1
|
Gotardo LRM, de Carvalho FAL, Gonçalves LA, Quirino DJG, Fávaro-Trindade CS, de Alencar SM, de Oliveira AL, Trindade MA. Effectiveness of red propolis extract as a natural antioxidant in frozen lamb burgers. Meat Sci 2025; 226:109829. [PMID: 40286455 DOI: 10.1016/j.meatsci.2025.109829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 02/26/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025]
Abstract
The antioxidant effects of red propolis extract were evaluated in lamb burgers stored for 120 days at -18 °C. The treatments prepared were CON (control, no antioxidant), ERI (500 mg/kg sodium erythorbate), P1800 (1800 mg/kg propolis extract), and P3600 (3600 mg/kg propolis extract).The analyses performed were proximate composition (moisture, protein, fat, and ash), texture, and sensory acceptance (day 0); pH, color profile (L*, a*, b*), weight loss of cooking (WLC), diameter reduction, TBARS, and peroxide index (0, 30, 60, 90, and 120 days); and fatty acid profile and volatile compounds (0 and 120 days). No treatment was associated with a change in the proximate composition. Most texture parameters in treatments P1800 and P3600 were lower (P < 0.05), and it can be concluded that the extract favors the improvement of this sensory attribute, making the hamburgers softer. The WLC was higher in the treatments where the extract was used; however, the reduction of the diameter of the hamburgers was lower, an important aspect for consumers. The extract retarded lipid oxidation during storage, especially P3600, which presented the lowest level of TBARS (1.37 mg MDA/kg) and the peroxide index (5.69 mEq g of O2) on day 120. The presence of volatile compounds derived from lipid oxidation was more evident in the CON and ERI treatments, showing the efficiency of natural antioxidants used in the P1800 and P3600 treatments. It is concluded that red propolis represents an excellent alternative for replacement of synthetic antioxidants with natural products in lamb hamburgers.
Collapse
Affiliation(s)
- Luciana Ruggeri Menezes Gotardo
- Universidade de Sao Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Department of Food Engineering, Pirassununga, Brazil.
| | | | - Leticia Aline Gonçalves
- Universidade de Sao Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Department of Food Engineering, Pirassununga, Brazil
| | - Dannaya Julliethy Gomes Quirino
- Universidade de Sao Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Department of Food Engineering, Pirassununga, Brazil
| | - Carmen Sílvia Fávaro-Trindade
- Universidade de Sao Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Department of Food Engineering, Pirassununga, Brazil
| | - Severino Mathias de Alencar
- Universidade de Sao Paulo Escola Superior de Agricultura Luiz de Queiroz, Department of Agri-Food Industry, Food, and Nutrition, Piracicaba, Brazil
| | - Alessandra Lopes de Oliveira
- Universidade de Sao Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Department of Food Engineering, Pirassununga, Brazil
| | - Marco Antonio Trindade
- Universidade de Sao Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Department of Food Engineering, Pirassununga, Brazil
| |
Collapse
|
2
|
Yaghoubi M, Alirezalu K, Nottagh S, Naghizadeh SH, Moslemi SAS, Olyayee M, Dizajyekan MM, Fathi-Achachlouei B. Enhancement of sausages shelf life using natural antimicrobials and propolis extract. Food Sci Biotechnol 2025; 34:287-298. [PMID: 39758723 PMCID: PMC11695511 DOI: 10.1007/s10068-024-01632-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 05/11/2024] [Accepted: 05/28/2024] [Indexed: 01/07/2025] Open
Abstract
The present work assessed the impacts of nisin (200 mg/kg) and nisin-nanoparticles (NNPs; 200 mg/kg) in combination with propolis ethanolic extract (PEE; 1% and 3%) on quality and stability of sausage during refrigerated period. The treated meat batters were mechanically stuffed into polyamide casings, packaged in vacuum conditions and analyzed at days 1, 15, 30 and 45. Sausages treated with combined NNPs and PEE displayed higher total phenolic content (2.14-5.41 mg GAE/g DM), pH values (5.27-5.80) and sensory scores (3.70-3.93) with low hardness (34.9-37.7 kg m/s2) and TBARS values (1.41-2.85 mg MDA/kg) throughout keeping period. At day 45, treated samples with 200 mg/kg NNPs + 3% PEE indicated 0.28 Log CFU/g reduction in TVC, 0.16 CFU/g in Clostridium perfringens, 0.23 in E. coli, 0.65 in Staphylococcus aureus, and 0.37 CFU/g in mold and yeast count compared with control (120 ppm nitrite). Hence, this work aims to assess the performance of nisin compounds + PEE in the quality improvement of frankfurter-type sausage kept for 45 days (4 °C) to produce novel and practical nitrite substitutes.
Collapse
Affiliation(s)
- Milad Yaghoubi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Kazem Alirezalu
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Sahar Nottagh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Seyed Hadi Naghizadeh
- Department of Food Science and Technology, Faculty of Agriculture, Soufian Branch, Islamic Azad University, Soufian, Iran
| | - Seyed Amir Seyed Moslemi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Majid Olyayee
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | | | - Bahram Fathi-Achachlouei
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
3
|
Bogusz R, Onopiuk A, Chmiel M, Piotrowska A, Kostyra E, Lipińska E, Bryś J, Samborska K, Pietrzak D. The Effect of Honey Powder Addition on Chosen Quality Properties of Model Chicken Products. Foods 2024; 13:4163. [PMID: 39767104 PMCID: PMC11675915 DOI: 10.3390/foods13244163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
The objective of our paper was to evaluate the effect of honey powder addition on the quality of model chicken products over 14 days of refrigerated storage. Three model chicken product variants were produced: C-control, HP1%, HP2%-with 1 or 2% of honey powder addition. The cooking loss, basic chemical composition, water activity, texture, color, lipid oxidation (TBARS and PDSC), microbiological and sensory quality, and volatile compounds profile were determined. The adverse changes in lipids were slower in products with honey powder added compared to control product, revealing lower TBARS index values and longer oxidation induction times. After 14 days of storage, HP2% products showed significantly lower (up to 50%) TBARS values than control products. Furthermore, honey powder addition reduced the growth of psychrotrophic and lactic acid bacteria for up to 14 days of storage in comparison to the control products. However, deterioration of the volatile compounds profile (presence of alcohols and sulfur compounds) and occurrence of storage odor and flavor had an impact on the poorer sensory desirability of the control and HP1% products. Additional research is necessary aiming to improve the sensory quality of products with honey powder addition.
