1
|
Jiménez MD, Salinas Alcón CE, Lobo MO, Sammán N. Andean Crops Germination: Changes in the Nutritional Profile, Physical and Sensory Characteristics. A Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:551-562. [PMID: 38976203 DOI: 10.1007/s11130-024-01209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/20/2024] [Indexed: 07/09/2024]
Abstract
Andean crops such as quinoa, amaranth, cañihua, beans, maize, and tarwi have gained interest in recent years for being gluten-free and their high nutritional values; they have high protein content with a well-balanced essential amino acids profile, minerals, vitamins, dietary fiber, and antioxidant compounds. During the germination bioprocess, the seed metabolism is reactivated resulting in the catabolism and degradation of macronutrients and some anti-nutritional compounds. Therefore, germination is frequently used to improve nutritional quality, protein digestibility, and availability of certain minerals and vitamins; furthermore, in specific cases, biosynthesis of new bioactive compounds could occur through the activation of secondary metabolic pathways. These changes could alter the technological and sensory properties, such as the hardness, consistency and viscosity of the formulations prepared with them. In addition, the flavor profile may undergo improvement or alteration, a critical factor to consider when integrating sprouted grains into food formulations. This review summarizes recent research on the nutritional, technological, functional, and sensory changes occur during the germination of Andean grains and analyze their potential applications in various food products.
Collapse
Affiliation(s)
- M D Jiménez
- Facultad de Ingeniería-CIITED-CONICET, Universidad Nacional de Jujuy, San Salvador de Jujuy, Jujuy, Argentina
| | - C E Salinas Alcón
- Facultad de Ingeniería-CIITED-CONICET, Universidad Nacional de Jujuy, San Salvador de Jujuy, Jujuy, Argentina
| | - M O Lobo
- Facultad de Ingeniería-CIITED-CONICET, Universidad Nacional de Jujuy, San Salvador de Jujuy, Jujuy, Argentina
| | - N Sammán
- Facultad de Ingeniería-CIITED-CONICET, Universidad Nacional de Jujuy, San Salvador de Jujuy, Jujuy, Argentina.
| |
Collapse
|
2
|
Altıkardeş E, Güzel N. Impact of germination pre-treatments on buckwheat and Quinoa: Mitigation of anti-nutrient content and enhancement of antioxidant properties. Food Chem X 2024; 21:101182. [PMID: 38357368 PMCID: PMC10865234 DOI: 10.1016/j.fochx.2024.101182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
This study evaluated the effects of pre-germination treatments on the nutritional and anti-nutritional values of buckwheat and quinoa during germination. Pre-germination method was effective on the chemical composition and phenolic profile of buckwheat and quinoa samples (p < 0.05). During the germination, color changes were notable, particularly in the alkali-treated samples. The decrease in tannin content reached the highest rate in germinated buckwheat (83 %) and quinoa (20 %) by alkali treatment. The highest antioxidant and total phenolic content were measured in germinated pseudocereals treated by ultrasound. However, the lowest phytic acid content was determined after germination in the quinoa sample treated by ultrasound. Rutin was the major flavonoid in buckwheat while quercetin, galangin, ellagic, syringic, and p-coumaric acids were only synthesized after 72 h of germination. Catechin and epicatechin were decreased only in the alkali-treated buckwheat sample. Controlled germination processes can enhance the antioxidant activity and development of functional foods from whole grains.
Collapse
Affiliation(s)
- Ebrar Altıkardeş
- Institute of Graduate Studies, Department of Food Engineering, Hitit University, Çorum, Turkey
| | - Nihal Güzel
- Department of Food Engineering, Hitit University, Çorum, Turkey
| |
Collapse
|
3
|
Paucar-Menacho LM, Schmiele M, Vásquez Guzmán JC, Rodrigues SM, Simpalo-Lopez WD, Castillo-Martínez WE, Martínez-Villaluenga C. Smart Pasta Design: Tailoring Formulations for Technological Excellence with Sprouted Quinoa and Kiwicha Grains. Foods 2024; 13:353. [PMID: 38275720 PMCID: PMC10815487 DOI: 10.3390/foods13020353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
The pursuit of developing healthier pasta products without compromising technological properties involves a strategic approach via the customization of raw material formulations and the integration of grain germination and extrusion processes. This study explores the impact of incorporating sprouts from quinoa (Chenopodium quinoa Willd) and kiwicha (Chenopodium pallidicaule Aellen) on the physicochemical properties of pasta by employing a centroid mixture design. The desirability function was utilized to identify the optimal ingredient proportions necessary to achieve specific objectives. The study identified optimal formulations for two pasta variations: pasta with the substitution of sprouted quinoa and cushuro powder (PQC), and pasta with partial substitution of sprouted kiwicha and cushuro powder (PKC). The optimal formulation for PKC was determined as 70% wheat flour (WF), 15% sprouted kiwicha flour (SKF), and 15% cushuro powder (CuP), with a desirability score of 0.68. Similarly, for PQC, the optimal formulation comprised 79% WF, 13% sprouted quinoa flour (SQF), and 8% CuP, with a desirability of 0.63. The optimized pasta formulation exhibited longer cooking times (10 and 8 min), increased weight gain (235% and 244%), and minimal loss of solids (1.4 and 1.2%) for PQC and PKC, respectively. Notably, firmness (2.8 and 2.6 N) and breaking strength values (2 and 2.7 N) for PQC and PKC pasta formulations, respectively, were comparable to those of the control sample (2.7 N and 2.6 N for firmness and fracturability, respectively). This research underscores the potential of tailored formulations and innovative processes to enhance the nutritional profile of pasta while maintaining key technological attributes.
