shaheed Benazir Bhutto University Dir18000Pakistan
| |
Collapse
|
28
|
Karbasi M, Askari G. Modification of whey protein microgel particles with mono- oligo- and polysaccharides through the Maillard reaction: Effects on structural and techno-functional properties. FOOD STRUCTURE 2021. [DOI: 10.1016/j.foostr.2021.100184] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Sun B, Zhao X, Wu Y, Cao P, Movahedi F, Liu J, Wang J, Xu ZP, Gu W. Mannose-Functionalized Biodegradable Nanoparticles Efficiently Deliver DNA Vaccine and Promote Anti-tumor Immunity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14015-14027. [PMID: 33751882 DOI: 10.1021/acsami.1c01401] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cancer vaccines have attracted increasing attention for their application in tumor immunotherapy. DNA vaccines are one of them that have been proven very promising with the advantages of safety, rapid design, and low cost. However, the low stability, ineffective cell internalization, and low immunostimulation hinder their wide application. Thus, developing targeted and safe systems to effectively deliver DNA vaccines becomes a vital step. In this study, we report the development of mannose- and bisphosphonate (BP)-modified calcium phosphate (CP) nanoparticles (NPs) as efficient vaccine delivery vehicles by targeting C-type lectin receptors (CLRs) on antigen-presenting cells (APCs). Using a model antigen ovalbumin (OVA)-encoded plasmid DNA (pOVA) as a model vaccine, we demonstrate that mannose-modified and BP-stabilized CP (MBCP) nanoparticles are mono-dispersed for enhanced uptake by APCs and subsequently induce OVA antigen presentation and immunostimulation. Mice immunized with MBCP-pOVA nanovaccines show a significantly stronger anti-OVA antibody response with a quicker IgG1 and IgG2a antibody production than unmodified NPs. Moreover, MBCP-pOVA immunization significantly inhibits the growth of OVA-expressing E.G7 tumor cells in C57BL/6J mice. Our data collectively suggest that the modifications to enhance the stability and targeting ability of MBCP NPs are essential for effective delivery of DNA vaccines and promote robust anti-tumor immunity.
Collapse
Affiliation(s)
- Bing Sun
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Xiaohui Zhao
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yanheng Wu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
- Gillion ITM Research Institute, Guangzhou Hongkeyuan, Guangzhou 510530, China
| | - Pei Cao
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Fatemeh Movahedi
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jie Liu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jingjing Wang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
30
|
Effects of acetyl grafting on the structural and functional properties of whey protein microgels. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Abstract
The Maillard reaction is of great significance in food, herb medicines, and life processes. It is usually occurring during the process of food and herb medicines processing and storage. The formed Maillard reaction productions (MRPs) in food and herb medicines not only generate a large number of efficacy components but also generate a small amount of harmful substance that cannot be ignored. Some of the MRPs, especially the advanced glycation end products (AGEs) are concerning humans, based on the possibility to induce cancer and mutations in laboratory animals. Numerous studies have been reported on the formation, analysis, and control of the potentially harmful MRPs (PHMRPs). Therefore, the investigation into the formation, analysis, and control of PHMRPs in food and herb medicines is very important for improving the quality and safety of food and herb medicines. This article provides a brief review of the formation, analysis (major content), and control of PHMRPs in food and herb medicines, which will provide a base and reference for safe processing and storage of food and herb medicines. Practical Applications. The formed Maillard reaction productions in food and herb medicines not only generate a large number of functional components but also generate a small amount of harmful substance that cannot be ignored. This contribution provides a brief review on the formation (including the correlative studies between MRs and the PHMRPs, mechanisms, and the main pathways); analysis (major content, pretreatment for analysis, qualitative and quantitative analysis, and structural identification analysis); and control (strategies and mechanisms) of PHMRPs in food and herb medicines, which will provide a solid theoretical foundation and a valuable reference for safe processing and storage for food and herb medicines.
