1
|
Ge W, Yang Q, Wang H, Pan C, Lv M, Liang L, Ya S, Luo X, Wang W, Ma H. Acid tolerance response of Salmonella during the squid storage and its amine production capacity analysis. Arch Microbiol 2024; 206:139. [PMID: 38436732 DOI: 10.1007/s00203-024-03853-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 03/05/2024]
Abstract
Salmonella exhibits a strong inducible acid tolerance response (ATR) under weak acid conditions, and can also induce high-risk strains that are highly toxic, acid resistant, and osmotic pressure resistant to aquatic products. However, the induction mechanism is not yet clear. Therefore, this study aims to simulate the slightly acidic, low-temperature, and high-protein environment during squid processing and storage. Through λRed gene knockout, exploring the effects of low-acid induction, long-term low-temperature storage, and two-component regulation on Salmonella ATR. In this study, we found the two-component system, PhoP/PhoQ and PmrA/PmrB in Salmonella regulates the amino acid metabolism system and improves bacterial acid tolerance by controlling arginine and lysine. Compared with the two indicators of total biogenic amine and diamine content, biogenic amine index and quality index were more suitable for evaluating the quality of aquatic products. The result showed that low-temperature treatment could inhibit Salmonella-induced ATR, which further explained the ATR mechanism from the amino acid metabolism.
Collapse
Affiliation(s)
- Wei Ge
- Guangxi Engineering Research Center of Processing and Storage of Characteristic and Advantage Aquatic Products, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Qiong Yang
- Guangxi Engineering Research Center of Processing and Storage of Characteristic and Advantage Aquatic Products, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Hui Wang
- Guangxi Engineering Research Center of Processing and Storage of Characteristic and Advantage Aquatic Products, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Chuanyan Pan
- Guangxi Engineering Research Center of Processing and Storage of Characteristic and Advantage Aquatic Products, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Min Lv
- Guangxi Engineering Research Center of Processing and Storage of Characteristic and Advantage Aquatic Products, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Lingyun Liang
- Aquatic Technology Promotion Station in Jinchengjiang District, Hechi, 547000, China
| | - Shiya Ya
- Guangxi Engineering Research Center of Processing and Storage of Characteristic and Advantage Aquatic Products, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Xu Luo
- Guangxi Engineering Research Center of Processing and Storage of Characteristic and Advantage Aquatic Products, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Weisheng Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| | - Huawei Ma
- Guangxi Engineering Research Center of Processing and Storage of Characteristic and Advantage Aquatic Products, Guangxi Academy of Fishery Sciences, Nanning, 530021, China.
| |
Collapse
|
2
|
Ortiz Y, Heredia N, García S. Boundaries That Prevent or May Lead Animals to be Reservoirs of Escherichia coli O104:H4. J Food Prot 2023; 86:100053. [PMID: 36916560 DOI: 10.1016/j.jfp.2023.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 02/05/2023]
Abstract
Escherichia coli O104:H4, a hybrid serotype carrying virulence factors from enteroaggregative (EAEC) and Shiga toxin-producing (STEC) pathotypes, is the reported cause of a multicountry outbreak in 2011. Evaluation of potential routes of human contamination revealed that this strain is a foodborne pathogen. In contrast to STEC strains, whose main reservoir is cattle, serotype O104:H4 has not been commonly isolated from animals or related environments, suggesting an inability to naturally colonize the gut in hosts other than humans. However, contrary to this view, this strain has been shown to colonize the intestines of experimental animals in infectious studies. In this minireview, we provide a systematic summary of reports highlighting potential evolutionary changes that could facilitate the colonization of new reservoirs by these bacteria.
Collapse
Affiliation(s)
- Yaraymi Ortiz
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de los Garza, NL 66455, Mexico
| | - Norma Heredia
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de los Garza, NL 66455, Mexico
| | - Santos García
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de los Garza, NL 66455, Mexico.