Collapse
Affiliation(s)
- Luz María Paucar-Menacho
- Departamento Académico de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote 02712, Peru; (L.M.P.-M.); (J.C.V.G.); (W.D.S.-L.); (W.E.C.-M.)
| | - Marcio Schmiele
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina 39100-000, Brazil; (M.S.); (S.M.R.)
| | - Juan Carlos Vásquez Guzmán
- Departamento Académico de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote 02712, Peru; (L.M.P.-M.); (J.C.V.G.); (W.D.S.-L.); (W.E.C.-M.)
| | - Sander Moreira Rodrigues
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina 39100-000, Brazil; (M.S.); (S.M.R.)
| | - Wilson Daniel Simpalo-Lopez
- Departamento Académico de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote 02712, Peru; (L.M.P.-M.); (J.C.V.G.); (W.D.S.-L.); (W.E.C.-M.)
| | - Williams Esteward Castillo-Martínez
- Departamento Académico de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote 02712, Peru; (L.M.P.-M.); (J.C.V.G.); (W.D.S.-L.); (W.E.C.-M.)
| | - Cristina Martínez-Villaluenga
- Department of Technological Processes and Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), 28040 Madrid, Spain
| |
Collapse
|
4
|
Paucar-Menacho LM, Vásquez Guzmán JC, Simpalo-Lopez WD, Castillo-Martínez WE, Martínez-Villaluenga C. Enhancing Nutritional Profile of Pasta: The Impact of Sprouted Pseudocereals and Cushuro on Digestibility and Health Potential. Foods 2023; 12:4395. [PMID: 38137199 PMCID: PMC10742926 DOI: 10.3390/foods12244395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
We hypothesized that optimizing the formulation of pasta by incorporating sprouted pseudocereal flours, specifically quinoa (Chenopodium quinoa Willd) or kiwicha (Amaranthus caudatus L.) and cushuro (Nostoc sphaericum Vaucher ex Bornet & Flahault) flours, could offer the potential to simultaneously enhance nutritional quality and health-promoting properties in pasta. In this study, our objective was to optimize the formulation of composite flour (a ternary blend of wheat, sprouted pseudocereal, and cushuro flours) using a mixture composite design to maximize total soluble phenolic compounds (TSPC), γ-aminobutyric acid (GABA), antioxidant activity, and mineral bioaccesilability by reducing phytic acid (PA) content. Two optimal formulations were identified: one consisting of 79% wheat flour (WF), 13% SQF, and 8% CuF (oPQC), and the other composed of 70% WF, 15% SKF, and 15% CuF (oPKC). These optimized pastas exhibited reduced starch content and notably higher levels of total dietary fiber (1.5-3.61-fold), protein (1.16-fold), fat (1.3-1.5-fold), ash (2.2-2.7-fold), minerals (K, Na, Fe, Zn, Mg, Mn, and Ca), PA (3-4.5-fold), TSPC (1.3-1.9-fold), GABA (1.2-2.6-fold), and ORAC (6.5-8.7-fold) compared to control pasta (100% WF). Notably, the glycemic index of oPQC (59.8) was lower than that of oPKC (54.7) and control pasta (63.1). The nutritional profile of the optimized pasta was largely retained after cooking, although some significant losses were observed for soluble dietary fiber (18.2-44.0%), K (47.5-50.7%), Na (42.5-63.6), GABA (41.68-51.4%), TSPC (8-18%), and antioxidant activity (45.4-46.4%). In vitro digestion of cooked oPQC and oPKC demonstrated higher bioaccessible content of GABA (6.7-16.26 mg/100 g), TSPC (257.7-261.8 mg GAE/100 g), Ca (58.40-93.5 mg/100 g), and Fe (7.35-7.52 mg/100 g), as well as antioxidant activity (164.9-171.1 µmol TE/g) in intestinal digestates compared to control pasta. These findings suggest that the incorporation of sprouted pseudocereals and cushuro flour offers a promising approach to enhance the nutritional quality and bioactive content of wheat-based pasta, potentially providing health benefits beyond traditional formulations.
Collapse
Affiliation(s)
- Luz María Paucar-Menacho
- Departamento Académico de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Nuevo Chimbote 02712, Peru; (L.M.P.-M.); (W.D.S.-L.); (W.E.C.-M.)
| | - Juan Carlos Vásquez Guzmán
- Departamento Académico de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Nuevo Chimbote 02712, Peru; (L.M.P.-M.); (W.D.S.-L.); (W.E.C.-M.)
| | - Wilson Daniel Simpalo-Lopez
- Departamento Académico de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Nuevo Chimbote 02712, Peru; (L.M.P.-M.); (W.D.S.-L.); (W.E.C.-M.)
| | - Williams Esteward Castillo-Martínez
- Departamento Académico de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Nuevo Chimbote 02712, Peru; (L.M.P.-M.); (W.D.S.-L.); (W.E.C.-M.)
| | - Cristina Martínez-Villaluenga
- Department of Technological Processes and Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), 28040 Madrid, Spain
| |
Collapse
|
5
|
Rasera GB, de Vilhena Araújo É, Pereira AK, Liszbinski RB, Pacheco G, Fill TP, Bispo de Jesus M, Janser Soares de Castro R. Biotransformation of white and black mustard grains through germination and enzymatic hydrolysis revealed important metabolites for antioxidant properties and cytotoxic activity against Caco-2 cells. Food Res Int 2023; 169:112881. [PMID: 37254329 DOI: 10.1016/j.foodres.2023.112881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 06/01/2023]
Abstract
Germination and enzymatic hydrolysis are biological processes with well-recognized positive effects on phenolic composition and antioxidant potential. This study aimed to apply those processes to white (Sinapsis alba) and black (Brassica nigra) mustard grains and to analyze the influences on the total phenolic content (TPC); phenolic and peptide profile determined by ultra-performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS); antioxidant potential (DPPH, ABTS, and FRAP assays); and cytotoxicity against Caco-2, a human colorectal adenocarcinoma cell line. Enzyme combinations for hydrolysis were different for each mustard grain, but for both species, enzymatic hydrolysis and germination showed a positive effect on antioxidant properties. From UPLC-HRMS analysis and molecular network studies, 14 peptides and 17 phenolic compounds were identified as metabolites released from mustard after processes application, which were strongly correlated with increased antioxidant activity. In addition, enzymatic hydrolysis applied in germinated mustard grains for both mustards increased the cytotoxic activity against Caco-2 human colorectal adenocarcinoma cell line.
