1
|
Yan H, Xu B, Gao B, Xu Y, Xia X, Ma Y, Qin X, Dong Q, Hirata T, Li Z. Comparative Analysis of In Vivo and In Vitro Virulence Among Foodborne and Clinical Listeria monocytogenes Strains. Microorganisms 2025; 13:191. [PMID: 39858959 PMCID: PMC11767709 DOI: 10.3390/microorganisms13010191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Listeria monocytogenes is one of the most important foodborne pathogens that can cause invasive listeriosis. In this study, the virulence levels of 26 strains of L. monocytogenes isolated from food and clinical samples in Shanghai, China, between 2020 and 2022 were analyzed. There were significant differences among isolates in terms of their mortality rate in Galleria mellonella, cytotoxicity to JEG-3 cells, hemolytic activity, and expression of important virulence genes. Compared with other STs, both the ST121 (food source) and ST1930 (clinic source) strains exhibited higher G. mellonella mortality. The 48 h mortality in G. mellonella of lineage II strains was significantly higher than that in lineage I. Compared with other STs, ST1930, ST3, ST5, and ST1032 exhibited higher cytotoxicity to JEG-3 cells. Based on the classification of sources (food and clinical strains) and serogroups (II a, II b, and II c), there were no significant differences observed in terms of G. mellonella mortality, cytotoxicity, and hemolytic activity. In addition, ST121 exhibited significantly higher hly, inlA, inlB, prfA, plcA, and plcB gene expression compared with other STs. A gray relation analysis showed a high correlation between the toxicity of G. mellonella and the expression of the hly and inlB genes; in addition, L. monocytogenes may have a consistent virulence mechanism involving hemolysis activity and cytotoxicity. Through the integration of in vivo and in vitro infection models with information on the expression of virulence factor genes, the differences in virulence between strains or subtypes can be better understood.
Collapse
Affiliation(s)
- Hui Yan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.Y.); (B.G.); (Y.X.); (X.X.); (Y.M.); (X.Q.); (Q.D.)
| | - Biyao Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200051, China;
| | - Binru Gao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.Y.); (B.G.); (Y.X.); (X.X.); (Y.M.); (X.Q.); (Q.D.)
| | - Yunyan Xu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.Y.); (B.G.); (Y.X.); (X.X.); (Y.M.); (X.Q.); (Q.D.)
| | - Xuejuan Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.Y.); (B.G.); (Y.X.); (X.X.); (Y.M.); (X.Q.); (Q.D.)
| | - Yue Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.Y.); (B.G.); (Y.X.); (X.X.); (Y.M.); (X.Q.); (Q.D.)
| | - Xiaojie Qin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.Y.); (B.G.); (Y.X.); (X.X.); (Y.M.); (X.Q.); (Q.D.)
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.Y.); (B.G.); (Y.X.); (X.X.); (Y.M.); (X.Q.); (Q.D.)
| | - Takashi Hirata
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8501, Japan;
- Faculty of Rehabilitation, Shijonawate Gakuen University, Osaka 574-0011, Japan
| | - Zhuosi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.Y.); (B.G.); (Y.X.); (X.X.); (Y.M.); (X.Q.); (Q.D.)
| |
Collapse
|
2
|
Maggio F, Rossi C, Serio A, Chaves-Lopez C, Casaccia M, Paparella A. Anti-biofilm mechanisms of action of essential oils by targeting genes involved in quorum sensing, motility, adhesion, and virulence: A review. Int J Food Microbiol 2025; 426:110874. [PMID: 39244811 DOI: 10.1016/j.ijfoodmicro.2024.110874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024]
Abstract
Biofilms are a critical factor for food safety, causing important economic losses. Among the novel strategies for controlling biofilms, essential oils (EOs) can represent an environmentally friendly approach, able to act both on early and mature stages of biofilm formation. This review reports the anti-biofilm mechanisms of action of EOs against five pathogenic bacterial species known for their biofilm-forming ability. These mechanisms include disturbing the expression of genes related to quorum sensing (QS), motility, adhesion, and virulence. Biofilms and QS are interconnected processes, and EOs interfere with the communication system (e.g. regulating the expression of agrBDCA, luxR, luxS, and pqsA genes), thus influencing biofilm formation. In addition, QS is an important mechanism that regulates gene expression related to bacterial survival, virulence, and pathogenicity. Similarly, EOs also influence the expression of many virulence genes. Moreover, EOs exert their effects modulating the genes associated with bacterial adhesion and motility, for example those involved in curli (csg), fimbriae (fim, lpf), and flagella (fla, fli, flh, and mot) production, as well as the ica genes responsible for synthetizing polysaccharide intercellular adhesin. This review provides a comprehensive framework on the topic for a better understanding of EOs biofilm mechanisms of action.