Collapse
Affiliation(s)
- Radosław Bogusz
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 159c Nowoursynowska Street, 02-776 Warsaw, Poland;
| | - Anna Onopiuk
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences—SGGW, 159c Nowoursynowska Street, 02-776 Warsaw, Poland;
| | - Marta Chmiel
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 159c Nowoursynowska Street, 02-776 Warsaw, Poland;
| | - Anna Piotrowska
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences—SGGW, 159c Nowoursynowska Street, 02-776 Warsaw, Poland; (A.P.); (E.K.)
| | - Eliza Kostyra
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences—SGGW, 159c Nowoursynowska Street, 02-776 Warsaw, Poland; (A.P.); (E.K.)
| | - Edyta Lipińska
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 159c Nowoursynowska Street, 02-776 Warsaw, Poland;
| | - Joanna Bryś
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 159c Nowoursynowska Street, 02-776 Warsaw, Poland;
| | - Katarzyna Samborska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 159c Nowoursynowska Street, 02-776 Warsaw, Poland;
| | - Dorota Pietrzak
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 159c Nowoursynowska Street, 02-776 Warsaw, Poland;
| |
Collapse
|
4
|
Oh Y, Kim SH. Concentric Capillary Microfluidic Devices Designed for Robust Production of Multiple-Emulsion Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19166-19175. [PMID: 39183643 DOI: 10.1021/acs.langmuir.4c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Multiple emulsions are used as templates for producing functional microcapsules due to their unique core-shell geometry. Employing glass capillary devices with coaxial channels has proven effective in creating uniform multiple-emulsion droplets. However, the use of partially miscible fluids, crucial for microcapsule production, often results in clogging and disrupts the stability of these devices. Here, we introduce innovative capillary microfluidic devices with concentric capillary channels, specifically designed to optimize the production of multiple-emulsion droplets while mitigating issues of precipitation and clogging. The key aspect of these devices is their configuration of two or three concentrically aligned capillaries, which form separate, coaxial microchannels for fluid injection. This unique alignment, achieved through rotational adjustments that leverage the natural off-center positioning of tapered capillaries, facilitates the simultaneous coaxial injection of various fluids into a droplet-forming junction, significantly reducing fluid contact before emulsification. The devices, featuring double and triple concentric capillary channels, consistently produce highly uniform double-, triple-, and quadruple-emulsion droplets with precisely controlled diameters and layer thicknesses. The minimal contact between fluids prior to emulsification in these devices broadens the usable range of fluid combinations, heralding new possibilities in microcapsule development for pharmaceutical and cosmetic applications.
Collapse
Affiliation(s)
- Yoonjin Oh
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
5
|
Jansen-Alves C, Martins Fonseca L, Doring Krumreich F, Zavareze EDR. Applications of propolis encapsulation in food products. J Microencapsul 2023; 40:567-586. [PMID: 37867427 DOI: 10.1080/02652048.2023.2274059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Propolis has beneficial health properties attributed to of phenolic compounds. However, its application is limited. Thus, encapsulation protects the bioactive compounds of propolis from degradation, allowing their release under controlled and specific conditions and increasing their solubility. In addition to protecting flavonoids, encapsulation also minimises the undesirable characteristics of propolis, such as strong odour. We brought attention to the high antioxidant and antimicrobial activities of encapsulated propolis, and its maintained biological activity enables more uses in different areas. Encapsulated propolis can be applied in food products as an ingredient. This review describes recent advances in improving the bioactivity of propolis extracts by using encapsulation techniques, and biopolymer research strategies, focusing on applications in food products. Encapsulated propolis has a promising market perspective due to the industrial and scientific-technological advancement, the increase in the amount of research, the improvement of propolis extraction techniques, and the need of consumers for innovative products.
Collapse
Affiliation(s)
- Cristina Jansen-Alves
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Postgraduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| | - Laura Martins Fonseca
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Postgraduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| | | | - Elessandra Da Rosa Zavareze
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Postgraduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
6
|
Nefzi N, Pagliari S, Campone L, Megdiche-Ksouri W, Giarratana F, Cicero N, Ziino G, Nalbone L. Chemical Composition and Comprehensive Antimicrobial Activity of an Ethanolic Extract of Propolis from Tunisia. Antibiotics (Basel) 2023; 12:antibiotics12050802. [PMID: 37237705 DOI: 10.3390/antibiotics12050802] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
In the present study, the chemical composition and the in vitro antimicrobial and antibiofilm activity of an ethanolic extract of propolis (EEP) from Tunisia against different ATCC and wild bacterial strains were evaluated. In situ antimicrobial activity and sensory influence of different EEP concentrations (0.5% and 1%), also in combination with 1% vinegar, were evaluated in chilled vacuum-packed salmon tartare. Furthermore, a challenge test was performed on salmon tartare experimentally contaminated with Listeria monocytogenes and treated with the different EEP formulations. The in vitro antimicrobial and antibiofilm activity was observed only against Gram-positive bacteria, such as L. monocytogenes and S. aureus, both ATCC and wild. Results of the in situ analyses revealed significant antimicrobial activity against aerobic colonies, lactic acid bacteria, Enterobacteriaceae and Pseudomonas spp. only when the EEP was used at 1% and in combination with 1% vinegar. The 1% EEP in combination with 1% vinegar was the most effective treatment also against L. monocytogenes, although 0.5% and 1% EEP used alone also showed antilisterial effects. After 7 days of storage, the sensory influence on odor, taste and color of salmon tartare was negligible for all EEP formulations. In this background, results obtained confirmed the antimicrobial efficacy of propolis which could be proposed as a suitable biopreservative to ensure safety and improve the quality of food.
Collapse
Affiliation(s)
- Nermine Nefzi
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center of Borj-Cédria, BP 901, Hammam-Lif 2050, Tunisia
- Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| | - Stefania Pagliari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, I-20126 Milano, Italy
| | - Luca Campone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, I-20126 Milano, Italy
| | - Wided Megdiche-Ksouri
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center of Borj-Cédria, BP 901, Hammam-Lif 2050, Tunisia
- Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| | - Filippo Giarratana
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci SNC, 98168 Messina, Italy
- RICONNEXIA SRLS, Spin-off of the University of Messina, Viale Giovanni Palatucci SNC, 98168 Messina, Italy
| | - Nicola Cicero
- Department of BIOMORF-Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario dell'Annunziata, Viale Palatucci snc, 98168 Messina, Italy
| | - Graziella Ziino
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci SNC, 98168 Messina, Italy
- RICONNEXIA SRLS, Spin-off of the University of Messina, Viale Giovanni Palatucci SNC, 98168 Messina, Italy
| | - Luca Nalbone
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci SNC, 98168 Messina, Italy
| |
Collapse
|
7
|
dos Santos Silva ME, de Oliveira RL, Sousa TCDA, Grisi CVB, Ferreira VCDS, Porto TS, Madruga MS, Silva SPD, Silva FAPD. Microencapsulated phenolic-rich extract from juice processing grape pomace (Vitis labrusca. Isabella Var): Effects on oxidative stability of raw and pre-cooked bovine burger. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Hadidi M, Orellana-Palacios JC, Aghababaei F, Gonzalez-Serrano DJ, Moreno A, Lorenzo JM. Plant by-product antioxidants: Control of protein-lipid oxidation in meat and meat products. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
The technological potential of agro-industrial residue from grape pulping (Vitis spp.) for application in meat products: A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