Collapse
Affiliation(s)
- Gabriela Boscariol Rasera
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP CEP 13083-862, Brazil.
| | - Éder de Vilhena Araújo
- Department of Chemistry, Institute of Chemistry, University of Campinas, Campinas, SP CEP 13083-862, Brazil
| | - Alana Kelyene Pereira
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP CEP 13083-862, Brazil
| | - Raquel Bester Liszbinski
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP CEP 13083-862, Brazil
| | - Guilherme Pacheco
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP CEP 13083-862, Brazil
| | - Taícia Pacheco Fill
- Department of Chemistry, Institute of Chemistry, University of Campinas, Campinas, SP CEP 13083-862, Brazil
| | - Marcelo Bispo de Jesus
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP CEP 13083-862, Brazil
| | - Ruann Janser Soares de Castro
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP CEP 13083-862, Brazil.
| |
Collapse
|
6
|
The Effects of Processing Technologies on Nutritional and Anti-nutritional Properties of Pseudocereals and Minor Cereal. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Andean Sprouted Pseudocereals to Produce Healthier Extrudates: Impact in Nutritional and Physicochemical Properties. Foods 2022. [PMCID: PMC9601839 DOI: 10.3390/foods11203259] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The tailored formulation of raw materials and the combination of grain germination and extrusion processes could be a promising strategy to achieve the desired goal of developing healthier expanded extrudates without compromising sensory properties. In this study, modifications in the nutritional, bioactive profile and physicochemical properties of corn extrudates as influenced by the complete or partial replacement by sprouted quinoa (Chenopodium quinoa Willd) and cañihua (Chenopodium pallidicaule Aellen) were investigated. A simplex centroid mixture design was used to study the effects of formulation on nutritional and physicochemical properties of extrudates, and a desirability function was applied to identify the optimal ingredient ratio in flour blends to achieve desired nutritional, texture and color goals. Partial incorporation of sprouted quinoa flour (SQF) and cañihua flour (SCF) in corn grits (CG)-based extrudates increased phytic acid (PA), total soluble phenolic compounds (TSPC), γ-aminobutyric acid (GABA) and oxygen radical antioxidant activity (ORAC) of the extrudates. Sprouted grain flour usually results in an deleterious effect physicochemical properties of extrudates, but the partial mixture of CG with SQF and SCF circumvented the negative effect of germinated flours, improving technological properties, favoring the expansion index and bulk density and increasing water solubility. Two optimal formulations were identified: 0% CG, 14% SQF and 86% SCF (OPM1) and 24% CG, 17% SQF and 59% SCF (OPM2). The optimized extrudates showed a reduced amount of starch and remarkably higher content of total dietary fiber, protein, lipids, ash, PA, TSPC, GABA and ORAC as compared to those in 100% CG extrudates. During digestion, PA, TSPC, GABA and ORAC showed good stability in physiological conditions. Higher antioxidant activity and amounts of bioaccessible TSPC and GABA were found in OPM1 and OPM2 digestates as compared to those in 100% CG extrudates.
Collapse
|
8
|
Wang SP, Yeh YT, Sridhar K, Tsai PJ. Effect of stress on germination of djulis (Chenopodium formosanum Koidz.) sprouts: a natural alternative to enhance the betacyanin and phenolic compounds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4561-4569. [PMID: 35137423 DOI: 10.1002/jsfa.11813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/12/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Germination is regarded as a natural method for improving the bioavailability of seed nutrients against stress, which enhances the accumulation of bioactive compounds. The present study aimed to determine the effect of stress (H2 O2 , catechin, gallic acid, tyrosine, and NaCl) during germination of djulis (Chenopodium formosanum Koidz.) sprouts on betacyanin, phytochemicals, and antioxidant capacities. RESULTS The betacyanin and antioxidant activities of the djulis sprouts increased significantly compared to seeds. The lowest betacyanin was found in NaCl-stressed sprouts. The djulis sprouts reported the presence of celosianins I and II (50.72%), which was absent in seeds. Hydroxycinnamic acids accounted for > 60% of the total phenolic compounds in sprouts, whereas rutin predominated in the seeds. CONCLUSION Germination under stress may represent an effective natural method for improving the bioactive potential of sprouts, an alternative to use seeds, in the development of bioactive compounds-enriched healthy foods that are good for public health. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ssu-Ping Wang
- Department of Food Science, National Pingtung University of Science and Technology, Neipu, Taiwan
| | - Yi-Tyng Yeh
- Department of Food Science, National Pingtung University of Science and Technology, Neipu, Taiwan
| | - Kandi Sridhar
- UMR1253, Science et Technologie du Lait et de l'œuf, INRAE, L'Institut Agro Rennes-Angers, Rennes, France
| | - Pi-Jen Tsai
- Department of Food Science, National Pingtung University of Science and Technology, Neipu, Taiwan
| |
Collapse
|
9
|
De-La-Cruz-Yoshiura S, Vidaurre-Ruiz J, Alcázar-Alay S, Encina-Zelada CR, Cabezas DM, Correa MJ, Repo-Carrasco-Valencia R. Sprouted Andean grains: an alternative for the development of nutritious and functional products. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2083158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Shigeki De-La-Cruz-Yoshiura
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Julio Vidaurre-Ruiz
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Lima, Perú
- Departamento de Ingeniería de Alimentos y Productos Agropecuarios, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Sylvia Alcázar-Alay
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Christian R. Encina-Zelada
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Lima, Perú
- Departamento de Tecnología de Alimentos y Productos Agropecuarios, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Dario M. Cabezas
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Lima, Perú
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina
| | - María Jimena Correa
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Lima, Perú
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (Facultad de Ciencias Exactas-UNLP, la Plata, Argentina
| | - Ritva Repo-Carrasco-Valencia
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Lima, Perú
- Departamento de Ingeniería de Alimentos y Productos Agropecuarios, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Perú
| |
Collapse
|
10
|
Paucar-Menacho LM, Castillo-Martínez WE, Simpalo-Lopez WD, Verona-Ruiz A, Lavado-Cruz A, Martínez-Villaluenga C, Peñas E, Frias J, Schmiele M. Performance of Thermoplastic Extrusion, Germination, Fermentation, and Hydrolysis Techniques on Phenolic Compounds in Cereals and Pseudocereals. Foods 2022; 11:foods11131957. [PMID: 35804772 PMCID: PMC9265478 DOI: 10.3390/foods11131957] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/17/2022] Open
Abstract
Bioactive compounds, such as phenolic compounds, are phytochemicals found in significant amounts in cereals and pseudocereals and are usually evaluated by spectrophotometric (UV-VIS), HPLC, and LC-MS techniques. However, their bioavailability in grains is quite limited. This restriction on bioavailability and bioaccessibility occurs because they are in conjugated polymeric forms. Additionally, they can be linked through chemical esterification and etherification to macro components. Techniques such as thermoplastic extrusion, germination, fermentation, and hydrolysis have been widely studied to release phenolic compounds in favor of their bioavailability and bioaccessibility, minimizing the loss of these thermosensitive components during processing. The increased availability of phenolic compounds increases the antioxidant capacity and favor their documented health promoting.