Collapse
Affiliation(s)
- Francesca Maggio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Chiara Rossi
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Annalisa Serio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Clemencia Chaves-Lopez
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Manila Casaccia
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy
| | - Antonello Paparella
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| |
Collapse
|
3
|
Hassanzadeh M, Mirzaie S, Pirmahalle FR, Yahyaraeyat R, Razmyar J. Effects of Thyme (Thymus vulgaris) Essential Oil on Bacterial Growth and Expression of Some Virulence Genes in Salmonella enterica Serovar Enteritidis. Vet Med Sci 2024; 10:e70088. [PMID: 39474775 PMCID: PMC11522824 DOI: 10.1002/vms3.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND The investigation on natural antimicrobial compounds against zoonotic pathogens has gained more attention due to the public health concerns regarding the emergence of antimicrobial resistance. OBJECTIVES The current study aimed to assess the effects of thyme essential oil at sub-minimal inhibitory concentrations (sub-MICs) on bacterial growth and expression of some virulence genes in Salmonella enteritidis. METHODS The bacterial growth rate and the expression of four virulence genes in S. enteritidis during 18-72 h of exposure to the essential oil at 25%-75% MIC were evaluated via colony counting and real-time polymerase chain reaction (PCR), respectively. RESULTS Sub-inhibitory concentrations of thyme essential oil significantly reduced the growth rate compared to the control. Expression of all tested virulence genes was also reduced by the essential oil in a significant dose- and time-dependent manner. As an example, decreased down-regulation of hilA, spv, sefA and invA as 1.7-, 4.14-, 2.92- and 1.04-fold in 25% MIC and 6.42-, 7.81-, 4.4- and 3.75-fold in 75% MIC was observed, respectively, after 24 h of incubation. Likewise, levels of transcription for hilA, spv, sefA and invA were reduced 4.75-, 6.95-, 3.75- and 2.98-fold after 18 h and 9.54-, 8.81-, 5.65- and 4.77-fold, respectively, after 72 h in 75% MIC compared to the control. CONCLUSIONS According to our data, aside from the growth inhibitory effect of thyme essential oil, the results of current study highlight the potential of thyme for reducing the transcriptional level of virulence genes and therefore the pathogenicity of S. enteritidis.
Collapse
Affiliation(s)
- Mohammad Hassanzadeh
- Department of Avian DiseasesFaculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Sara Mirzaie
- Department of AnimalPoultry and AquaticsInstitute of AgricultureIranian Research Organization for Science and Technology (IROST)TehranIran
| | | | - Ramak Yahyaraeyat
- Department of PathobiologyFaculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Jamshid Razmyar
- Department of Avian DiseasesFaculty of Veterinary MedicineUniversity of TehranTehranIran
| |
Collapse
|
4
|
Hosseini H, Mahmoudi R, Pakbin B, Manafi L, Hosseini S, Pilevar Z, Brück WM. Effects of intrinsic and extrinsic growth factors on virulence gene expression of foodborne pathogens in vitro and in food model systems; a review. Food Sci Nutr 2024; 12:6093-6107. [PMID: 39554324 PMCID: PMC11561799 DOI: 10.1002/fsn3.4281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 11/19/2024] Open
Abstract
Since foodborne diseases are one of the major causes of human hospitalization and death, one of the main challenges to food safety is the elimination or reduction of pathogens from food products throughout the food production chain. Pathogens, such as Salmonella species, Escherichia coli, Bacillus cereus, Clostridium species, Staphylococcus aureus, Listeria monocytogenes, Campylobacter species, etc., enter the consumer's body through the consumption of contaminated food and eventually cause disease, disability, and death in humans. In particular, the expression of virulence genes of these pathogens in various food environments containing them has been repeatedly reported, which is a key issue for the survival and pathogenicity of the pathogen. Hence, in this review, the interventions to prevent and control foodborne diseases, such as the application of natural preservatives, redox potential, heat treatments, high-pressure processing, and gaseous atmosphere, are discussed based on the literature. Moreover, the effects of various environmental conditions on bacterial gene expression are comprehensively reviewed. In conclusion, the effects of intrinsic and extrinsic factors on the growth and pathogenicity of bacteria are very complicated. The information obtained from the current study can be used to develop new control strategies, improve food safety, and ensure human health.