Dundar AN, Cinar A, Altuntas S, Ulubayram N, Taner G, Dagdelen AF, Demircan H, Oral RA. The role of microencapsulation in maintaining biological activity of royal jelly: comparison with biological activity and bioaccessibility of microencapsulated, fresh and lyophilized forms during storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5502-5511. [PMID: 35355271 DOI: 10.1002/jsfa.11905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Royal jelly (RJ) is a unique beehive product and has been recommended for human health since ancient times because of its antioxidant, antimicrobial, antiproliferative, neuroprotective, anti-lipidemic and anti-aging features. However, the biggest obstacle in the use of RJ is the need for cold storage and the instability of bioactive components over time. In the present study, 10-hydroxy-2-decenoic acid (10-HDA) content, as well as antioxidant [using 1,1-diphenyl-2-picrylhydrazy and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) methods] and antimicrobial activity (five Gram-positive, five Gram-negative and three yeasts), were comparatively evaluated for three RJ forms, two of which can be stored at 24 ± 1 °C during storage. RESULTS Microencapsulated royal jelly (MRJ) stored at room temperature succeeded in preserving its 10-HDA content, a major bioactive compound, during the 6 months, with respect to lyophilized royal jelly (LRJ) and fresh RJ stored at 4 °C. The initial 10-HDA contents of RJ, LRJ and MRJ were determined as 1.90%, 5.26% and 2.75%, respectively. Moreover, the total phenolic content, antioxidant capacity and antimicrobial activity mostly remained constant throughout the storage period (P ≥ 0.05). Gram-positive strains were generally more sensitive than Gram-negative strains. In the present study, the in vitro simulated digestion analysis showed that MRJ can tolerate the digestion process. CONCLUSION Overall, the encapsulation process was considered as one preservative technique for RJ. The microencapsulation of RJ as shown in the results of the present study are encouraging in terms of enabling the local beekeeping sector to achieve ease of production and increased product diversity. MRJ shows promise as a commercial product with a high export value for producers. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ayse Neslihan Dundar
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Bursa Technical University, Bursa, Turkey
| | - Aycan Cinar
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Bursa Technical University, Bursa, Turkey
| | - Seda Altuntas
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Bursa Technical University, Bursa, Turkey
| | - Neslihan Ulubayram
- Vocational School of Altıntaş, Department of Food Processing, Kütahya Dumlupınar University, Kütahya, Turkey
| | - Gokce Taner
- Faculty of Engineering and Natural Sciences, Department of Bioengineering, Bursa Technical University, Bursa, Turkey
| | - Adnan Fatih Dagdelen
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Bursa Technical University, Bursa, Turkey
| | - Huseyin Demircan
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Bursa Technical University, Bursa, Turkey
| | - Rasim Alper Oral
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Bursa Technical University, Bursa, Turkey
| |
Collapse
|
11
|
Zhang D, Ivane NM, Haruna SA, Zekrumah M, Elysé FKR, Tahir HE, Wang G, Wang C, Zou X. Recent trends in the micro-encapsulation of plant-derived compounds and their specific application in meat as antioxidants and antimicrobials. Meat Sci 2022; 191:108842. [DOI: 10.1016/j.meatsci.2022.108842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/12/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022]
|
12
|
Microencapsulation of Natural Food Antimicrobials: Methods and Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The global demand for safe and healthy food with minimal synthetic preservatives is continuously increasing. Some natural food antimicrobials with strong antimicrobial activity and low toxicity have been considered as alternatives for current commercial food preservatives. Nonetheless, these natural food antimicrobials are hardly applied directly to food products due to issues such as food flavor or bioavailability. Recent advances in microencapsulation technology have the potential to provide stable systems for these natural antibacterials, which can then be used directly in food matrices. In this review, we focus on the application of encapsulated natural antimicrobial agents, such as essential oils, plant extracts, bacteriocins, etc., as potential food preservatives to extend the shelf-life of food products. The advantages and drawbacks of the mainly used encapsulation methods, such as molecular inclusion, spray drying, coacervation, emulsification, supercritical antisolvent precipitation and liposome and alginate microbeads, are discussed. Meanwhile, the main current applications of encapsulated antimicrobials in various food products, such as meat, dairy and cereal products for controlling microbial growth, are presented.
Collapse
|
13
|
Jaízia dos Santos Alves M, Rodrigues Monteiro A, Ayala Valencia G. Antioxidant nanoparticles based on starch and the phenolic compounds from propolis extract: Production and physicochemical properties. STARCH-STARKE 2022. [DOI: 10.1002/star.202100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | - Germán Ayala Valencia
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis SC Brazil
| |
Collapse
|
14
|
Andre, Arief II, Apriantini A, Jayanegara A, Budiman C. Antimicrobial Activity of Propolis Extract and Their Application as a Natural Preservative in Livestock Products: A Meta-Analysis. Food Sci Anim Resour 2022; 42:280-294. [PMID: 35310561 PMCID: PMC8907792 DOI: 10.5851/kosfa.2022.e4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/17/2021] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to evaluate the effectiveness of propolis extract as a natural preservative for livestock products in term of chemical and microbiological characteristics by meta-analysis. The stages carried out in this study were identification, selection, checking suitability, and the resulting selected articles were used in the meta-analysis. The selection results obtained a total of 22 selected journal articles consisting of 9 articles for analysis of the antimicrobial activity of propolis extract and 13 articles for analysis of the chemical and mirobiological characteristics of livestock products. The articles were obtained from electronic databases, namely Science Direct and Google Scholar. The model used in this study is the random-effect model involving two groups, control and experimental. Heterogeneity and effect size values were carried out in this study using Hedge's obtained through openMEE software. Forest plot tests and data validation on publication bias was obtained using Kendall's test throught JASP 0.14.1 software. The results showed that there is a significant relationship between propolis extract with the results of the antimicrobial activity (p<0.05). In addition, the results of the application of propolis extract on the livestock products for the test microbes and the value of thiobarbituric acid reactive substances (TBARs) showed significant results (p<0.05). Conclusion based on the random-effect model on the effectiveness of antimicrobial activity of propolis extract and their apllication as a natural preservative of the chemical and microbiological characteristics of livestock products is valid by Kendall's test (p>0.05). Propolis in this case effectively used as natural preservatives in livestock products.
Collapse
Affiliation(s)
- Andre
- Department of Animal Production Science
and Technology, Faculty of Animal Science, IPB University,
Bogor 16680, Indonesia
| | - Irma Isnafia Arief
- Department of Animal Production Science
and Technology, Faculty of Animal Science, IPB University,
Bogor 16680, Indonesia
| | - Astari Apriantini
- Department of Animal Production Science
and Technology, Faculty of Animal Science, IPB University,
Bogor 16680, Indonesia
| | - Anuraga Jayanegara
- Department of Nutrition and Feed Science
and Technology, Faculty of Animal Science, IPB University,
Bogor 16680, Indonesia
| | - Cahyo Budiman
- Department of Animal Production Science
and Technology, Faculty of Animal Science, IPB University,
Bogor 16680, Indonesia
| |
Collapse
|
15
|
Calderón-Oliver M, Ponce-Alquicira E. The Role of Microencapsulation in Food Application. Molecules 2022; 27:1499. [PMID: 35268603 PMCID: PMC8912024 DOI: 10.3390/molecules27051499] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022] Open
Abstract
Modern microencapsulation techniques are employed to protect active molecules or substances such as vitamins, pigments, antimicrobials, and flavorings, among others, from the environment. Microencapsulation offers advantages such as facilitating handling and control of the release and solubilization of active substances, thus offering a great area for food science and processing development. For instance, the development of functional food products, fat reduction, sensory improvement, preservation, and other areas may involve the use of microcapsules in various food matrices such as meat products, dairy products, cereals, and fruits, as well as in their derivatives, with good results. The versatility of applications arises from the diversity of techniques and materials used in the process of microencapsulation. The objective of this review is to report the state of the art in the application and evaluation of microcapsules in various food matrices, as a one-microcapsule-core system may offer different results according to the medium in which it is used. The inclusion of microcapsules produces functional products that include probiotics and prebiotics, as well as antioxidants, fatty acids, and minerals. Our main finding was that the microencapsulation of polyphenolic extracts, bacteriocins, and other natural antimicrobials from various sources that inhibit microbial growth could be used for food preservation. Finally, in terms of sensory aspects, microcapsules that mimic fat can function as fat replacers, reducing the textural changes in the product as well as ensuring flavor stability.