Collapse
|
32
|
Macromolecular design of folic acid functionalized amylopectin–albumin core–shell nanogels for improved physiological stability and colon cancer cell targeted delivery of curcumin. J Colloid Interface Sci 2020; 580:561-572. [DOI: 10.1016/j.jcis.2020.07.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/11/2022]
|
33
|
Karbasi M, Sánchez-Ferrer A, Adamcik J, Askari G, Madadlou A, Mezzenga R. Covalent β-lactoglobulin-maltodextrin amyloid fibril conjugate prepared by the Maillard reaction. Food Chem 2020; 342:128388. [PMID: 33172603 DOI: 10.1016/j.foodchem.2020.128388] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 09/21/2020] [Accepted: 10/10/2020] [Indexed: 01/10/2023]
Abstract
The surface modification of β-lactoglobulin amyloid fibrils (AFs) was investigated by performing the Maillard reaction with the free anomeric carbon of the maltodextrin in water at pH 9.0 and 90 °C. The bonding of maltodextrin to fibrils was confirmed by determining the free amino group content and the presence of final products from the Maillard reaction. The secondary structure of AFs was preserved as observed by circular dichroism analysis. Atomic force microscopy evidenced that prolonged heat treatment caused hydrolysis of the attached polysaccharide and consequently lowered the height of the fibrils from 8.0 nm (after 1 h) to 6.0 nm (after 24 h), which led to the reduction of hydrophilicity of resulting conjugate. Increasing the reaction time, however, resulted in the improvement of colloidal stability and decrease in turbidity ascribed to the increment of glycation degree, as well as, a decrease in the isoelectric point of the protein-based supramolecular object.
Collapse
Affiliation(s)
- Mehri Karbasi
- Department of Food Science and Engineering, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran; Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | | | - Jozef Adamcik
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Gholamreza Askari
- Department of Food Science and Engineering, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Ashkan Madadlou
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research Centre, Wageningen, the Netherlands
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland; Department of Materials, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
34
|
Novel lysozyme–mannooligosaccharide conjugate with improved antimicrobial activity: preparation and characterization. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00499-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
35
|
Jian W, Ma Y, Zhu X, Zhang N, Lin L, Jia B, Shen X, Xiong H, Wang W. Quantitative insight into dispersity and antibactericidal capability of silver nanoparticles noncovalently conjugated by polysaccharide-protein complexes. Int J Biol Macromol 2020; 150:459-467. [PMID: 32057866 DOI: 10.1016/j.ijbiomac.2020.02.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/15/2022]
Abstract
Precise prediction and measurement of dispersibility of silver nanoparticles (AgNPs) under atmospheric conditions are extremely vital for their potential commercial application. In the present work, the dispersibility of AgNPs capped by polysaccharide-protein from viscera of abalone (PSP-AgNPs) was studied using the combination of ultraviolet-visible spectroscopy (UV-vis), dynamic light scattering (DLS) and multiple-light-scattering (MLS) techniques. The results showed that the combination of UV/vis, DLS and MLS not only accurately determined the dispersibility of PSP-AgNPs, but also provided detailed information about the aggregation behavior of PSP-AgNPs. Furthermore, the results revealed a high dispersibility of PSP-AgNPs in the studied environment. The system temperature, pH value and thermal treatment (pasteurization and sterilization) had no effect on the dispersion of PSP-AgNPs in the effective concentration range against the pathogenic bacteria. Besides, an excellent stable dispersion and antibacterial activity against common pathogenic vibrio was also found in the dispersed PSP-AgNPs in seawater. Overall, the study provides a suitable method for the precise measurement of the dispersibility of AgNPs in environment. The AgNPs act as a potential bactericide with good dispersion and antibacterial activity in mariculture and other fields.