Collapse
Affiliation(s)
- Hedayat Hosseini
- Food Sciences & Technology Department, National Nutrition & Food Technology Research Institute, Faculty of Nutrition & Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
| | - Razzagh Mahmoudi
- Medical Microbiology Research CenterQazvin University of Medical SciencesQazvinIran
- Health Products Safety Research CenterQazvin University of Medical SciencesQazvinIran
| | - Babak Pakbin
- Institute for Life TechnologiesUniversity of Applied Sciences Western Switzerland Valais‐WallisSionSwitzerland
| | - Leila Manafi
- Health Products Safety Research CenterQazvin University of Medical SciencesQazvinIran
| | - Setayesh Hosseini
- Department of Cell and Molecular Biology Sciences, School of Biology, College of ScienceUniversity of TehranTehranIran
| | - Zahra Pilevar
- School of HealthArak University of Medical SciencesArakIran
| | - Wolfram Manuel Brück
- Institute for Life TechnologiesUniversity of Applied Sciences Western Switzerland Valais‐WallisSionSwitzerland
| |
Collapse
|
5
|
Chen L, Li X, Wang Y, Guo Z, Wang G, Zhang Y. The performance of plant essential oils against lactic acid bacteria and adverse microorganisms in silage production. FRONTIERS IN PLANT SCIENCE 2023; 14:1285722. [PMID: 38023889 PMCID: PMC10667483 DOI: 10.3389/fpls.2023.1285722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Plant essential oils have played an important role in the field of antibiotic alternatives because of their efficient bacteriostatic and fungistatic activity. As plant essential oils are widely used, their activity to improve the quality of plant silage has also been explored. This review expounds on the active ingredients of essential oils, their bacteriostatic and fungistatic activity, and mechanisms, as well as discusses the application of plant essential oils in plant silage fermentation, to provide a reference for the development and application of plant essential oils as silage additives in plant silage fermentation feed.
Collapse
Affiliation(s)
- Lijuan Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xi Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yili Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zelin Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Guoming Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yunhua Zhang
- College of Resources and Environment, Anhui Agricultural University, Hefei, China
| |
Collapse
|
6
|
Santos C, Ramos A, Luís Â, Amaral ME. Production and Characterization of k-Carrageenan Films Incorporating Cymbopogon winterianus Essential Oil as New Food Packaging Materials. Foods 2023; 12:foods12112169. [PMID: 37297414 DOI: 10.3390/foods12112169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The global production of synthetic plastics from petroleum-based raw ingredients exceeds 150 million metric tons. The environment is threatened by tons of plastic waste, thus endangering wildlife and the public's health. These consequences increased the interest in biodegradable polymers as potential substitutes for traditional packaging materials. This study aimed to produce and characterize k-carrageenan films incorporating Cymbopogon winterianus essential oil, in which citronellal was determined to be the major compound (41.12%). This essential oil presented remarkable antioxidant activity, as measured through DPPH (IC50 = 0.06 ± 0.01%, v/v; AAI = 85.60 ± 13.42) and β-carotene bleaching (IC50 = 3.16 ± 0.48%, v/v) methods. The essential oil also showed antibacterial properties against Listeria monocytogenes LMG 16779 (diameter of inhibition zone = 31.67 ± 5.16 mm and MIC = 8 µL/mL), which were also observed when incorporated in the k-carrageenan films. Moreover, scanning electron microscopy showed the reduction of the biofilms of this bacterium, and even its inactivation, due to visible destruction and loss of integrity when the biofilms were created directly on the developed k-carrageenan films. This study also revealed the quorum sensing inhibition potential of Cymbopogon winterianus essential oil (diameter of violacein production inhibition = 10.93 ± 0.81 mm), where it could impede intercellular communication and, hence, lower violacein synthesis. The produced k-carrageenan films were transparent (>90%) and slightly hydrophobic (water contact angle > 90°). This work demonstrated the viability of using Cymbopogon winterianus essential oil to produce k-carrageenan bioactive films as new food packaging materials. Future work should focus on the scale-up production of these films.
Collapse
Affiliation(s)
- Catarina Santos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- FibEnTech-UBI, Fiber Materials and Environmental Technologies Research Unit, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Ana Ramos
- FibEnTech-UBI, Fiber Materials and Environmental Technologies Research Unit, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
- Chemistry Department, Faculty of Sciences, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Ângelo Luís
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Chemistry Department, Faculty of Sciences, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Maria E Amaral
- FibEnTech-UBI, Fiber Materials and Environmental Technologies Research Unit, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
- Chemistry Department, Faculty of Sciences, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
| |
Collapse
|
7
|
Schneider G, Steinbach A, Putics Á, Solti-Hodován Á, Palkovics T. Potential of Essential Oils in the Control of Listeria monocytogenes. Microorganisms 2023; 11:1364. [PMID: 37374865 DOI: 10.3390/microorganisms11061364] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/03/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
Listeria monocytogenes is a foodborne pathogen, the causative agent of listeriosis. Infections typically occur through consumption of foods, such as meats, fisheries, milk, vegetables, and fruits. Today, chemical preservatives are used in foods; however, due to their effects on human health, attention is increasingly turning to natural decontamination practices. One option is the application of essential oils (EOs) with antibacterial features, since EOs are considered by many authorities as being safe. In this review, we aimed to summarize the results of recent research focusing on EOs with antilisterial activity. We review different methods via which the antilisterial effect and the antimicrobial mode of action of EOs or their compounds can be investigated. In the second part of the review, results of those studies from the last 10 years are summarized, in which EOs with antilisterial effects were applied in and on different food matrices. This section only included those studies in which EOs or their pure compounds were tested alone, without combining them with any additional physical or chemical procedure or additive. Tests were performed at different temperatures and, in certain cases, by applying different coating materials. Although certain coatings can enhance the antilisterial effect of an EO, the most effective way is to mix the EO into the food matrix. In conclusion, the application of EOs is justified in the food industry as food preservatives and could help to eliminate this zoonotic bacterium from the food chain.