Collapse
Affiliation(s)
- Mariel Calderón-Oliver
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Avenida Eduardo Monroy Cárdenas 2000, San Antonio Buenavista, Toluca 50110, Mexico
| | - Edith Ponce-Alquicira
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Avenida San Rafael Atlixco 186, Col. Vicentina, Mexico City 09340, Mexico;
| |
Collapse
|
16
|
Encapsulation of olive leaf extract (Olea europaea L.) in gelatin/tragacanth gum by complex coacervation for application in sheep meat hamburger. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108426] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
ARAÚJO CDLD, SILVA GFGD, ALMEIDA JLSD, RIBEIRO NL, PASCOAL LAF, SILVA FAPD, FERREIRA VCDS, MARTINS TDD. Use of ultrasound and acerola (Malpighia emarginata) residue extract tenderness and lipid oxidation of pork meat. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.66321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Shabani M, Mokhtarian M, Kalbasi‐Ashtari A, Kazempoor R. Effects of extracted propolis (
Apis mellifera
) on physicochemical and microbial properties of rainbow‐trout fish burger patties. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marjan Shabani
- Department of Food Science and Technology Roudehen Branch Islamic Azad University Roudehen Iran
| | - Mohsen Mokhtarian
- Department of Food Science and Technology Roudehen Branch Islamic Azad University Roudehen Iran
| | - Ahmad Kalbasi‐Ashtari
- Biological and Agricultural Engineering Department Texas A&M University College Station Texas USA
| | - Reza Kazempoor
- Department of Biology Roudehen Branch Islamic Azad University Roudehen Iran
| |
Collapse
|
19
|
Microencapsulated and Lyophilized Propolis Co-Product Extract as Antioxidant Synthetic Replacer on Traditional Brazilian Starch Biscuit. Molecules 2021; 26:molecules26216400. [PMID: 34770809 PMCID: PMC8587645 DOI: 10.3390/molecules26216400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/10/2021] [Accepted: 10/17/2021] [Indexed: 12/18/2022] Open
Abstract
The residue from commercial propolis extraction may have significant antioxidant power in food technology. However, among the challenges for using the propolis co-product as an inhibitor of lipid oxidation (LO) in baked goods is maintaining its bioactive compounds. Therefore, this study aimed to determine the propolis co-product extracts’ capability to reduce LO in starch biscuit formulated with canola oil and stored for 45 days at 25 °C. Two co-product extracts were prepared: microencapsulated propolis co-product (MECP) (with maltodextrin) and lyophilized propolis co-product (LFCP), which were subjected to analysis of their total phenolic content and antioxidant activity (AA). Relevant antioxidant activity was observed using the methods of analysis employed. The spray-drying microencapsulation process showed an efficiency of 63%. The LO in the biscuits was determined by the thiobarbituric acid reactive substances (TBARS) test and fatty acid composition by gas chromatography analysis. Palmitic, stearic, oleic, linoelaidic, linoleic, and α-linolenic acids were found in biscuits at constant concentrations throughout the storage period. In addition, there was a reduction in malondialdehyde values with the addition of both propolis co-product extracts. Therefore, the propolis co-product extracts could be utilized as a natural antioxidant to reduce lipid oxidation in fatty starch biscuit.
Collapse
|
20
|
Bellucci ERB, Dos Santos JM, Carvalho LT, Borgonovi TF, Lorenzo JM, Silva-Barretto ACD. Açaí extract powder as natural antioxidant on pork patties during the refrigerated storage. Meat Sci 2021; 184:108667. [PMID: 34656002 DOI: 10.1016/j.meatsci.2021.108667] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
The current trends among consumers are pushing for the use of natural antioxidants options. Açaí fruit is rich on polyphenolic components but no studies have been carried out to evaluate their effect in meat products. The objective was to investigate the effect of açaí extract on refrigerated pork patties quality. Five treatments were done: without antioxidant (CON), Sodium Erythorbate 500 mg.kg -1 (ERY), Açaí Extract: 250 (AEL), 500 (AEM), 750 mg.kg -1 (AEH). Açaí extract did not affect the proximate composition, pH and cooking parameters. The concentrations of açaí extract studied increased antioxidant activity and reduced lipid oxidation (0.379, 0.293, and 0.217 vs. 0.889 mg MDA.kg-1 for AEL, AEM, AEH vs. CON, respectively). However, only the AEL treatment did not affect the color parameters, showing the best option for the application on pork patties. Thus, açaí extract at 250 mg.kg-1 can be used as a natural antioxidant replacing sodium erythorbate to preserve the quality of refrigerated pork patties.
Collapse
Affiliation(s)
- Elisa Rafaela Bonadio Bellucci
- Department of Food Technology and Engineering, UNESP - São Paulo State University, Street Cristóvão Colombo, 2265, Zip Code 15054-000 São José do Rio Preto, SP, Brazil
| | - João Marcos Dos Santos
- Department of Food Technology and Engineering, UNESP - São Paulo State University, Street Cristóvão Colombo, 2265, Zip Code 15054-000 São José do Rio Preto, SP, Brazil
| | - Larissa Tátero Carvalho
- Department of Food Technology and Engineering, UNESP - São Paulo State University, Street Cristóvão Colombo, 2265, Zip Code 15054-000 São José do Rio Preto, SP, Brazil
| | - Taís Fernanda Borgonovi
- Department of Food Technology and Engineering, UNESP - São Paulo State University, Street Cristóvão Colombo, 2265, Zip Code 15054-000 São José do Rio Preto, SP, Brazil
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Andrea Carla da Silva-Barretto
- Department of Food Technology and Engineering, UNESP - São Paulo State University, Street Cristóvão Colombo, 2265, Zip Code 15054-000 São José do Rio Preto, SP, Brazil.