Collapse
Affiliation(s)
- Luz María Paucar-Menacho
- Departamento de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote 02711, Peru; (L.M.P.-M.); (W.E.C.-M.); (W.D.S.-L.); (A.V.-R.); (A.L.-C.)
| | - Williams Esteward Castillo-Martínez
- Departamento de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote 02711, Peru; (L.M.P.-M.); (W.E.C.-M.); (W.D.S.-L.); (A.V.-R.); (A.L.-C.)
| | - Wilson Daniel Simpalo-Lopez
- Departamento de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote 02711, Peru; (L.M.P.-M.); (W.E.C.-M.); (W.D.S.-L.); (A.V.-R.); (A.L.-C.)
| | - Anggie Verona-Ruiz
- Departamento de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote 02711, Peru; (L.M.P.-M.); (W.E.C.-M.); (W.D.S.-L.); (A.V.-R.); (A.L.-C.)
| | - Alicia Lavado-Cruz
- Departamento de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote 02711, Peru; (L.M.P.-M.); (W.E.C.-M.); (W.D.S.-L.); (A.V.-R.); (A.L.-C.)
| | - Cristina Martínez-Villaluenga
- Department of Technological Processes and Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (C.M.-V.); (E.P.) (J.F.)
| | - Elena Peñas
- Department of Technological Processes and Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (C.M.-V.); (E.P.) (J.F.)
| | - Juana Frias
- Department of Technological Processes and Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (C.M.-V.); (E.P.) (J.F.)
| | - Marcio Schmiele
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys (UFVJM), MGT-367 Highway-Km 583, No. 5000, Diamantina 39100-000, Brazil
- Correspondence: ; Tel.: +55-38988037758
| |
Collapse
|
11
|
Improving Nutritional and Health Benefits of Biscuits by Optimizing Formulations Based on Sprouted Pseudocereal Grains. Foods 2022; 11:foods11111533. [PMID: 35681283 PMCID: PMC9180627 DOI: 10.3390/foods11111533] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
A mixture design (MD) was used to evaluate the effect of replacing wheat flour (WF) with sprouted cañihua (Chenopodium pallidicaule Aellen), kiwicha (Amarathus caudatus L.), and quinoa (Chenopodium quinoa Willd.) flours (SCF, SKF, and SQF, respectively) on the content of phytic acid (PA), γ-aminobutyric acid (GABA), total soluble phenolic compounds (TSPC), and antioxidant activity (AA) in biscuits. Generally, sprouted pseudocereal flours contained lower amounts of starch and protein, comparable fat, ash, PA content, and increased levels of bioactive compounds (GABA and TSPC) and AA compared with wholegrain flours. Moreover, it was confirmed that sprouted pseudocereal flours were nutritionally superior to refined WF. MD allowed the modeling of target parameters showing that PA, GABA, TSPC, and AA were positively influenced by the proportion of flours in the biscuit. The models that better described the variation in nutritional parameters as a function of the formulation displayed typically linear and binary interactions terms. SKF exerted the highest influence on the increased content of PA. Therefore, to increase mineral bioavailability, the use of SCF and SQF in the formulation of biscuits was suggested. SCF and SQF positively influenced in GABA, TSPC, and AA in biscuits. The optimal ternary blends of flours that maximize the content of bioactive compounds and AA of biscuits and simultaneously minimize PA content were identified. To study the fate of biscuits in digestion, the optimal formulation for biscuits containing SQF/SCF was selected. For this type of baked product, reduced starch digestibility and glycemic index was observed compared with the control (100% WF). Moreover, the amounts of bioaccessible GABA, TSPC, and AA were higher in gastric and intestinal digests compared with control biscuit. Overall, these results highlighted the nutritional and health benefits of incorporation of flours from sprouted Andean grains in the production of biscuits.
Collapse
|
12
|
Paucar-Menacho LM, Simpalo-López WD, Castillo-Martínez WE, Esquivel-Paredes LJ, Martínez-Villaluenga C. Reformulating Bread Using Sprouted Pseudo-cereal Grains to Enhance Its Nutritional Value and Sensorial Attributes. Foods 2022; 11:foods11111541. [PMID: 35681290 PMCID: PMC9180012 DOI: 10.3390/foods11111541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 02/07/2023] Open
Abstract
Sprouting is an effective treatment for improving nutritional and bioactive properties as well as lowering the anti-nutritional compounds in pseudo-cereals. Enhancing nutritional properties when using sprouted pseudo-cereals flours as a baking ingredient requires tailored formulation. Simplex centroid designs and response surface methodology has been applied in the present study to define the ideal proportions of ternary blends of sprouted kiwicha (SKF), cañihua (SCF) and wheat flours (WF) to simultaneously enhance the content in bioactive compounds (γ-aminobutyric acid, GABA, total soluble phenolic compounds and TSPC), as well as sensory (odor, color, taste and texture) and functional attributes (antioxidant activity, AA) while reducing phytic acid (PA) content of bread. The effect of gastric and intestinal digestion on bioactive compounds, AA, PA and starch hydrolysis was also evaluated. Mixture design allowed for the identification of optimal formulation (5% SKF, 23.1% SCF, 71.9% WF) that can be used to obtain breads with higher content of GABA, TSPC, AA, overall sensorial acceptability (scores > 7) and reduced PA content and glycemic index. Moreover, this study demonstrated that these nutritional and health benefits provided by the replacement of WF by sprouted pseudo-cereal flours remained upon digestion. The results of this study indicated that WF replacement with SKF and SCF is sensory acceptable and improved the nutritional quality of bread.