Collapse
Affiliation(s)
- György Schneider
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti St. 12, H-7624 Pécs, Hungary
| | - Anita Steinbach
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti St. 12, H-7624 Pécs, Hungary
| | - Ákos Putics
- Central Laboratory, Aladár Petz Teaching Hospital, Vasvári Pál Street 2-4, H-9024 Győr, Hungary
| | - Ágnes Solti-Hodován
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti St. 12, H-7624 Pécs, Hungary
| | - Tamás Palkovics
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti St. 12, H-7624 Pécs, Hungary
| |
Collapse
|
8
|
Zhang L, Gao F, Ge J, Li H, Xia F, Bai H, Piao X, Shi L. Potential of Aromatic Plant-Derived Essential Oils for the Control of Foodborne Bacteria and Antibiotic Resistance in Animal Production: A Review. Antibiotics (Basel) 2022; 11:1673. [PMID: 36421318 PMCID: PMC9686951 DOI: 10.3390/antibiotics11111673] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 07/30/2023] Open
Abstract
Antibiotic resistance has become a severe public threat to human health worldwide. Supplementing antibiotic growth promoters (AGPs) at subtherapeutic levels has been a commonly applied method to improve the production performance of livestock and poultry, but the misuse of antibiotics in animal production plays a major role in the antibiotic resistance crisis and foodborne disease outbreaks. The addition of AGPs to improve production performance in livestock and poultry has been prohibited in some countries, including Europe, the United States and China. Moreover, cross-resistance could result in the development of multidrug resistant bacteria and limit therapeutic options for human and animal health. Therefore, finding alternatives to antibiotics to maintain the efficiency of livestock production and reduce the risk of foodborne disease outbreaks is beneficial to human health and the sustainable development of animal husbandry. Essential oils (EOs) and their individual compounds derived from aromatic plants are becoming increasingly popular as potential antibiotic alternatives for animal production based on their antibacterial properties. This paper reviews recent studies in the application of EOs in animal production for the control of foodborne pathogens, summarizes their molecular modes of action to increase the susceptibility of antibiotic-resistant bacteria, and provides a promising role for the application of nanoencapsulated EOs in animal production to control bacteria and overcome antibiotic resistance.
Collapse
Affiliation(s)
- Lianhua Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Fei Gao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junwei Ge
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hui Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Fei Xia
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Hongtong Bai
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lei Shi
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
9
|
3D printing of essential oil/β-cyclodextrin/popping candy modified atmosphere packaging for strawberry preservation. Carbohydr Polym 2022; 297:120037. [DOI: 10.1016/j.carbpol.2022.120037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022]
|
10
|
Essential oils as natural antimicrobials for application in edible coatings for minimally processed apple and melon: A review on antimicrobial activity and characteristics of food models. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Antimicrobial activity of lime oil in the vapour phase against Listeria monocytogenes on ready-to-eat salad during cold storage and its possible mode of action. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Martín I, Rodríguez A, Alía A, Martínez-Blanco M, Lozano-Ojalvo D, Córdoba JJ. Control of Listeria monocytogenes growth and virulence in a traditional soft cheese model system based on lactic acid bacteria and a whey protein hydrolysate with antimicrobial activity. Int J Food Microbiol 2022; 361:109444. [PMID: 34749186 DOI: 10.1016/j.ijfoodmicro.2021.109444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 10/08/2021] [Accepted: 10/17/2021] [Indexed: 12/26/2022]
Abstract
"Torta del Casar" is a Spanish soft-ripened cheese made with sheep's raw milk and subjected to a short ripening process, which favors the growth of pathogenic microorganisms including Listeria monocytogenes. The development of strategies to control pathogens and minimize health risks associated with the presence of L. monocytogenes in these products is of great interest. In this regard, the anti-Listeria activity of a whey protein hydrolysate (ProH) alone or combined with six lactic acid bacteria strains isolated from cheese was evaluated in this study as a biocontrol strategy using a "Torta del Casar" cheese-based medium. The most active combinations of lactic acid bacteria assayed induced a reduction higher than two logarithmic units in the growth of L. monocytogenes (serotype 4b) compared to their respective control when they were co-inoculated in "Torta del Casar" cheese-based medium at 7 °C for 7 days. In addition, the observed downregulation of some key virulence genes of L. monocytogenes suggests that the strain Lactiplantibacillus plantarum B2 alone and combined with the strain Lactiplantibacillus spp. B4 are good candidates to be used as biocontrol agents against L. monocytogenes growth in traditional soft cheeses based on raw milk during their storage at refrigeration temperatures.