| |
Collapse
|
21
|
Irigoiti Y, Navarro A, Yamul D, Libonatti C, Tabera A, Basualdo M. The use of propolis as a functional food ingredient: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Essential Oils Extracted from Organic Propolis Residues: An Exploratory Analysis of Their Antibacterial and Antioxidant Properties and Volatile Profile. Molecules 2021; 26:molecules26154694. [PMID: 34361848 PMCID: PMC8347542 DOI: 10.3390/molecules26154694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/18/2022] Open
Abstract
The industrial processing of crude propolis generates residues. Essential oils (EOs) from propolis residues could be a potential source of natural bioactive compounds to replace antibiotics and synthetic antioxidants in pig production. In this study, we determined the antibacterial/antioxidant activity of EOs from crude organic propolis (EOP) and from propolis residues, moist residue (EOMR), and dried residue (EODR), and further elucidated their chemical composition. The EOs were extracted by hydrodistillation, and their volatile profile was tentatively identified by GC-MS. All EOs had an antibacterial effect on Escherichia coli and Lactobacillus plantarum as they caused disturbances on the growth kinetics of both bacteria. However, EODR had more selective antibacterial activity, as it caused a higher reduction in the maximal culture density (D) of E. coli (86.7%) than L. plantarum (46.9%). EODR exhibited mild antioxidant activity, whereas EOMR showed the highest antioxidant activity (ABTS = 0.90 μmol TE/mg, FRAP = 463.97 μmol Fe2+/mg) and phenolic content (58.41 mg GAE/g). Each EO had a different chemical composition, but α-pinene and β-pinene were the major compounds detected in the samples. Interestingly, specific minor compounds were detected in a higher relative amount in EOMR and EODR as compared to EOP. Therefore, these minor compounds are most likely responsible for the biological properties of EODR and EOMR. Collectively, our findings suggest that the EOs from propolis residues could be resourcefully used as natural antibacterial/antioxidant additives in pig production.
Collapse
|
23
|
Kaur R, Gupta TB, Bronlund J, Kaur L. THE POTENTIAL OF ROSEMARY AS A FUNCTIONAL INGREDIENT FOR MEAT PRODUCTS- A REVIEW. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1950173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ramandeep Kaur
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Tanushree B. Gupta
- AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | - John Bronlund
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Lovedeep Kaur
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
24
|
Soleimanifard M, Feizy J, Maestrelli F. Nanoencapsulation of propolis extract by sodium caseinate-maltodextrin complexes. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Estévez M. Critical overview of the use of plant antioxidants in the meat industry: Opportunities, innovative applications and future perspectives. Meat Sci 2021; 181:108610. [PMID: 34147961 DOI: 10.1016/j.meatsci.2021.108610] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022]
Abstract
The number of articles devoted to study the effect of "natural antioxidants" on meat systems has remarkably increased in the last 10 years. Yet, a critical review of literature reveals recurrent flaws in regards to the rationale of the application, the experimental design, the characterisation of the plant sources, the discussion of the molecular mechanisms and of the potential benefits. The selection of the appropriate source of these antioxidants and the identification of their bioactive constituents, are essential to understand their mode of action and set effective and safe doses. The methodological approach should also be planned with care as the recorded effects and main conclusions largely depend on the accuracy and specificity of the methods. This article aims to critically review the recent advances in the application of plant antioxidants in meat and meat products and briefly covers current trends of innovative application and future trends.
Collapse
Affiliation(s)
- M Estévez
- Meat and Meat Products Research Institute (IPROCAR), Food Technology, University of Extremadura, 10003 Cáceres, Spain.
| |
Collapse
|
26
|
de Santana Neto DC, Cordeiro ÂMTM, Meireles BRLA, Araújo ÍBS, Estévez M, Ferreira VCS, Silva FAP. Inhibition of Protein and Lipid Oxidation in Ready-to-Eat Chicken Patties by a Spondias mombin L. Bagasse Phenolic-Rich Extract. Foods 2021; 10:foods10061338. [PMID: 34200641 PMCID: PMC8229016 DOI: 10.3390/foods10061338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 11/17/2022] Open
Abstract
This study evaluated the impact of yellow mombin (Spondias mombin L.) bagasse extract (YMBE) on the color degradation, protein and lipid oxidation in ready-to-eat chicken patties during 15 days of refrigerated storage. Two formulations of chicken patties were developed: chicken patties control - PCON (without the antioxidant extract) and chicken patties with yellow mombin extract - PYME (with the antioxidant extract). The extract was effective in maintaining red color and inhibiting myoglobin degradation in the evaluated samples. The generation of lipid oxidation compounds during storage of the treated samples was delayed by 92.37% for peroxide index, 89.89% for conjugated dienes, 74.29% for tiobarbituric acid reactive substances (TBARs) and 92.55% for ρ-anisidine compared to the control samples. Moreover, the addition of YMBE inhibited the formation of carbonyl compounds during cold storage compared to the control samples. Extracts obtained from the yellow mombin bagasse act as a good natural antioxidant for ready-to-eat chicken patties inhibiting protein and lipid oxidative damage during cold storage, being a potential preservative to replace synthetic antioxidants in meat products.
Collapse
Affiliation(s)
- Deocleciano C. de Santana Neto
- Post-Graduate Program in Agro-Food Technology, Center for Human, Social and Agrarian Sciences, Federal University of Paraíba, Bananeiras 58220000, Paraíba, Brazil; (D.C.d.S.N.); (Â.M.T.M.C.); (B.R.L.A.M.); (Í.B.S.A.); (V.C.S.F.)
| | - Ângela M. T. M. Cordeiro
- Post-Graduate Program in Agro-Food Technology, Center for Human, Social and Agrarian Sciences, Federal University of Paraíba, Bananeiras 58220000, Paraíba, Brazil; (D.C.d.S.N.); (Â.M.T.M.C.); (B.R.L.A.M.); (Í.B.S.A.); (V.C.S.F.)
| | - Bruno R. L. A. Meireles
- Post-Graduate Program in Agro-Food Technology, Center for Human, Social and Agrarian Sciences, Federal University of Paraíba, Bananeiras 58220000, Paraíba, Brazil; (D.C.d.S.N.); (Â.M.T.M.C.); (B.R.L.A.M.); (Í.B.S.A.); (V.C.S.F.)
| | - Íris B. S. Araújo
- Post-Graduate Program in Agro-Food Technology, Center for Human, Social and Agrarian Sciences, Federal University of Paraíba, Bananeiras 58220000, Paraíba, Brazil; (D.C.d.S.N.); (Â.M.T.M.C.); (B.R.L.A.M.); (Í.B.S.A.); (V.C.S.F.)
| | - Mario Estévez
- IPROCAR Research Institute, University of Extremadura, 10003 Cáceres, Spain
- Correspondence: (M.E.); (F.A.P.S.)
| | - Valquíria C. S. Ferreira
- Post-Graduate Program in Agro-Food Technology, Center for Human, Social and Agrarian Sciences, Federal University of Paraíba, Bananeiras 58220000, Paraíba, Brazil; (D.C.d.S.N.); (Â.M.T.M.C.); (B.R.L.A.M.); (Í.B.S.A.); (V.C.S.F.)
| | - Fábio A. P. Silva
- Post-Graduate Program in Agro-Food Technology, Center for Human, Social and Agrarian Sciences, Federal University of Paraíba, Bananeiras 58220000, Paraíba, Brazil; (D.C.d.S.N.); (Â.M.T.M.C.); (B.R.L.A.M.); (Í.B.S.A.); (V.C.S.F.)