| |
Collapse
|
3
|
Effect of Different Initial Fermentation pH on Exopolysaccharides Produced by Pseudoalteromonas agarivorans Hao 2018 and Identification of Key Genes Involved in Exopolysaccharide Synthesis via Transcriptome Analysis. Mar Drugs 2022; 20:md20020089. [PMID: 35200619 PMCID: PMC8877158 DOI: 10.3390/md20020089] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 01/17/2022] [Indexed: 01/07/2023] Open
Abstract
Exopolysaccharides (EPSs) are carbohydrate polymers produced and secreted by microorganisms. In a changing marine environment, EPS secretion can reduce damage from external environmental disturbances to microorganisms. Meanwhile, EPSs have promising application prospects in the fields of food, cosmetics, and pharmaceuticals. Changes in external environmental pH have been shown to affect the synthesis of EPSs in microorganisms. In this study, we analyzed the effects of different initial fermentation pHs on the production, monosaccharide composition, and antioxidant activity of the EPSs of Pseudoalteromonas agarivorans Hao 2018. In addition, the transcriptome sequence of P. agarivorans Hao 2018 under different initial fermentation pH levels was determined. GO and KEGG analyses showed that the differentially expressed genes were concentrated in the two-component regulatory system and bacterial chemotaxis pathways. We further identified the expression of key genes involved in EPS synthesis during pH changes. In particular, the expression of genes encoding the glucose/galactose MFS transporter, phosphomannomutase, and mannose-1-phosphate guanylyltransferase was upregulated when the environmental pH increased, thus promoting EPS synthesis. This study not only contributes to elucidating the environmental adaptation mechanisms of P. agarivorans, but also provides important theoretical guidance for the directed development of new products using biologically active polysaccharides.
Collapse
|
4
|
Adewara OA, Ogunbanwo ST. Acid stress responses of Lactobacillus amylovorus and Candida kefyr isolated from fermented sorghum gruel and their application in food fermentation. Can J Microbiol 2022; 68:269-280. [PMID: 35038286 DOI: 10.1139/cjm-2021-0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure of Lactic Acid Bacteria (LAB) and yeasts to adverse fluctuations during fermentation causes stress, consequently, microbes develop adaptive responses. In this study, the physiological and proteomic responses of LAB and yeast to acid stress, and their application in food fermentation was investigated. The physiological and proteomic responses of Lactobacillus amylovorus LS07 and Candida kefyr YS12 to acid stress were measured using turbidimetry method, SDS-PAGE and LC-MS/MS respectively. The technique previously reported by Association of Official Analytical Chemists (AOAC) were employed for evaluation of the physiocochemical and organoleptic properties of the sorghum gruel fermented using the LAB and yeast in singly and combination as starter cultures and spontaneous fermentation as control. Growth of L. amylovorus LS07 was optimal at pH 1.0 and C. kefyr YSI2 at pH 4. An increased intensity of 30S ribosomal protein S2 (L. amylovorus LS07) and 6-phosphogluconate dehydrogenase (C. kefyr YS12) was noted at pH 1 and 4 respectively suggesting increased microbial metabolism thereby reducing stress encountered. Sorghum gruel produced with combined starters had the highest crude protein (10.94 %), Iron content (0.0085 %), organoleptic acceptability (7.29) significantly different from products produced with the single starters and control. The combined starter's (L. amylovorus LS07 and C. kefyr YSI2 as starter) adapted stress yielded foods with improved sensory properties, mineral and reduced anti-nutrient contents.
Collapse
Affiliation(s)
- Oluwaseun Adeola Adewara
- University of Ibadan, 58987, Microbiology, Ibadan, Ibadan, Nigeria.,Caleb University, 202110, Biological Sciences and Biotechnology, Lagos, Lagos, Nigeria;
| | - S T Ogunbanwo
- University of Ibadan, Microbiology, P.O. Box 22346, University of Ibadan, Ibadan, Nigeria, Ibadan, Oyo, Nigeria, +234;
| |
Collapse
|
5
|
Yu L, Zhang S, Xu Y, Mi X, Xing T, Li J, Zhang L, Gao F, Jiang Y. Acid resistance of E. coli O157:H7 and O26:H11 exposure to lactic acid revealed by transcriptomic analysis. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Hu S, Yu Y, Lv Z, Shen J, Ke Y, Xiao X. Proteomics study unveils ROS balance in acid-adapted Salmonella Enteritidis. Food Microbiol 2020; 92:103585. [PMID: 32950169 DOI: 10.1016/j.fm.2020.103585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 06/08/2020] [Accepted: 06/24/2020] [Indexed: 12/21/2022]
Abstract