Collapse
Affiliation(s)
- Irene Martín
- Food Hygiene and Safety, Meat and Meat Products Research Institute, Faculty of Veterinary Science, University of Extremadura, Avda. de las Ciencias, s/n, 10003 Cáceres, Spain
| | - Alicia Rodríguez
- Food Hygiene and Safety, Meat and Meat Products Research Institute, Faculty of Veterinary Science, University of Extremadura, Avda. de las Ciencias, s/n, 10003 Cáceres, Spain.
| | - Alberto Alía
- Food Hygiene and Safety, Meat and Meat Products Research Institute, Faculty of Veterinary Science, University of Extremadura, Avda. de las Ciencias, s/n, 10003 Cáceres, Spain
| | - Mónica Martínez-Blanco
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Madrid, Spain
| | - Daniel Lozano-Ojalvo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Madrid, Spain
| | - Juan J Córdoba
- Food Hygiene and Safety, Meat and Meat Products Research Institute, Faculty of Veterinary Science, University of Extremadura, Avda. de las Ciencias, s/n, 10003 Cáceres, Spain
| |
Collapse
|
13
|
Shi D, Shi H. The synergistic antibacterial effect and inhibition of biofilm formation of nisin in combination with terpenes against Listeria monocytogenes. Lett Appl Microbiol 2021; 75:632-642. [PMID: 34953143 DOI: 10.1111/lam.13636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/16/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022]
Abstract
This study was to investigate the synergistic antibacterial effect and inhibition of biofilm formation of nisin in combination with terpenes (carvacrol, cinnamaldehyde, citral, and thymol) against Listeria monocytogenes. The bactericidal ranking of terpenes combined with nisin was carvacrol > cinnamaldehyde, citral > thymol. The minimum inhibitory concentration assay (MIC) of nisin and carvacrol when used together were determined to be 0.1563 mg/ml + 0.0195 mg/ml (nisin at MIC/2 + carvacrol at MIC/16). The addition of nisin at MIC/2 + carvacrol at MIC/2 caused more decrease in membrane potential than carvacrol or nisin at MIC individually. The decrease rates of hlyA and plcA gene expressions caused by nisin at MIC/2 + carvacrol at MIC/2 were significantly higher than those caused by carvacrol or nisin at MIC individually (P < 0.05). Nisin combined with carvacrol showed the highest inhibition activity to formation of L. monocytogenes biofilm on stainless steel and lettuce. The inhibition effect of nisin at MIC/2 + carvacrol at MIC/16 was significantly higher than that of nisin at MIC/2 and carvacrol at MIC/16 (P < 0.05).
Collapse
Affiliation(s)
- Dongling Shi
- College of Food Science, Southwest University, Chongqing, China, 400715
| | - Hui Shi
- College of Food Science, Southwest University, Chongqing, China, 400715
| |
Collapse
|
14
|
Mukarram M, Choudhary S, Khan MA, Poltronieri P, Khan MMA, Ali J, Kurjak D, Shahid M. Lemongrass Essential Oil Components with Antimicrobial and Anticancer Activities. Antioxidants (Basel) 2021; 11:20. [PMID: 35052524 PMCID: PMC8773226 DOI: 10.3390/antiox11010020] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
The prominent cultivation of lemongrass (Cymbopogon spp.) relies on the pharmacological incentives of its essential oil. Lemongrass essential oil (LEO) carries a significant amount of numerous bioactive compounds, such as citral (mixture of geranial and neral), isoneral, isogeranial, geraniol, geranyl acetate, citronellal, citronellol, germacrene-D, and elemol, in addition to other bioactive compounds. These components confer various pharmacological actions to LEO, including antifungal, antibacterial, antiviral, anticancer, and antioxidant properties. These LEO attributes are commercially exploited in the pharmaceutical, cosmetics, and food preservations industries. Furthermore, the application of LEO in the treatment of cancer opens a new vista in the field of therapeutics. Although different LEO components have shown promising anticancer activities in vitro, their effects have not yet been assessed in the human system. Hence, further studies on the anticancer mechanisms conferred by LEO components are required. The present review intends to provide a timely discussion on the relevance of LEO in combating cancer and sustaining human healthcare, as well as in food industry applications.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.C.); (M.M.A.K.)
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 96001 Zvolen, Slovakia;
| | - Sadaf Choudhary
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.C.); (M.M.A.K.)
| | - Mo Ahamad Khan
- Department of Microbiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India;
| | - Palmiro Poltronieri
- Institute of Sciences of Food Productions, ISPA-CNR, National Research Council of Italy, Via Monteroni km 7, 73100 Lecce, Italy
| | - M. Masroor A. Khan
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.C.); (M.M.A.K.)