- Correspondence: (M.E.); (F.A.P.S.)
| |
Collapse
|
27
|
Vargas Romero E, Lim LT, Suárez Mahecha H, Bohrer BM. The Effect of Electrospun Polycaprolactone Nonwovens Containing Chitosan and Propolis Extracts on Fresh Pork Packaged in Linear Low-Density Polyethylene Films. Foods 2021; 10:foods10051110. [PMID: 34067772 PMCID: PMC8156044 DOI: 10.3390/foods10051110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/04/2022] Open
Abstract
Fresh meat products are highly perishable and require optimal packaging conditions to maintain and potentially extend shelf-life. Recently, researchers have developed functional, active packaging systems that are capable of interacting with food products, package headspace, and/or the environment to enhance product shelf-life. Among these systems, antimicrobial/antioxidant active packaging has gained considerable interest for delaying/preventing microbial growth and deteriorative oxidation reactions. This study evaluated the effectiveness of active linear low-density polyethylene (LLDPE) films coated with a polycaprolactone/chitosan nonwoven (Film 1) or LLDPE films coated with a polycaprolactone/chitosan nonwoven fortified with Colombian propolis extract (Film 2). The active LLDPE films were evaluated for the preservation of fresh pork loin (longissimus dorsi) chops during refrigerated storage at 4 °C for up to 20 d. The meat samples were analyzed for pH, instrumental color, purge loss, thiobarbituric acid reactive substances (TBARS), and microbial stability (aerobic mesophilic and psychrophilic bacteria). The incorporation of the propolis-containing nonwoven layer provided antioxidant and antimicrobial properties to LLDPE film, as evidenced by improved color stability, no differences in lipid oxidation, and a delay of 4 d for the onset of bacteria growth of pork chops during the refrigerated storage period.
Collapse
Affiliation(s)
- Emeli Vargas Romero
- Instituto de Ciencia y Tecnología de Alimentos, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (E.V.R.); (H.S.M.)
| | - Loong-Tak Lim
- Department of Food Science, University of Guelph, Guelph, ON N1G-2W1, Canada;
| | - Héctor Suárez Mahecha
- Instituto de Ciencia y Tecnología de Alimentos, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (E.V.R.); (H.S.M.)
| | - Benjamin M. Bohrer
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +1-614-247-4951
| |
Collapse
|
28
|
Paulo F, Paula V, Estevinho LM, Santos L. Propolis microencapsulation by double emulsion solvent evaporation approach: Comparison of different polymeric matrices and extract to polymer ratio. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Gharibzahedi SMT, Smith B. Legume proteins are smart carriers to encapsulate hydrophilic and hydrophobic bioactive compounds and probiotic bacteria: A review. Compr Rev Food Sci Food Saf 2021; 20:1250-1279. [PMID: 33506640 DOI: 10.1111/1541-4337.12699] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/30/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022]
Abstract
Encapsulation is a promising technological process enabling the protection of bioactive compounds against harsh storage, processing, and gastrointestinal tract (GIT) conditions. Legume proteins (LPs) are unique carriers that can efficiently encapsulate these unstable and highly reactive ingredients. Stable LPs-based microcapsules loaded with active ingredients can thus develop to be embedded into processed functional foods. The recent advances in micro- and nanoencapsulation process of an extensive span of bioactive health-promoting probiotics and chemical compounds such as marine and plant fatty acid-rich oils, carotenoid pigments, vitamins, flavors, essential oils, phenolic and anthocyanin-rich extracts, iron, and phytase by LPs as single wall materials were highlighted. A technical summary of the use of single LP-based carriers in designing innovative delivery systems for natural bioactive molecules and probiotics was made. The encapsulation mechanisms, encapsulation efficiency, physicochemical and thermal stability, as well as the release and absorption behavior of bioactives were comprehensively discussed. Protein isolates and concentrates of soy and pea were the most common LPs to encapsulate nutraceuticals and probiotics. The microencapsulation of probiotics using LPs improved bacteria survivability, storage stability, and tolerance in the in vitro GIT conditions. Moreover, homogenization and high-pressure pretreatments as well as enzymatic cross-linking of LPs significantly modify their structure and functionality to better encapsulate the bioactive core materials. LPs can be attractive delivery devices for the controlled release and increased bioaccessibility of the main food-grade bioactives.
Collapse
Affiliation(s)
| | - Brennan Smith
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
30
|
Silva LDD, Sari R, Diedrich C, Pereira C, Lima VAD, Oldoni TLC, Perin EC, Carpes ST. Extraction, characterization and antioxidant properties of phenolic compounds in açaí juçara (Euterpe edulis Mart.) from Atlantic Forest. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2021. [DOI: 10.1590/1981-6723.19320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract The açaí is a popular Brazilian fruit, however, already part of the world's healthy eating habits owing to its antioxidant properties. The study aimed to determine the effect of solvent in extracting phenolic compounds with antioxidant potential in açaí juçara (Euterpe edulis Mart.) using a Completely Randomized Design (CRD). The phenolic compound profile was quantified by High-Performance Liquid Chromatography (HPLC), and the data set was analyzed by Principal Component Analysis (PCA). The PCA was applied to evidence the relationships between the concentration of phenolic compounds and the solvents. Furthermore, the antioxidant activity was also determined by 2,2’-diphenyl-1-picrylhydrazyl (DPPH), 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and Ferric Reducing Antioxidant Power (FRAP) methods. The solvent ethanol: water 70% was more efficient in extracting phenolic compounds with high antioxidant activity. In this extract, salicylic acid was found in high concentrations as well as catechin, epicatechin, and coumaric acid. Based on a consensus that phenolic compounds are associated with the most powerful antioxidant activities of fruits, the “açaí juçara” from the Atlantic Forest is a potential source of polyphenols. They could be used as natural antioxidants for application in the food and pharmaceutical industry in order to substitute the synthetic antioxidants.
Collapse
Affiliation(s)
| | - Rafael Sari
- Universidade Tecnológica Federal do Paraná, Brasil
| | | | | | | | | | | | | |
Collapse
|
31
|
Tomé AC, Alves da Silva F, Monteiro ML, Mársico ET. Effect of Achachairu Skin on the Oxidative Stability of Mechanically Separated Tilapia Meat and a Sensory Evaluation of Its Use in a Restructured Product. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2020. [DOI: 10.1080/10498850.2020.1850587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Alessandra Cristina Tomé
- Department of Food Engineering, School of Agronomy, Federal University of Goiás (UFG), Goiânia, Brazil
| | - Flávio Alves da Silva
- Department of Food Engineering, School of Agronomy, Federal University of Goiás (UFG), Goiânia, Brazil
| | - Maria Lúcia Monteiro
- Departament of Food Technology, Federal Fluminense University (UFF), Rio De Janeiro, Brazil
- Institute of Chemistry, Federal University of Rio De Janeiro (UFRJ), Rio De Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio De Janeiro (UFRJ), Rio De Janeiro, Brazil
| | | |
Collapse
|
32
|
Potential of Propolis Extract as a Natural Antioxidant and Antimicrobial in Gelatin Films Applied to Rainbow Trout ( Oncorhynchus mykiss) Fillets. Foods 2020; 9:foods9111584. [PMID: 33139596 PMCID: PMC7693740 DOI: 10.3390/foods9111584] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
Usage of edible films and coatings alone or incorporated with natural extracts are a new approach to preservation and packaging of food. In this study, therefore, the microbiological, chemical quality, and sensorial changes of rainbow trout fillets coated with gelatin films supplemented with propolis extract (PE) (2, 8, 16%), as a source of polyphenols, were determined during 15 days of refrigerated storage (4 ± 1 °C). According to peroxide value (PV) and thiobarbituric acid reactive substances (TBARS) assays, lipid oxidation was delayed in the fillets coated with gelatin films incorporated with PE comparing with the control and gelatin-coated (without PE) fillets. The total volatile basic nitrogen (TVB-N) value of rainbow trout fillets showed an increase in all groups at the end of storage, observing the lowest values in the fillets coated with gelatin films prepared with 16% PE. Gelatin films enriched with PE had great inhibitory effects on the microbial growth in rainbow trout fillets. The addition of PE enhanced the effectiveness of gelatin films and delayed the lipid oxidation and sensory and microbial deterioration in trout fillets coated with these films. Thus, PE can be recommended to be used as a natural antioxidant and antimicrobial additive with gelatin films to maintain rainbow trout fillet quality.