Collapse
Affiliation(s)
- Luz María Paucar-Menacho
- Departamento de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote 02711, Peru; (L.M.P.-M.); (W.D.S.-L.); (W.E.C.-M.); (L.J.E.-P.)
| | - Wilson Daniel Simpalo-López
- Departamento de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote 02711, Peru; (L.M.P.-M.); (W.D.S.-L.); (W.E.C.-M.); (L.J.E.-P.)
| | - Williams Esteward Castillo-Martínez
- Departamento de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote 02711, Peru; (L.M.P.-M.); (W.D.S.-L.); (W.E.C.-M.); (L.J.E.-P.)
| | - Lourdes Jossefyne Esquivel-Paredes
- Departamento de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote 02711, Peru; (L.M.P.-M.); (W.D.S.-L.); (W.E.C.-M.); (L.J.E.-P.)
| | - Cristina Martínez-Villaluenga
- Department of Technological Processes and Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-91393-9927
| |
Collapse
|
13
|
Choque Delgado GT, Carlos Tapia KV, Pacco Huamani MC, Hamaker BR. Peruvian Andean grains: Nutritional, functional properties and industrial uses. Crit Rev Food Sci Nutr 2022; 63:9634-9647. [PMID: 35544604 DOI: 10.1080/10408398.2022.2073960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The Andean geography induces favorable conditions for the growth of food plants of high nutritional and functional value. Among these plants are the Andean grains, which are recognized worldwide for their nutritional attributes. The objective of this article is to show the nutritional and functional properties, as well as industrial potential, of Andean grains. Quinoa, amaranth, canihua, and Andean corn are grains that contain bioactive compounds with antioxidant, antimicrobial, and anti-inflammatory activities that benefit the health of the consumer. Numerous in vitro and in vivo studies demonstrate their functional potential. These high-Andean crops could be used industrially to add value to other functional food products. These reports suggest the inclusion of these grains in the daily diets of people and the application of their active compounds in the food industry.
Collapse
Affiliation(s)
- Grethel Teresa Choque Delgado
- Departamento Académico de Ingeniería de Industrias Alimentarias, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | - Katerin Victoria Carlos Tapia
- Departamento Académico de Ingeniería de Industrias Alimentarias, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | - Maria Cecilia Pacco Huamani
- Departamento Académico de Ingeniería de Industrias Alimentarias, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
14
|
Zhang D, Wei X, Liu Z, Wu X, Bao C, Sun Y, Su N, Cui J. Transcriptome Analysis Reveals the Molecular Mechanism of GABA Accumulation during Quinoa ( Chenopodium quinoa Willd.) Germination. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12171-12186. [PMID: 34610747 DOI: 10.1021/acs.jafc.1c02933] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Quinoa (Chenopodium quinoa Willd.) with a history of 5000 years as food is extremely rich in nutrients and bioactive compounds, including γ-aminobutyric acid (GABA), a natural four-carbon non-protein amino acid with great benefits to human health. In quinoa, GABA generally increases with the germination time, but the underlying molecular mechanism is unclear. Here, we found that the GABA content in quinoa varied significantly among 25 varieties using an automatic amino acid analyzer. Next, six varieties (three low-GABA and three high-GABA varieties) were used for further analyses. The content of GABA in six varieties all showed an increasing trend after germination. In addition, Pearson's correlation analysis showed that the changes in GABA content were closely related to the transcript level or enzyme activity of three key enzymes including glutamate decarboxylase (GAD), GABA transaminase (GABA-T), and succinate-semialdehyde dehydrogenase (SSADH) in the GABA shunt, especially GAD. Based on RNA-sequencing analysis, eight GAD genes, two GABA-T genes, one SSADH gene, nine polyamine oxidase (PAO) genes, five diamine oxidase (DAO) genes, four 4-aminobutyraldehyde dehydrogenase (BADH) genes, and three thermospermine synthase ACAULIS5 (ACL5) genes were identified. Among these, CqGAD8 and CqGABA-T2 may make a greater contribution to GABA accumulation during quinoa germination.
Collapse
Affiliation(s)
- Derui Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaonan Wei
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ze Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangyun Wu
- Shanxi Jiaqi Quinoa Dev Company Limited, Shuozhou 038600, China
| | - Changjian Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuzhe Sun
- Nanjing Foreign Language School, Nanjing 210095, China
| | - Nana Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Kumar M, Dahuja A, Tiwari S, Punia S, Tak Y, Amarowicz R, Bhoite AG, Singh S, Joshi S, Panesar PS, Prakash Saini R, Pihlanto A, Tomar M, Sharifi-Rad J, Kaur C. Recent trends in extraction of plant bioactives using green technologies: A review. Food Chem 2021; 353:129431. [PMID: 33714109 DOI: 10.1016/j.foodchem.2021.129431] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/02/2021] [Accepted: 02/19/2021] [Indexed: 12/21/2022]
Abstract
Phenolic compounds from plant sources have significant health-promoting properties and are known to be an integral part of folk and herbal medicines. Consumption of phenolics is known to alleviate the risk of various lifestyle diseases including cancer, cardiovascular, diabetes, and Alzheimer's. In this context, numerous plant crops have been explored and characterized based on phenolic compounds for their use as supplements, nutraceutical, and pharmaceuticals. The present review highlights some important source of bioactive phenolic compounds and novel technologies for their efficient extraction. These techniques include the use of microwave, ultrasound, and supercritical methods. Besides, the review will also highlight the use of response surface methodology (RSM) as a statistical tool for optimizing the recoveries of the phenolic bioactives from plant-based matrices.