Collapse
Affiliation(s)
- Wenjie Jian
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China; Institute of Respiratory Diseases, Xiamen Medical College, Xiamen 361023, China
| | - Ying Ma
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College of Jimei University, Xiamen 361021, China
| | - Xiaopei Zhu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College of Jimei University, Xiamen 361021, China
| | - Ni Zhang
- Department of Pharmacy, Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361012, China.
| | - Lin Lin
- Institute of Respiratory Diseases, Xiamen Medical College, Xiamen 361023, China
| | - Binmei Jia
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China
| | - Xiulin Shen
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China
| | - Hejian Xiong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College of Jimei University, Xiamen 361021, China
| | - Wenying Wang
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China
| |
Collapse
|
36
|
Functional and biological properties of Maillard conjugates and their potential application in medical and food: A review. Food Res Int 2020; 131:109003. [PMID: 32247496 DOI: 10.1016/j.foodres.2020.109003] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/23/2019] [Accepted: 01/12/2020] [Indexed: 01/13/2023]
Abstract
Protein and peptides are usually sensitive to environmental stresses, such as pH changes, high temperature, ionic strength, and digestive enzymes amongst other, which limit their food and medicinal applications. Maillard reaction (also called Maillard conjugation or glycation) occurs naturally without the addition of chemical agents and has been vastly applied to boost protein/peptide/amino acid functionalities and biological properties. Protein/peptide-saccharide conjugates are currently used as emulsifiers, antioxidants, antimicrobials, gelling agents, and anti-browning compounds in food model systems and products. The conjugates also possess the excellent stabilizing ability as a potent delivery system to enhance the stability and bioaccessibility of many bioactive compounds. Carbonyl scavengers such as polyphenols are able to significantly inhibit the formation of advanced glycation end products without a significant effect on early Maillard reaction products (MRPs) and melanoidins, which are currently applied as functional ingredients. This review paper highlights the technological functionality and biological properties of glycoconjugates in food model systems and products. Recent applications of MRPs in medical sciences are also presented.
Collapse
|
37
|
Tan L, Hong P, Yang P, Zhou C, Xiao D, Zhong T. Correlation Between the Water Solubility and Secondary Structure of Tilapia-Soybean Protein Co-Precipitates. Molecules 2019; 24:molecules24234337. [PMID: 31783603 PMCID: PMC6930460 DOI: 10.3390/molecules24234337] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/16/2019] [Accepted: 11/26/2019] [Indexed: 11/16/2022] Open
Abstract
The secondary structure of a protein has been identified to be a crucial indicator that governs its water solubility. Tilapia protein isolate (TPI), soybean protein isolate (SPI), and tilapia-soybean protein co-precipitates (TSPC3:1, TSPC2:1, TSPC1:1, TSPC1:2, and TSPC1:3) were prepared by mixing tilapia meat and soybean meal at different mass ratios. The results demonstrated that the water solubility of TSPCs was significantly greater than that of TPI (p <0.05). The changes in ultraviolet–visible and near-ultraviolet circular dichroism spectra indicated that the local structure of TSPCs was different from that of TPI and SPI. Fourier transform infrared Spectroscopy revealed the co-existence of TPI and SPI structures in TSPCs. The secondary structures of TSPCs were predominantly α-helix and β-sheet. TSPC1:1 was unique compared to the other TSPCs. In addition, there was a good correlation between the water solubility and secondary structure of TSPCs, in which the correlation coefficients of α-helix and β-sheet were −0.964 (p <0.01) and 0.743, respectively. TSPCs displayed lower α-helix contents and higher β-sheet contents compared to TPI, which resulted in a significant increase in their water solubility. Our findings could provide insight into the structure–function relationship of food proteins, thus creating more opportunities to develop innovative applications for mixed proteins.
Collapse
Affiliation(s)
- Li Tan
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (L.T.); (P.H.); (P.Y.); (D.X.); (T.Z.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (L.T.); (P.H.); (P.Y.); (D.X.); (T.Z.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
| | - Ping Yang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (L.T.); (P.H.); (P.Y.); (D.X.); (T.Z.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (L.T.); (P.H.); (P.Y.); (D.X.); (T.Z.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
- Correspondence: ; Tel.: +86‐13828262885
| | - Dinghao Xiao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (L.T.); (P.H.); (P.Y.); (D.X.); (T.Z.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
| | - Tanjun Zhong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (L.T.); (P.H.); (P.Y.); (D.X.); (T.Z.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
| |
Collapse
|
38
|
Abstract
Sugar ligand molecules, such as mannose, galactose and glucose, can bind to drug-delivery systems, making them targeted. These glycosylation ligands have the advantages of nontoxicity, no immunogenicity, good biocompatibility and biodegradation. They can be widely used in glycosylation-modified drug-delivery systems. Herein, the targeting mechanisms, synthesis methods and targeting characteristics of glycosylation-modified drug-delivery systems were reviewed.