| | - Jamin Ali
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Newcastle ST5 5BG, UK;
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 96001 Zvolen, Slovakia;
| | - Mohd Shahid
- Department of Microbiology, Immunology & Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Road 2904 Building 293 Manama, 329, Bahrain;
| |
Collapse
|
15
|
Abstract
The aim of the present study was to assess the transcriptomic response of L. monocytogenes during co-culture with three S. cerevisiae strains. For this purpose, BHI broth was inoculated with 7 log CFU·mL−1 L. monocytogenes serotype 4b strain LQC 15257, isolated from a strawberry sample and 4 log CFU·mL−1 S. cerevisiae strains Y32, Y34 and Y37, isolated from spontaneous olive fermentation. Sampling took place after 24 and 48 h incubation at 5 and 20 °C. RNA was extracted, stabilized and the transcription of virulence associated genes prfA, sigB, hly, plcA, plcB, inlA, inlB, inlC and inlJ, was assessed by RT-qPCR. Co-culture with the yeast strains mostly affected the transcription of sigB and inlJ, the upregulation of which during growth at 5 °C for 24 h, reached 10.13 and 9.76 log2(fold change), respectively. Similarly, the effect that incubation time had on the relative transcription of the genes under study was dependent on the co-cultivating yeast strain. On the other hand, the effect of the yeast strain was less pronounced when the relative transcription of the genes under study was assessed between 20 °C and 5 °C. In that case, incubation temperature seemed to have an important effect since, in the 79.2% of the samples analyzed, upregulation was evident, irrespective of yeast strain presence. These results highlight the complex trophic relationships that take place during co-existence between L. monocytogenes and S. cerevisiae.
Collapse
|
16
|
Natural Anti-Microbials for Enhanced Microbial Safety and Shelf-Life of Processed Packaged Meat. Foods 2021; 10:foods10071598. [PMID: 34359468 PMCID: PMC8305275 DOI: 10.3390/foods10071598] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022] Open
Abstract
Microbial food contamination is a major concern for consumers and food industries. Consumers desire nutritious, safe and “clean label” products, free of synthetic preservatives and food industries and food scientists try to meet their demands by finding natural effective alternatives for food preservation. One of the alternatives to synthetic preservatives is the use of natural anti-microbial agents in the food products and/or in the packaging materials. Meat and processed meat products are characteristic examples of products that are highly perishable; hence natural anti-microbials can be used for extending their shelf-life and enhancing their safety. Despite several examples of the successful application of natural anti-microbial agents in meat products reported in research studies, their commercial use remains limited. This review objective is to present an extensive overview of recent research in the field of natural anti-microbials, covering essential oils, plant extracts, flavonoids, animal-derived compounds, organic acids, bacteriocins and nanoparticles. The anti-microbial mode of action of the agents, in situ studies involving meat products, regulations and, limitations for usage and future perspectives are described. The review concludes that naturally derived anti-microbials can potentially support the meat industry to provide “clean label”, nutritious and safe meat products for consumers.
Collapse
|
17
|
Evangelista AG, Corrêa JAF, Pinto ACSM, Luciano FB. The impact of essential oils on antibiotic use in animal production regarding antimicrobial resistance - a review. Crit Rev Food Sci Nutr 2021; 62:5267-5283. [PMID: 33554635 DOI: 10.1080/10408398.2021.1883548] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Population growth directly affects the global food supply, demanding a higher production efficiency without farmland expansion - in view of limited land resources and biodiversity loss worldwide. In such scenario, intensive agriculture practices have been widely used. A commonly applied method to maximize yield in animal production is the use of subtherapeutic doses of antibiotics as growth promoters. Because of the strong antibiotic selection pressure generated, the intense use of antibiotic growth promoters (AGP) has been associated to the rise of antimicrobial resistance (AMR). Also, cross-resistance can occur, leading to the emergence of multidrug-resistant pathogens and limiting treatment options in both human and animal health. Thereon, alternatives have been studied to replace AGP in animal production. Among such alternatives, essential oils and essential oil components (EOC) stand out positively from others due to, besides antimicrobial effectiveness, improving zootechnical indexes and modulating genes involved in resistance mechanisms. This review summarizes recent studies in essential oils and EOC for zoonotic bacteria control, providing detailed information about the molecular-level effects of their use in regard to AMR, and identifying important gaps to be filled within the animal production area.