Collapse
Affiliation(s)
- Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Matunga, Mumbai 400019, India; Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Anil Dahuja
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Sudha Tiwari
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Matunga, Mumbai 400019, India
| | - Sneh Punia
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, India; Department of Food, Nutrition, & Packaging Sciences, Clemson University, Clemson, SC 29634, United States
| | - Yamini Tak
- Department of Biochemistry, Agriculture University, Kota 324001, India
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Anilkumar G Bhoite
- Department of Agricultural Botany, RCSM College of Agriculture, Kolhapur 416004, Maharashtra, India
| | - Surinder Singh
- Dr. S.S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Shourabh Joshi
- Department of Basic Sciences, College of Agriculture, Nagaur, Agricultural University, Jodhpur 341001, Rajasthan, India
| | - Parmjit S Panesar
- Department of Food Engg. & Technology, S.L. Institute of Engg. & Technology, Longowal 148 106, Punjab, India
| | - Ravi Prakash Saini
- Division of Seed Technology, ICAR - Indian Grassland and Fodder Research Institute, Jhansi 28400, India
| | - Anne Pihlanto
- Natural Resources Institute Finland, Myllytie, Finland
| | - Maharishi Tomar
- Division of Seed Technology, ICAR - Indian Grassland and Fodder Research Institute, Jhansi 28400, India
| | - Javad Sharifi-Rad
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador; Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Charanjit Kaur
- Division of Food Science and Post-Harvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
16
|
Park SJ, Sharma A, Lee HJ. A Review of Recent Studies on the Antioxidant Activities of a Third-Millennium Food: Amaranthus spp. Antioxidants (Basel) 2020; 9:E1236. [PMID: 33291467 PMCID: PMC7762149 DOI: 10.3390/antiox9121236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Amaranth (Amaranthus spp.) plant commonly refers to the sustainable food crop for the 21st century. The crop has witnessed significant attention in recent years due to its high nutritional value and agronomic advantages. It is a relatively well-balanced cosmopolitan food that is a protector against chronic diseases. Usually, the antioxidant activities of amaranth are held responsible for its defensive behavior. Antioxidant activity of plants, generally, is attributed to their phytochemical compounds. The current interest, however, lies in hydrolysates and bioactive peptides because of their numerous biological functions, including antioxidant effect. While the importance of bioactive peptides has been progressively recognized, an integrated review of recent studies on the antioxidant ability of amaranth species, especially their hydrolysates and peptides has not been generated. Hence, in this review, we summarize studies focused on the antioxidant capacity of amaranth renewal over the period 2015-2020. It starts with a background and overall image of the amaranth-related published reviews. The current research focusing on in vitro, in vivo, and chemical assays-based antioxidant activity of different amaranth species are addressed. Finally, the last segment includes the latest studies concerning free radical scavenging activity and metal chelation capacity of amaranth protein hydrolysates and bioactive peptides.
Collapse
Affiliation(s)
- Seon-Joo Park
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Korea; (S.-J.P.); (A.S.)
- Institute for Aging and Clinical Nutrition Research, Gachon University, Gyeonggi-do 13120, Korea
| | - Anshul Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Korea; (S.-J.P.); (A.S.)
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Korea; (S.-J.P.); (A.S.)
- Institute for Aging and Clinical Nutrition Research, Gachon University, Gyeonggi-do 13120, Korea
| |
Collapse
|
17
|
Effects of germination and kilning on the phenolic compounds and nutritional properties of quinoa (Chenopodium quinoa) and kiwicha (Amaranthus caudatus). J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.102996] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Rasera GB, Hilkner MH, de Castro RJS. Free and insoluble-bound phenolics: How does the variation of these compounds affect the antioxidant properties of mustard grains during germination? Food Res Int 2020; 133:109115. [PMID: 32466905 DOI: 10.1016/j.foodres.2020.109115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/08/2020] [Accepted: 02/18/2020] [Indexed: 01/20/2023]
Abstract
This work aimed to investigate how the variation of free and insoluble-bound phenolics affected the antioxidant properties of mustard grains from two varieties (black - Brassica nigra and white - Sinapsis alba) during different germination parameters. The germination conditions selected for each mustard variety to improve their antioxidant properties were different, as follows: (a) for white mustard - 72 h of germination at 25 °C in the dark and (b) for black mustard - 48 h of germination at 25 °C alternating dark and light periods. At these conditions, increases of 49, 72, 80, 68, 42, 66 and 45% were detected for total phenolic compounds (TPC), total flavonoids, condensed tannins, FRAP, DPPH, ABTS, and ORAC, respectively, for soluble extracts of white mustard compared to the non-germinated white mustard. The soluble extracts from black mustard, in turn, presented increases of 44, 18, 55, 29, 3, 160 and 42% for TPC, total flavonoids, condensed tannins, FRAP, DPPH, ABTS, and ORAC, respectively, compared to the non-germinated sample. Gallic acid, 3,4-di-hydroxybenzoic acid, sinapic acid, ferulic acid, coumaric acid, and rutin were identified by UPLC-MS/MS and were the main compounds detected in mustard extracts. Given the results obtained, germinated mustard grains have the potential for application as a functional and nutraceutical food.
Collapse
Affiliation(s)
- Gabriela Boscariol Rasera
- Department of Food Science, School of Food Engineering, University of Campinas, 80 Rua Monteiro Lobato, Campinas, SP, Brazil.
| | - Marina Hermenegildo Hilkner
- Department of Food Science, School of Food Engineering, University of Campinas, 80 Rua Monteiro Lobato, Campinas, SP, Brazil
| | - Ruann Janser Soares de Castro
- Department of Food Science, School of Food Engineering, University of Campinas, 80 Rua Monteiro Lobato, Campinas, SP, Brazil
| |
Collapse
|
19
|
Benincasa P, Falcinelli B, Lutts S, Stagnari F, Galieni A. Sprouted Grains: A Comprehensive Review. Nutrients 2019; 11:E421. [PMID: 30781547 PMCID: PMC6413227 DOI: 10.3390/nu11020421] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/02/2019] [Accepted: 02/13/2019] [Indexed: 11/27/2022] Open
Abstract
In the last decade, there has been an increase in the use of sprouted grains in human diet and a parallel increase in the scientific literature dealing with their nutritional traits and phytochemical contents. This review examines the physiological and biochemical changes during the germination process, and the effects on final sprout composition in terms of macro- and micro-nutrients and bioactive compounds. The main factors affecting sprout composition are taken into consideration: genotype, environmental conditions experimented by the mother plant, germination conditions. In particular, the review deepens the recent knowledge on the possible elicitation factors useful for increasing the phytochemical contents. Microbiological risks and post-harvest technologies are also evaluated, and a brief summary is given of some important in vivo studies matching with the use of grain sprouts in the diet. All the species belonging to Poaceae (Gramineae) family as well as pseudocereals species are included.