Collapse
|
39
|
Fu X, Liu Q, Tang C, Luo J, Wu X, Lu L, Cai Z. Study on structural, rheological and foaming properties of ovalbumin by ultrasound-assisted glycation with xylose. ULTRASONICS SONOCHEMISTRY 2019; 58:104644. [PMID: 31450374 DOI: 10.1016/j.ultsonch.2019.104644] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/31/2019] [Accepted: 06/16/2019] [Indexed: 06/10/2023]
Abstract
This study was to evaluate the effect of ultrasound-assisted glycation with xylose on the foaming properties, physicochemical and structural characteristics of ovalbumin (OVA). The number of free amino groups in the glycated OVA (sOVA-X) significantly decreased with the increase of treatment time. The results obtained by circular dichroism (CD) and spectrofluorimetric measurements showed that there were slight changes on the subunits and secondary structure of OVA, indicating that the tertiary structure became more flexible and loose after the sonicated glycation treatment. The glycated OVA had higher solubility and foaming properties than the untreated samples. Therefore, ultrasound improved the glycation extent, and the changes in molecular structure were responsible for their different foaming ability and foaming stability. Our study also provided principle knowledge to understand how the viscosity and rheology were related to the foaming properties of OVA glycation by xylose. The results indicated that ultrasound-assisted glycation could be an excellent approach to improve the functional properties of OVA and promote its application in food industry.
Collapse
Affiliation(s)
- Xing Fu
- College of Food Science and Technology, Huazhong Agricultural University, National Research and Development Centre for Egg Processing, Wuhan, Hubei 430070, PR China
| | - Qiao Liu
- College of Food Science and Technology, Huazhong Agricultural University, National Research and Development Centre for Egg Processing, Wuhan, Hubei 430070, PR China
| | - Chaoqing Tang
- College of Food Science and Technology, Huazhong Agricultural University, National Research and Development Centre for Egg Processing, Wuhan, Hubei 430070, PR China
| | - Jingxu Luo
- College of Food Science and Technology, Huazhong Agricultural University, National Research and Development Centre for Egg Processing, Wuhan, Hubei 430070, PR China
| | - Xiudong Wu
- Electrical & Computer Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 310000 Zhejiang, PR China
| | - Zhaoxia Cai
- College of Food Science and Technology, Huazhong Agricultural University, National Research and Development Centre for Egg Processing, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
40
|
Chen F, Huang G. Application of glycosylation in targeted drug delivery. Eur J Med Chem 2019; 182:111612. [DOI: 10.1016/j.ejmech.2019.111612] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/26/2019] [Accepted: 08/09/2019] [Indexed: 01/10/2023]
|
41
|
Li R, Cui Q, Wang G, Liu J, Chen S, Wang X, Wang X, Jiang L. Relationship between surface functional properties and flexibility of soy protein isolate-glucose conjugates. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.04.030] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
42
|
Surface decoration of whey protein microgels through the Maillard conjugation with maltodextrin. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
43
|
Teran-Saavedra NG, Sarabia-Sainz JAI, Silva-Campa E, Burgara-Estrella AJ, Guzmán-Partida AM, Ramos-Clamont Montfort G, Pedroza-Montero M, Vazquez-Moreno L. Lactosylated Albumin Nanoparticles: Potential Drug Nanovehicles with Selective Targeting Toward an In Vitro Model of Hepatocellular Carcinoma. Molecules 2019; 24:molecules24071382. [PMID: 30970533 PMCID: PMC6479765 DOI: 10.3390/molecules24071382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/27/2019] [Accepted: 04/04/2019] [Indexed: 01/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) ranks fifth in occurrence and second in mortality of all cancers. The development of effective therapies for HCC is urgently needed. Anticancer drugs targeted to the liver-specific asialoglycoprotein receptors (ASGPRs) are viewed as a promising potential treatment for HCC. ASGPRs facilitate the recognition and endocytosis of molecules, and possibly vehicles with galactose end groups, by the liver. In this study, bovine serum albumin (BSA) was conjugated with lactose using a thermal treatment. The formation of lactosylated BSA (BSA-Lac) was confirmed by a change of the chemical structure, increased molecular mass, and Ricinus communis lectin recognition. Subsequently, the low-crosslinking BSA-Lac nanoparticles (LC BSA-Lac NPs) and high-crosslinking BSA-Lac nanoparticles (HC BSA-Lac NPs) were synthesized. These nanoparticles presented spherical shapes with a size distribution of 560 ± 18.0 nm and 539 ± 9.0 nm, as well as an estimated surface charge of −26 ± 0.15 mV and −24 ± 0.45 mV, respectively. Both BSA-Lac NPs were selectively recognized by ASGPRs as shown by biorecognition, competition, and inhibition assays using an in vitro model of HCC. This justifies pursuing the strategy of using BSA-Lac NPs as potential drug nanovehicles with selective direction toward hepatocellular carcinoma.