Collapse
Affiliation(s)
- Alberto Gonçalves Evangelista
- Graduate Program in Animal Science, Pontifical Catholic University of Paraná, Prado Velho - Curitiba, Paraná, Brazil
| | - Jessica Audrey Feijó Corrêa
- Graduate Program in Animal Science, Pontifical Catholic University of Paraná, Prado Velho - Curitiba, Paraná, Brazil
| | | | - Fernando Bittencourt Luciano
- Graduate Program in Animal Science, Pontifical Catholic University of Paraná, Prado Velho - Curitiba, Paraná, Brazil
| |
Collapse
|
18
|
Gao S, Liu G, Li J, Chen J, Li L, Li Z, Zhang X, Zhang S, Thorne RF, Zhang S. Antimicrobial Activity of Lemongrass Essential Oil ( Cymbopogon flexuosus) and Its Active Component Citral Against Dual-Species Biofilms of Staphylococcus aureus and Candida Species. Front Cell Infect Microbiol 2020; 10:603858. [PMID: 33415085 PMCID: PMC7783362 DOI: 10.3389/fcimb.2020.603858] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/20/2020] [Indexed: 12/22/2022] Open
Abstract
Compared to mono-species biofilm, biofilms formed by cross-kingdom pathogens are more refractory to conventional antibiotics, thus complicating clinical treatment and causing significant morbidity. Lemongrass essential oil and its bioactive component citral were previously demonstrated to possess strong antimicrobial efficacy against pathogenic bacteria and fungi. However, their effects on polymicrobial biofilms remain to be determined. In this study, the efficacy of lemongrass (Cymbopogon flexuosus) essential oil and its bioactive part citral against dual-species biofilms formed by Staphylococcus aureus and Candida species was evaluated in vitro. Biofilm staining and viability test showed both lemongrass essential oil and citral were able to reduce biofilm biomass and cell viability of each species in the biofilm. Microscopic examinations showed these agents interfered with adhesive characteristics of each species and disrupted biofilm matrix through counteracting nucleic acids, proteins and carbohydrates in the biofilm. Moreover, transcriptional analyses indicated citral downregulated hyphal adhesins and virulent factors of Candida albicans, while also reducing expression of genes involved in quorum sensing, peptidoglycan and fatty acids biosynthesis of S. aureus. Taken together, our results demonstrate the potential of lemongrass essential oil and citral as promising agents against polymicrobial biofilms as well as the underlying mechanisms of their activity in this setting.
Collapse
Affiliation(s)
- Shanjun Gao
- Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangzhi Liu
- Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianguo Li
- Department of Dermatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Chen
- Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Lina Li
- Department of Dermatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen Li
- Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiulei Zhang
- Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Shoumin Zhang
- Department of Dermatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Rick Francis Thorne
- Translational Research Institute of Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.,School of Environmental & Life Sciences, University of Newcastle, Newcastle, NSW, Australia
| | - Shuzhen Zhang
- Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China.,Department of Dermatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Cui H, Li H, Li C, Abdel-Samie MA, Lin L. Inhibition effect of moringa oil on the cheese preservation and its impact on the viability, virulence and genes expression of Listeria monocytogenes. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Alía A, Córdoba JJ, Rodríguez A, García C, Andrade MJ. Evaluation of the efficacy of Debaryomyces hansenii as protective culture for controlling Listeria monocytogenes in sliced dry-cured ham. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Hadjilouka A, Gkolfakis P, Patlaka A, Grounta A, Vourli G, Paramithiotis S, Touloumi G, Triantafyllou K, Drosinos EH. In Vitro Gene Transcription of Listeria monocytogenes after Exposure to Human Gastric and Duodenal Aspirates. J Food Prot 2020; 83:89-100. [PMID: 31855615 DOI: 10.4315/0362-028x.jfp-19-210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of the present study was to assess, for the first time to our knowledge, Listeria monocytogenes CFU changes, as well as to determine the transcription of key virulence genes, namely, sigB, prfA, hly, plcA, plcB, inlA, inlB, inlC, inlJ, inlP, and lmo2672 after in vitro exposure to human gastric and duodenal aspirates. Furthermore, investigations of the potential correlation between CFU changes and gene regulation with factors influencing gastric (proton pump inhibitor intake and presence of gastric atrophy) and duodenal pH were the secondary study aims. Gastric and duodenal fluids that were collected from 25 individuals undergoing upper gastrointestinal endoscopy were inoculated with L. monocytogenes serotype 4b strain LQC 15257 at 9 log CFU·mL-1 and incubated at 37°C for 100 min and 2 h, respectively, with the time corresponding to the actual exposure time to gastric and duodenal fluids in the human gastrointestinal tract. Sampling was performed upon gastric fluid inoculation, after incubation of the inoculated gastric fluids, upon pathogen resuspension in duodenal fluids and after incubation of the inoculated duodenal fluids. L. monocytogenes CFU changes were assessed by colony counting, as well as reverse transcription quantitative PCR by using inlB as a target. Gene transcription was assessed by reverse transcription quantitative PCR. In 56% of the cases, reduction of the pathogen CFU occurred immediately after exposure to gastric aspirate. Upregulation of hly and inlC was observed in 52 and 58% of the cases, respectively. On the contrary, no upregulation or downregulation was noticed regarding sigB, prfA, plcA, plcB, inlA, inlB, inlJ, inlP, and lmo2672. In addition, sigB and plcA transcription was positively and negatively associated, respectively, with an increase of the pH value, and inlA transcription was negatively associated with the presence of gastric atrophy. Finally, a positive correlation between the transcriptomic responses of plcB, inlA, inlB, inlC, inlJ, inlP, and lmo2672 was detected. This study revealed that the CFU of the pathogen was negatively affected after exposure to human gastroduodenal aspirates, as well as significant correlations between the characteristics of the aspirates with the virulence potential of the pathogen.