Collapse
Affiliation(s)
- Paolo Benincasa
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy.
| | - Beatrice Falcinelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy.
| | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, 5 (Bte 7.07.13) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium.
| | - Fabio Stagnari
- Faculty of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via Carlo Lerici 1, 64023 Teramo, Italy.
| | - Angelica Galieni
- Council for Agricultural Research and Economics, Research Centre for Vegetable and Ornamental Crops, Via Salaria 1, 63030 Monsampolo del Tronto, Italy.
| |
Collapse
|
20
|
Guardianelli LM, Salinas MV, Puppo MC. Chemical and thermal properties of flours from germinated amaranth seeds. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-018-00023-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Vilcacundo R, Barrio DA, Piñuel L, Boeri P, Tombari A, Pinto A, Welbaum J, Hernández-Ledesma B, Carrillo W. Inhibition of Lipid Peroxidation of Kiwicha ( Amaranthus caudatus) Hydrolyzed Protein Using Zebrafish Larvae and Embryos. PLANTS 2018; 7:plants7030069. [PMID: 30200527 PMCID: PMC6161091 DOI: 10.3390/plants7030069] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/25/2018] [Accepted: 08/29/2018] [Indexed: 01/19/2023]
Abstract
Amaranth protein concentrate (APC) was hydrolyzed under in vitro gastrointestinal conditions. APC proteins were partially degraded by pepsin at pHs 1.2, 2.0, and 3.2. During the intestinal phase (pepsin/pancreatin enzymes at pH 7.0), no polypeptide bands were observed in the gel, suggesting the susceptibility of amaranth proteins to the action of digestive enzymes. The potent in vitro inhibition of lipid peroxidation, shown by the gastric and intestinal digests, was confirmed in the zebrafish larvae, with a 72.86% reduction in oxidation of lipids in the presence of the gastric hydrolysate at pH 2.0, compared to a 95.72% reduction in the presence of the gastrointestinal digest. APC digests were capable of reducing reactive oxygen species (ROS) production in the zebrafish embryo model with a value of fluorescence of 52.5% for the gastric hydrolysate, and 48.4% for the intestinal hydrolysate.
Collapse
Affiliation(s)
- Rubén Vilcacundo
- Laboratory of Functional Foods, Faculty of Foods Sciences and Engineering, Technical University of Ambato, Av. Los Chasquis y Rio Payamino, Campus Huachi, Ambato 1801334, Ecuador.
| | - Daniel Alejandro Barrio
- CIT-RIO NEGRO Sede Atlántica, Universidad Nacional de Rio Negro (UNRN-CONICET), Don Bosco y Leloir s/n CP 8500, Rio Negro Viedma, Argentina.
| | - Lucrecia Piñuel
- CIT-RIO NEGRO Sede Atlántica, Universidad Nacional de Rio Negro (UNRN-CONICET), Don Bosco y Leloir s/n CP 8500, Rio Negro Viedma, Argentina.
| | - Patricia Boeri
- CIT-RIO NEGRO Sede Atlántica, Universidad Nacional de Rio Negro (UNRN-CONICET), Don Bosco y Leloir s/n CP 8500, Rio Negro Viedma, Argentina.
| | - Andrea Tombari
- CIT-RIO NEGRO Sede Atlántica, Universidad Nacional de Rio Negro (UNRN-CONICET), Don Bosco y Leloir s/n CP 8500, Rio Negro Viedma, Argentina.
| | - Adelita Pinto
- Department of Research, Faculty of Health Sciences, Technical University of Babahoyo, Av. Universitaria Km 21/2 Av. Montalvo., Babahoyo 120301, Ecuador.
| | - James Welbaum
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79413, USA.
| | | | - Wilman Carrillo
- Department of Research, Faculty of Health Sciences, Technical University of Babahoyo, Av. Universitaria Km 21/2 Av. Montalvo., Babahoyo 120301, Ecuador.
| |
Collapse
|
22
|
Kimáková K, Petijová L, Bruňáková K, Čellárová E. Relation between hypericin content and morphometric leaf parameters in Hypericum spp.: A case of cubic degree polynomial function. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 271:94-99. [PMID: 29650162 DOI: 10.1016/j.plantsci.2018.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
Higher plants often accumulate secondary metabolites in multicellular structures or in secretory reservoirs. Biotechnological production of such compounds by cell cultures lacking proper morphological structures is difficult, therefore possibilities for an efficient increase of their formation by organ cultures are being searched. The genus Hypericum comprises many species that store photoactive and phototoxic naphthodianthrones in the dark nodules on their above-ground parts. To date, the relation between the content of hypericins and their proto-forms accumulated in the nodules, and morphological characters of the plant parts containing these structures has not been sufficiently explained. The content of hypericins and leaf morphology characters were measured in 12 selected diploid seed-derived Hypericum species cultured in vitro. The leaf volume and the volume of the nodules per leaf were calculated. Based on these data, a cubic degree polynomial regression model with high reliability was constructed. The model enables an estimate of the biosynthetic capacity of the cultures, and may be useful in designing the experiments aimed at elicitation of these unique secondary metabolites in shoot cultures of Hypericum spp. An analogous model may be developed for interpretation of experimental results for other plant species which accumulate metabolites in specialized morphological structures.