Collapse
Affiliation(s)
- Nayelli Guadalupe Teran-Saavedra
- Centro de Investigacion en Alimentacion y Desarrollo, A.C. Carretera Gustavo E. Aztiazaran 46, Hermosillo 83304, Sonora, Mexico.
| | - Jose Andre-I Sarabia-Sainz
- Departamento de Investigacion en Fisica. Universidad de Sonora, P.O. Box 5-088, Hermosillo, C.P. 83190, Mexico.
| | - Erika Silva-Campa
- Departamento de Investigacion en Fisica. Universidad de Sonora, P.O. Box 5-088, Hermosillo, C.P. 83190, Mexico.
| | - Alexel J Burgara-Estrella
- Departamento de Investigacion en Fisica. Universidad de Sonora, P.O. Box 5-088, Hermosillo, C.P. 83190, Mexico.
| | - Ana María Guzmán-Partida
- Centro de Investigacion en Alimentacion y Desarrollo, A.C. Carretera Gustavo E. Aztiazaran 46, Hermosillo 83304, Sonora, Mexico.
| | - Gabriela Ramos-Clamont Montfort
- Centro de Investigacion en Alimentacion y Desarrollo, A.C. Carretera Gustavo E. Aztiazaran 46, Hermosillo 83304, Sonora, Mexico.
| | - Martín Pedroza-Montero
- Departamento de Investigacion en Fisica. Universidad de Sonora, P.O. Box 5-088, Hermosillo, C.P. 83190, Mexico.
| | - Luz Vazquez-Moreno
- Centro de Investigacion en Alimentacion y Desarrollo, A.C. Carretera Gustavo E. Aztiazaran 46, Hermosillo 83304, Sonora, Mexico.
| |
Collapse
|
44
|
Zhao D, Li L, Le TT, Larsen LB, Xu D, Jiao W, Sheng B, Li B, Zhang X. Digestibility of glycated milk proteins and the peptidomics of their in vitro digests. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3069-3077. [PMID: 30511448 DOI: 10.1002/jsfa.9520] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/25/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Milk proteins are widely used in food production and are often glycated by reducing sugar. Although many studies have reported the digestibility of glycated milk protein, most have focused on measuring degree of hydrolysis (DH), showing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) image of digests. Detailed information on the changes in peptide composition of digests has seldom been revealed. Therefore, in addition to measuring the DH and showing the SGS-PAGE images of digests, we also analyzed the peptidomics in digests using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) and Mascot database in this work to further reveal the influence of glycation on protein nutrition. RESULTS Compared with β-lactoglobulin and bovine serum albumin (BSA), DH of β-casein was suppressed to a lesser extent by glycation in both gastric and intestinal stages. Aggregates of glycated BSA were less sensitive to the action of digestive enzymes throughout gastrointestinal digestion according to SDS-PAGE images. Changes in the peptide composition of digests induced by glycation were distinctly displayed, showing both absence of peptides and occurrence of new peptides, based on the results obtained from LC-ESI-MS/MS. CONCLUSIONS Glycation can greatly change the peptide composition in digests of milk protein. The nutritional impact of the change in the peptide composition requires further investigation, and the impact of MRPs in unabsorbed digests on the gut flora should be an interesting field for further studies. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Di Zhao
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
- Key Laboratory of Meat Processing, MOA, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, Nanjing, China
- Jiang Synergetic Innovation Center of Meat Production, Processing and Quality Control, Nanjing Agricultural University, Nanjing, China
| | - Lin Li
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| | - Thao T Le
- Department of Food Science, Aarhus University, Tjele, Denmark
| | - Lotte B Larsen
- Department of Food Science, Aarhus University, Tjele, Denmark
| | - Dan Xu
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Wenjuan Jiao
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Bulei Sheng
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Bing Li
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Xia Zhang
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| |
Collapse
|
45
|