Collapse
Affiliation(s)
- Agni Hadjilouka
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens 118 55, Greece (ORCID: https://orcid.org/0000-0002-6062-1701 [E.H.D.])
| | - Paraskevas Gkolfakis
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, Research Institute and Diabetes Center "Attikon" University General Hospital, Haidari 124 62, Greece
| | - Apostolia Patlaka
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens 118 55, Greece (ORCID: https://orcid.org/0000-0002-6062-1701 [E.H.D.])
| | - Athena Grounta
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens 118 55, Greece (ORCID: https://orcid.org/0000-0002-6062-1701 [E.H.D.])
| | - Georgia Vourli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens 115 27, Greece
| | - Spiros Paramithiotis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens 118 55, Greece (ORCID: https://orcid.org/0000-0002-6062-1701 [E.H.D.])
| | - Giota Touloumi
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens 115 27, Greece
| | - Konstantinos Triantafyllou
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, Research Institute and Diabetes Center "Attikon" University General Hospital, Haidari 124 62, Greece
| | - Eleftherios H Drosinos
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens 118 55, Greece (ORCID: https://orcid.org/0000-0002-6062-1701 [E.H.D.])
| |
Collapse
|
22
|
Influence of modified starches as wall materials on the properties of spray-dried lemongrass oil. Journal of Food Science and Technology 2019; 56:4972-4981. [PMID: 31741521 DOI: 10.1007/s13197-019-03969-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/18/2019] [Accepted: 07/17/2019] [Indexed: 01/03/2023]
Abstract
The use of lemongrass oil as food preservative present great potential, however it has high volatility and intense aroma, making them limited to be used as food additives. Microencapsulation processes become interesting alternatives to overcome these issues. This work investigated the influence of the partial replacement of gum arabic by modified starches on the microencapsulation of lemongrass oil as core material. Gum arabic and its combinations with modified starches: cassava and corn maltodextrins with different dextrose equivalent (DE) and octenyl succinic anhydride modified starch (OSA-starch) were studied. The emulsions were spray dried at controlled temperature of 170 °C. The evaluated parameters particles solubility, moisture content, and oil composition did not showed significant differences among the treatments. Replacement of gum arabic by maltodextrin DE20 and OSA-starch resulted in higher wetting times. Oil retention was increased (81.2%) when gum arabic was replaced by OSA-starch; the treatment without substitution, with only gum arabic had 67.5% of oil retention. Application of OSA-starch in association with gum arabic in microencapsulation by spray drying of lemongrass oil presented greater potential to be used due to its higher oil retention. Polymer blends should be assessed since they present advantages over individually applied polymers. Although maltodextrins show some differences compared to the treatment with only gum arabic, it may also be a viable alternative because of its lower cost.
Collapse
|
23
|
Majewska E, Kozłowska M, Gruczyńska-Sękowska E, Kowalska D, Tarnowska K. Lemongrass (Cymbopogon citratus) Essential Oil: Extraction, Composition, Bioactivity and Uses for Food Preservation – a Review. POL J FOOD NUTR SCI 2019. [DOI: 10.31883/pjfns/113152] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
24
|
Transcriptomics: A powerful tool to evaluate the behavior of foodborne pathogens in the food production chain. Food Res Int 2019; 125:108543. [DOI: 10.1016/j.foodres.2019.108543] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023]
|
25
|
Dual Transcriptional Profile of Aspergillus flavus during Co-Culture with Listeria monocytogenes and Aflatoxin B1 Production: A Pathogen-Pathogen Interaction. Pathogens 2019; 8:pathogens8040198. [PMID: 31635192 PMCID: PMC6963788 DOI: 10.3390/pathogens8040198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 11/24/2022] Open
Abstract
The objective of this study was to investigate the effect of growth temperature and co-culture of Aspergillus flavus with Listeria monocytogenes on the production of Aflatoxin B1 (AFB1) and the transcriptional profile of associated regulatory and biosynthetic genes. The transcription of virulence- and homeostasis-associated genes of L. monocytogenes was also assessed. For this purpose, mono- and co-cultures of L. monocytogenes strain LQC 15257 and A. flavus strain 18.4 were inoculated into Malt Extract broth and allowed to grow for seven days at 25 °C and 30 °C. AFB1 quantification was performed by HPLC analysis and gene expression assessment by RT-qPCR. AFB1 production was lower at 30 °C compared to 25 °C during monoculture and also lower during co-cultures at both temperatures. This was accompanied by downregulation of aflM, aflR, aflP, and aflS during monoculture and aflM and aflS during co-culture at 30 °C. On the other hand, transcription of prfA, plcA, plcB, inlA, inlB, inlJ, murE, accA, acpP, as well as fapR, was not affected. sigB gene was downregulated after co-culture with the fungus at 25 °C and hly was downregulated after monoculture at 30 °C compared to 25 °C. In this work, the molecular interactions between A. flavus and L. monocytogenes were studied for the first time, offering a novel insight into their co-occurrence. Monitoring of their toxigenic and virulence potential at the molecular level revealed a complex dynamic in natural ecosystems.
Collapse
|