Collapse
|
33
|
Microencapsulation of polyphenols - The specific case of the microencapsulation of Sambucus Nigra L. extracts - A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.03.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Sari R, Conterno P, da Silva LD, de Lima VA, Oldoni TLC, Thomé GR, Carpes ST. Extraction of Phenolic Compounds from Tabernaemontana catharinensis Leaves and Their Effect on Oxidative Stress Markers in Diabetic Rats. Molecules 2020; 25:E2391. [PMID: 32455579 PMCID: PMC7288081 DOI: 10.3390/molecules25102391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/19/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to evaluate the most effective extraction condition (temperature, solvent type and time) for recovery of high-value phytochemicals present in the Tabernaemontana catharinensis leaves (TC) and to assess their effect on biochemical parameters in streptozotocin-induced diabetic rats. The extraction of phenolic compounds from TC using a factorial design (FD) 2³, high performance liquid chromatography (HPLC), response surface methodology (RSM) and principal component analysis (PCA) were studied. It was found that the optimal conditions for extraction of phenolics were higher temperature (65 °C) and time (60 min) using ethanol as extractor solvent. In this condition of extraction (A8), total phenolic compounds (TPC) and antioxidant activity (AA) were determined. Additionally, this extract was used to evaluate their effect on antioxidant enzyme activities (superoxide dismutase (SOD) and catalase (CAT)) as well as lipid peroxidation (LP) and protein thiols level (PSH) in the liver and kidneys of normal and diabetic rats. As result, T. catharinensis extract presented TPC content of 23.34 mg EAG/g (equivalent gallic acid) and AA of 34.26 μmol Trolox/g. Phenolic acids (ferulic acid and coumaric acid) and flavonoids (quercetin, rutin and pinocembrin) could be recovered and identified by HPLC. This study indicated an important role of the T. catharinensis extract on free radical inactivation and on the antioxidant defense system in diabetic rats. In fact, the use of T. catharinensis extract restored the normal activity of SOD (p < 0.05) and suppressed malondialdehyde levels in liver and kidney tissues. Thus, the T. catharinensis extract, rich in phenolic compounds, can be responsible for the recover the enzymatic changes in the liver and kidney tissues provoked by diabetes in rats. In addition, the lipid peroxidation rate decreased in the diabetic rats treated with T. catharinensis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Solange Teresinha Carpes
- Department of Chemistry, Federal University of Technology—Paraná (UTFPR), P.O. Box 591, 85503-390 Pato Branco, Brazil; (R.S.); (P.C.); (L.D.d.S.); (V.A.d.L.); (T.L.C.O.); (G.R.T.)
| |
Collapse
|
35
|
Yazgan H, Burgut A, Durmus M, Kosker AR. The impacts of water and ethanolic extracts of propolis on vacuum packaged sardine fillets inoculated with
Morganella psychrotolerans
during chilly storage. J Food Saf 2020. [DOI: 10.1111/jfs.12767] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Hatice Yazgan
- Department of Food Hygiene and Technology, Faculty of Ceyhan Veterinary MedicineUniversity of Cukurova Adana Turkey
| | - Aykut Burgut
- Faculty of Agriculture, Department of Animal ScienceUniversity of Cukurova Adana Turkey
| | - Mustafa Durmus
- Department of Seafood Processing Technology, Faculty of FisheriesUniversity of Cukurova Adana Turkey
| | - Ali Rıza Kosker
- Department of Seafood Processing Technology, Faculty of FisheriesUniversity of Cukurova Adana Turkey
| |
Collapse
|
36
|
Carpes ST, Pereira D, Moura CD, Reis ASD, Silva LDD, Oldoni TLC, Almeida JF, Plata-Oviedo MVS. Lyophilized and microencapsulated extracts of grape pomace from winemaking industry to prevent lipid oxidation in chicken pâté. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2020. [DOI: 10.1590/1981-6723.11219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract The aim of this study was to characterize spray-dried and lyophilized powders made from winery by-products and to evaluate their effect on the oxidative stability of chicken pâté. Phenolic profile, antioxidant activity, and microencapsulation efficiency were evaluated in the extracts. Two pâté formulations containing grape pomace lyophilized (GPWL) and grape pomace microencapsulated (GPWM) were produced. In addition, a sodium erythorbate and a control batch were used to compare the effects. The pâtés were evaluated by thiobarbituric acid reactive substances (TBARS) assay during refrigerated storage (4 °C/42 days). Although the microencapsulation efficiency was 90.03%, the GPWL was statistically more effective in the lipid oxidation inhibition in chicken pâté than GPWM. However, the addition of both natural antioxidants in chicken pâté resulted in lower TBARS values than pâté treated with synthetic antioxidant due to the presence of gallic acid, caffeic acid, vanillic acid, ferulic acid, coumaric acid and trans-resveratrol with high antioxidant activity. Thus, the bioactive compounds with antioxidant activity detected in the GPWL and GPWM opened possibilities for use as a potential ingredient in chicken pâté and other meat products.
Collapse
|
37
|
Propolis Extract as Antioxidant to Improve Oxidative Stability of Fresh Patties during Refrigerated Storage. Foods 2019; 8:foods8120614. [PMID: 31771302 PMCID: PMC6963608 DOI: 10.3390/foods8120614] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/30/2022] Open
Abstract
The effect of propolis ethanol extract (PEE), butylated hydroxytoluene (BHT), and ascorbic acid (Asc) against lipid (Lox) and protein oxidation (Pox), color deterioration, and the antioxidant stabilizer of raw beef and pork patties during chilled storage (9 days at 2 °C/under darkness) was investigated. Total phenolic content (TPC), reducing power ability (RPA), DPPH● radical scavenging activity (FRSA) of the PEE was evaluated. Meat samples were evaluated for pH, Lox (TBARS), Pox (Carbonyls), color (L*, a*, b*, C*, and h*), metmyoglobin formation (MMb), TPC, RPA, and FRSA. Results indicated that PEE is rich in phenolic content and antioxidant activity, and their incorporation in beef and pork patties reduced (p < 0.05) Lox and Pox (TBARS-88.7 and 80% inhibition; Pox-47.3 and 30.6% inhibition, respectively), as well as loss of color and increased the oxidative stability throughout storage.