Elgohary MM, Helmy MW, Mortada SM, Elzoghby AO. Dual-targeted nano-in-nano albumin carriers enhance the efficacy of combined chemo/herbal therapy of lung cancer. Nanomedicine (Lond) 2018; 13:2221-2224. [DOI: 10.2217/nnm-2018-0097] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aim: A Nano-in-Nano approach was exploited to facilitate incorporation of the chemotherapeutic drug etoposide (ETP) as nanosuspension, synergistically with berberine (BER) into hydrophilic albumin nanoparticles (HSA NPs).Methods: For maximal tumor targeting, HSA was modified with mannose and phenyl-boronic acid. Furthermore, different crosslinkers were investigated for sustained release of water soluble BER from HSA NPs. Results: The elaborated dual-targeted HSA NPs (216.2 nm) were spherical with high BER and ETP entrapment efficiency (69.5 and 87.6%, respectively) and loading (10.52 and 14.04%, respectively). The NPs exhibited sequential release pattern for both ETP and BER (51.55 and 34.33% over 72 h, respectively). Phenyl-boronic acid/mannose-HSA NPs demonstrated powerful cytotoxicity against A549 lung cancer cells (IC50: 12.4 μg/ml) correlated to enhanced cellular internalization. Dual-targeted NPs displayed 9.77-fold higher caspase-3 level and 3.5-fold lower VEGF level than positive control mice. Conclusion: Dual-targeted Nano-in-Nano albumin carriers could be beneficial for parenteral ETP/BER delivery to lung cancer.
Collapse
Affiliation(s)
- Mayada M Elgohary
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Maged W Helmy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Sana M Mortada
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Ahmed O Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Division of Engineering in Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
46
|
Liu J, Xing X, Jing H. Differentiation of glycated residue numbers on heat-induced structural changes of bovine serum albumin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2168-2175. [PMID: 28960315 DOI: 10.1002/jsfa.8701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/29/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Glycation is an approach in dealing with heat-induced protein aggregation. The relationship between degree of glycation and heat-induced structural changes is still unclear. The present work investigates the effect of different numbers and sites of glycated residues on heat-induced structural changes of bovine serum albumin (BSA). Glycation of BSA was carried out with xylose (Xyl) and galactose (Gal) by Maillard reaction. Glycated residues in BSA were identified by liquid chromatography-tandem mass spectrometry, and heat-induced protein structural changes were characterized by fluorescence emission and synchronous fluorescence spectra, 8-anilino-1-naphthalenesulfonic acid fluorescence, Fourier transform infrared (FTIR) and circular dichroism (CD) spectra. RESULTS The numbers of glycated residues were 2 and 13 when BSA was glycated by Gal (BSA - Gal) and Xyl (BSA - Xyl), respectively. There were shifts of maximum wavelengths and decreases in fluorescence intensities for both intrinsic and extrinsic fluorescences; shifts of FTIR amide I, III, and A bands; and decrease or increase of CD band intensities, α-helix and β-sheet percentages when BSA was heated. Glycation with Gal or Xyl restrained in similar degrees those changes, including fluorescence wavelengths, amide I band, CD band intensities, and α-helix and β-sheet percentages. CONCLUSION Xyl glycated more residues than Gal, while their effects were similar in restraining heat-induced BSA structural changes. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jianlei Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, PR China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Xiaojuan Xing
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Hao Jing
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, PR China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| |
Collapse
|
47
|
Physicochemical Properties of Bovine Serum Albumin-Glucose and Bovine Serum Albumin-Mannose Conjugates Prepared by Pulsed Electric Fields Treatment. Molecules 2018; 23:molecules23030570. [PMID: 29510477 PMCID: PMC6017466 DOI: 10.3390/molecules23030570] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 02/22/2018] [Accepted: 02/28/2018] [Indexed: 01/20/2023] Open