Collapse
Affiliation(s)
- Katarína Kimáková
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Mánesova 23, 041 54, Košice, Slovakia
| | - Linda Petijová
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Mánesova 23, 041 54, Košice, Slovakia
| | - Katarína Bruňáková
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Mánesova 23, 041 54, Košice, Slovakia
| | - Eva Čellárová
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Mánesova 23, 041 54, Košice, Slovakia.
| |
Collapse
|
23
|
Gómez-Favela MA, Gutiérrez-Dorado R, Cuevas-Rodríguez EO, Canizalez-Román VA, Del Rosario León-Sicairos C, Milán-Carrillo J, Reyes-Moreno C. Improvement of Chia Seeds with Antioxidant Activity, GABA, Essential Amino Acids, and Dietary Fiber by Controlled Germination Bioprocess. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2017; 72:345-352. [PMID: 28900797 DOI: 10.1007/s11130-017-0631-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chia (Salvia hispanica L.) plant is native from southern Mexico and northern Guatemala. Their seeds are a rich source of bioactive compounds which protect consumers against chronic diseases. Germination improves functionality of the seeds due to the increase in the bioactive compounds and associated antioxidant activity. The purpose of this study was to obtain functional flour from germinated chia seeds under optimized conditions with increased antioxidant activity, phenolic compounds, GABA, essential amino acids, and dietary fiber with respect to un-germinated chia seeds. The effect of germination temperature and time (GT = 20-35 °C, Gt = 10-300 h) on protein, lipid, and total phenolic contents (PC, LC, TPC, respectively), and antioxidant activity (AoxA) was analyzed by response surface methodology as optimization tool. Chia seeds were germinated inside plastic trays with absorbent paper moisturized with 50 mL of 100 ppm sodium hypochlorite dissolution. The sprouts were dried (50 °C/8 h) and ground to obtain germinated chia flours (GCF). The prediction models developed for PC, LC, TPC, and AoxA showed high coefficients of determination, demonstrating their adequacy to explain the variations in experimental data. The highest values of PC, LC, TPC, and AoxA were obtained at two different optimal conditions (GT = 21 °C/Gt = 157 h; GT = 33 °C/Gt = 126 h). Optimized germinated chia flours (OGCF) had higher PC, TPC, AoxA, GABA, essential amino acids, calculated protein efficiency ratio (C-PER), and total dietary fiber (TDF) than un-germinated chia seed flour. The OGCF could be utilized as a natural source of proteins, dietary fiber, GABA, and antioxidants in the development of new functional beverages and foods.
Collapse
Affiliation(s)
- Mario Armando Gómez-Favela
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico Biológicas (FCQB), Universidad Autónoma de Sinaloa (UAS), Ciudad Universitaria, A.P. 1354, CP 80000, Culiacán, Sinaloa, Mexico
| | - Roberto Gutiérrez-Dorado
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico Biológicas (FCQB), Universidad Autónoma de Sinaloa (UAS), Ciudad Universitaria, A.P. 1354, CP 80000, Culiacán, Sinaloa, Mexico
- Programa de Posgrado en Ciencia y Tecnología de Alimentos, FCQB-UAS, Ciudad Universitaria, A.P. 1354, CP 80000, Culiacán, Sinaloa, Mexico
| | - Edith Oliva Cuevas-Rodríguez
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico Biológicas (FCQB), Universidad Autónoma de Sinaloa (UAS), Ciudad Universitaria, A.P. 1354, CP 80000, Culiacán, Sinaloa, Mexico
- Programa de Posgrado en Ciencia y Tecnología de Alimentos, FCQB-UAS, Ciudad Universitaria, A.P. 1354, CP 80000, Culiacán, Sinaloa, Mexico
| | - Vicente Adrián Canizalez-Román
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico Biológicas (FCQB), Universidad Autónoma de Sinaloa (UAS), Ciudad Universitaria, A.P. 1354, CP 80000, Culiacán, Sinaloa, Mexico
- Departamento de posgrado, Facultad de Medicina, UAS, Ave. Cedros y Calle Sauces S/N, Fraccionamiento los Fresnos, CP 80019, Culiacán, Sinaloa, Mexico
| | - Claudia Del Rosario León-Sicairos
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico Biológicas (FCQB), Universidad Autónoma de Sinaloa (UAS), Ciudad Universitaria, A.P. 1354, CP 80000, Culiacán, Sinaloa, Mexico
| | - Jorge Milán-Carrillo
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico Biológicas (FCQB), Universidad Autónoma de Sinaloa (UAS), Ciudad Universitaria, A.P. 1354, CP 80000, Culiacán, Sinaloa, Mexico
- Programa de Posgrado en Ciencia y Tecnología de Alimentos, FCQB-UAS, Ciudad Universitaria, A.P. 1354, CP 80000, Culiacán, Sinaloa, Mexico
| | - Cuauhtémoc Reyes-Moreno
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico Biológicas (FCQB), Universidad Autónoma de Sinaloa (UAS), Ciudad Universitaria, A.P. 1354, CP 80000, Culiacán, Sinaloa, Mexico.
- Programa de Posgrado en Ciencia y Tecnología de Alimentos, FCQB-UAS, Ciudad Universitaria, A.P. 1354, CP 80000, Culiacán, Sinaloa, Mexico.
- , Calle Lichis Ote 1986, Col La Campiña, CP 80060, Culiacán, Sinaloa, Mexico.
| |
Collapse
|
24
|
Paucar-Menacho LM, Martínez-Villaluenga C, Dueñas M, Frias J, Peñas E. Response surface optimisation of germination conditions to improve the accumulation of bioactive compounds and the antioxidant activity in quinoa. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13623] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Luz María Paucar-Menacho
- Departamento de Ingeniería Agroindustrial y Agrónoma; Universidad Nacional del Santa; Av. Universitaria s/n Urb, Bella Mar Nuevo Chimbote Ancash Perú
| | | | - Montserrat Dueñas
- Research Group on Polyphenols, Nutrition and Bromatology Unit, Faculty of Pharmacy; University of Salamanca; Campus Miguel Unamuno Salamanca 37007 Spain
| | - Juana Frias
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC); Juan de la Cierva 3 Madrid 28006 Spain
| | - Elena Peñas
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC); Juan de la Cierva 3 Madrid 28006 Spain
| |
Collapse
|