Collapse
|
38
|
de Araújo JSF, de Souza EL, Oliveira JR, Gomes ACA, Kotzebue LRV, da Silva Agostini DL, de Oliveira DLV, Mazzetto SE, da Silva AL, Cavalcanti MT. Microencapsulation of sweet orange essential oil (Citrus aurantium var. dulcis) by liophylization using maltodextrin and maltodextrin/gelatin mixtures: Preparation, characterization, antimicrobial and antioxidant activities. Int J Biol Macromol 2019; 143:991-999. [PMID: 31669659 DOI: 10.1016/j.ijbiomac.2019.09.160] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/30/2019] [Accepted: 09/18/2019] [Indexed: 12/30/2022]
Abstract
This study evaluated maltodextrin (MD) and gelatin (GEL) in different ratios (SO1, MD only; SO2, MD and GEL = 2:1; and SO3, MD and GEL = 1:1, respectively) as wall materials to microencapsulation of sweet orange essential oil (SOEO, 10% w/w). SOEO microspheres were obtained by emulsification/lyophilization and characterized regarding the microencapsulation yield and efficiency, infrared spectroscopy, ultrastructural aspects (scanning electron microscopy, SEM), thermogravimetric (TG), derivative thermogravimetry (DTG) and differential exploratory calorimetry (DSC) and bioactive properties. Yield and SOEO microencapsulation efficiency (MEE) was of up to 90.19 and 75.75%, respectively. SEM analysis showed SO1, SO2 and SO3 microspheres with irregular shapes. Although improvements in thermal stability of all formulated microspheres were observed, TG and DTG curves indicated slower rates of volatilization and degradation of SOEO in SO1. DSC curves indicated that SO1, SO2 and SO3 microsphere formulations were effective in protecting SOEO, especially in relation to improvements in oxidative stability. Antibacterial and antioxidant properties, as well as total phenolic content of SOEO, were maintained in all formulated microspheres. SOEO microspheres can be prepared using MD and GEL and lyophilization, resulting in high yields, MEE, stability and preservation of antioxidant and antimicrobial properties.
Collapse
Affiliation(s)
- Jayuri Susy Fernandes de Araújo
- Graduation Program in Agroindustrial Systems, Center for Agro-Food Science and Technology, Federal University of Campina Grande, Pombal, Paraíba, Brazil.
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Center for Health Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil.
| | - Jéssica Ribeiro Oliveira
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Ana Cristina Alves Gomes
- Laboratory of Food Microbiology, Department of Nutrition, Center for Health Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Lloyd Ryan Viana Kotzebue
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | - Selma Elaine Mazzetto
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - André Leandro da Silva
- Center for Health and Rural Technology, Federal University of Campina Grande, Patos, Paraíba, Brazil
| | - Mônica Tejo Cavalcanti
- Graduation Program in Agroindustrial Systems, Center for Agro-Food Science and Technology, Federal University of Campina Grande, Pombal, Paraíba, Brazil
| |
Collapse
|
39
|
Nessianpour E, Khodanazary A, Hosseini SM. Shelf Life of Saurida tumbil during Storage at Refrigeration Condition as affected by Gelatin-Based Edible Coatings Incorporated with propolis Extract. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1651738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Elham Nessianpour
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Ainaz Khodanazary
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Seyyed Mehdi Hosseini
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| |
Collapse
|
40
|
Ebadi Z, Khodanazary A, Hosseini SM, Zanguee N. The shelf life extension of refrigerated Nemipterus japonicus fillets by chitosan coating incorporated with propolis extract. Int J Biol Macromol 2019; 139:94-102. [DOI: 10.1016/j.ijbiomac.2019.07.204] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 01/24/2023]
|
41
|
Keskin M, Keskin Ş, Kolayli S. Preparation of alcohol free propolis-alginate microcapsules, characterization and release property. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
COTTICA SM, AMADO DAV, AGUIAR SCD, BOEING JS, FRANCO SL, ZEOULA LM, VISENTAINER JV. Antioxidant activity and lipid oxidation in milk from cows with soybean oil and propolis extract added to their feed. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.33817] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Solange Maria COTTICA
- Universidade Tecnológica Federal do Paraná, Brasil; Universidade Estadual de Maringá, Brasil
| | | | | | | | | | | | | |
Collapse
|
43
|
Baysan U, Elmas F, Koç M. The effect of spray drying conditions on physicochemical properties of encapsulated propolis powder. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ulaş Baysan
- Faculty of Engineering, Department of Food EngineeringAydın Adnan Menderes University Aydın Turkey
| | - Feyza Elmas
- Faculty of Engineering, Department of Food EngineeringAydın Adnan Menderes University Aydın Turkey
| | - Mehmet Koç
- Faculty of Engineering, Department of Food EngineeringAydın Adnan Menderes University Aydın Turkey
| |
Collapse
|
44
|
Jansen-Alves C, Krumreich FD, Zandoná GP, Gularte MA, Borges CD, Zambiazi RC. Production of Propolis Extract Microparticles with Concentrated Pea Protein for Application in Food. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-2246-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Polyphenols as Natural Antioxidants: Sources, Extraction and Applications in Food, Cosmetics and Drugs. GREEN CHEMISTRY AND SUSTAINABLE TECHNOLOGY 2019. [DOI: 10.1007/978-981-13-3810-6_8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Application of propolis in antimicrobial and antioxidative protection of food quality – A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
47
|
Gómez B, Barba FJ, Domínguez R, Putnik P, Bursać Kovačević D, Pateiro M, Toldrá F, Lorenzo JM. Microencapsulation of antioxidant compounds through innovative technologies and its specific application in meat processing. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.10.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
48
|
Effect of microencapsulated extract of pitaya (Hylocereus costaricensis) peel on color, texture and oxidative stability of refrigerated ground pork patties submitted to high pressure processing. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.08.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
49
|
Microencapsulation of Propolis in Protein Matrix Using Spray Drying for Application in Food Systems. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2115-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
50
|
Quevedo R, Pedreschi F, Valencia E, Díaz O, Bastías J, Muñoz O. Kinetic modeling of deterioration of frozen industrial burgers based on oxidative rancidity and color. J FOOD PROCESS PRES 2018. [DOI: 10.1111/jfpp.13655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Roberto Quevedo
- Departamento de Acuicultura y Recursos Agropecuarios; Universidad de Los Lagos, Programa Fitogen; Osorno Chile
| | - Franco Pedreschi
- Departamento de Ingeniería Química y Bioprocesos, Av. Vicuña Mackenna 4869; Pontificia Universidad Católica de Chile; Santiago Chile
| | - Emir Valencia
- Departamento de Acuicultura y Recursos Agropecuarios; Universidad de Los Lagos, Programa Fitogen; Osorno Chile
| | - Oscar Díaz
- Departamento de Acuicultura y Recursos Agropecuarios; Universidad de Los Lagos, Programa Fitogen; Osorno Chile
| | - José Bastías
- Departamento de Ingeniería de Alimento, Av. Andrés Bello 720; Universidad del Bío-Bío; Chillán Chile
| | - Ociel Muñoz
- Instituto de Ciencia y Tecnología de Alimentos. Facultad de ciencias y Agricultura (ICYTAL), Campus Isla Teja s/n; Universidad Austral de Chile; Valdivia Chile
| |
Collapse
|