Abstract
The pulsed electric fields (PEF) treatment is a novel method for obtaining glycated proteins by way of a Maillard reaction between proteins and polysaccharides but its effect on the preparation of protein–monosaccharide conjugate has not been explored. This study aimed to prepare bovine serum albumin (BSA)–glucose and BSA–mannose conjugates using PEF in pH 10.0 at an intensity of 10 or 20 kV/cm, frequency of 1 kHz, pulse width of 20 μs and 73.5 pulses. The conjugates were evaluated for physicochemical properties. The results indicated that PEF not only promoted Maillard reaction between BSA and glucose or mannose but also alleviated the undesirable browning. PEF treatment favored the increased surface hydrophobicity and emulsifying activity in BSA but reduced surface hydrophobicity and foaming stability and improved foaming capacity in BSA–glucose and BSA–mannose conjugates. These findings provided useful considerations in the application of PEF treatment as a potential method to prepare BSA–monosaccharide conjugates by Maillard reaction.
Collapse
|
48
|
Liu J, Tu ZC, Zhang L, Wang H, Sha XM, Shao YH. Influence of Ultrasonication Prior to Glycation on the Physicochemical Properties of Bovine Serum Albumin–galactose Conjugates. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2018. [DOI: 10.3136/fstr.24.35] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Jun Liu
- College of Chemistry and Chemical Engineering, College of Life Science, Jiangxi Normal University
| | - Zong-cai Tu
- College of Chemistry and Chemical Engineering, College of Life Science, Jiangxi Normal University
- State Key Laboratory of Food Science and Technology, Nanchang University
| | - Lu Zhang
- College of Chemistry and Chemical Engineering, College of Life Science, Jiangxi Normal University
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, Nanchang University
| | - Xiao-mei Sha
- College of Chemistry and Chemical Engineering, College of Life Science, Jiangxi Normal University
| | - Yan-hong Shao
- College of Chemistry and Chemical Engineering, College of Life Science, Jiangxi Normal University
| |
Collapse
|
49
|
Nasrollahzadeh F, Varidi M, Koocheki A, Hadizadeh F. Effect of microwave and conventional heating on structural, functional and antioxidant properties of bovine serum albumin-maltodextrin conjugates through Maillard reaction. Food Res Int 2017; 100:289-297. [DOI: 10.1016/j.foodres.2017.08.030] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/07/2017] [Accepted: 08/12/2017] [Indexed: 12/30/2022]
|
50
|
Liu J, Tu Z, Wang H, Zhang L, Sha X, Shao Y. Comparative Studies on Physicochemical Properties of Bovine Serum Albumin–Glucose and Galactose Conjugates Formed by Glycation Combined with Ultrasonic Pretreatment. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2017. [DOI: 10.1515/ijfe-2017-0160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe effects of ultrasonication on the physicochemical properties of bovine serum albumin (BSA)–glucose and the galactose conjugates formed by glycation was investigated. Fourier transform ion cyclotron resonance mass spectra analysis showed that the conjugates had a higher molecular weight than the native and ultrasonicated BSA. Ultrasonicated BSA had significantly higher emulsifying and foaming properties than native BSA. The browning intensity, surface hydrophobicity, emulsifying property and foaming capacity of the conjugates were substantially improved while the free amino groups, intrinsic fluorescence emission and foaming stability were decreased compared to native and ultrasonicated BSA. The results of this study indicate that ultrasonication is an efficient technique to improve the physicochemical properties of proteins. The glycation between ultrasonicated BSA and monosaccharide can effectively improve the physicochemical properties of BSA, and the glycation rate order is galactose \gt glucose. It also shows the critical role of monosaccharide conformational changes in improving the glycation and physicochemical properties of proteins.
Collapse
|