Salmonella Enteritidis is a major cause of foodborne gastroenteritis and is thus a persistent threat to global public health. The acid adaptation response helps Salmonella survive exposure to gastric environment during ingestion. In a previous study we highlighted the damage caused to cell membrane and the regulation of intracellular reactive oxygen species (ROS) in S. Enteritidis. In this study, we applied both physiologic and iTRAQ analyses to explore the regulatory mechanism of acid resistance in Salmonella. It was found that after S. Enteritidis was subject to a 1 h period of acid adaptation at pH 5.5, an additional 1 h period of acid shock stress at pH 3.0 caused less Salmonella cell death than in non-acid adapted Salmonella cells. Although there were no significant differences between adapted and non-adapted cells in terms of cell membrane damage (e.g., membrane permeability or lipid peroxidation) after 30 min, intracellular ROS level in acid adapted cells was dramatically reduced compared to that in non-acid adapted cells, indicating that acid adaption promoted less ROS generation or increased the ability of ROS scavenging with little reduction in the integrity of the cell membrane. These findings were confirmed via an iTRAQ analysis. The adapted cells were shown to trigger incorporation of exogenous long-chain fatty acids into the cellular membrane, resulting in a different membrane lipid profile and promoting survival rate under acid stress. S. Enteritidis experiences oxidative damage and iron deficiency under acid stress, but after acid adaption S. Enteritidis cells were able to balance their concentrations of intracellular ROS. Specifically, SodAB consumed the free protons responsible for forming reactive oxygen intermediates (ROIs) and KatE protected cells from the toxic effects of ROIs. Additionally, acid-labile proteins released free unbound iron promoting ferroptotic metabolism, and NADH reduced GSSH to G-SH, protecting cells from acid/oxidative stress.
Collapse
Affiliation(s)
- Shuangfang Hu
- Key Laboratory of Molecular Epidemiology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen City, Guangdong Province, 518055, PR China; School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, 510640, PR China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 10083, PR China
| | - Yigang Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, 510640, PR China
| | - Ziquan Lv
- Key Laboratory of Molecular Epidemiology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen City, Guangdong Province, 518055, PR China
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 10083, PR China
| | - Yuebin Ke
- Key Laboratory of Molecular Epidemiology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen City, Guangdong Province, 518055, PR China.
| | - Xinglong Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, 510640, PR China.
| |
Collapse
|
7
|
Zhang L, Hou L, Zhang S, Kou X, Li R, Wang S. Mechanism of S. aureus ATCC 25923 in response to heat stress under different water activity and heating rates. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106837] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Guan N, Liu L. Microbial response to acid stress: mechanisms and applications. Appl Microbiol Biotechnol 2020; 104:51-65. [PMID: 31773206 PMCID: PMC6942593 DOI: 10.1007/s00253-019-10226-1] [Citation(s) in RCA: 308] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023]
Abstract
Microorganisms encounter acid stress during multiple bioprocesses. Microbial species have therefore developed a variety of resistance mechanisms. The damage caused by acidic environments is mitigated through the maintenance of pH homeostasis, cell membrane integrity and fluidity, metabolic regulation, and macromolecule repair. The acid tolerance mechanisms can be used to protect probiotics against gastric acids during the process of food intake, and can enhance the biosynthesis of organic acids. The combination of systems and synthetic biology technologies offers new and wide prospects for the industrial applications of microbial acid tolerance mechanisms. In this review, we summarize acid stress response mechanisms of microbial cells, illustrate the application of microbial acid tolerance in industry, and prospect the introduction of systems and synthetic biology to further explore the acid tolerance mechanisms and construct a microbial cell factory for valuable chemicals.
Collapse
Affiliation(s)
- Ningzi Guan
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China.
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
9
|
Resistance of biofilm formation and formed-biofilm of Escherichia coli O157:H7 exposed to acid stress. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Transcriptomics: A powerful tool to evaluate the behavior of foodborne pathogens in the food production chain. Food Res Int 2019; 125:108543. [DOI: 10.1016/j.foodres.2019.108543] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023]
|
11
|
Yu L, Ji S, Yu J, Fu W, Zhang L, Li J, Gao F, Jiang Y. Effects of lactic acid stress with lactic acid adaptation on the survival and expression of virulence‐related genes inEscherichia coliO157:H7. J Food Saf 2019. [DOI: 10.1111/jfs.12701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lanlin Yu
- College of Animal Science and TechnologyNanjing Agricultural University Nanjing China
- Jiangsu Key Laboratory of Animal Origin Food Production and Safety GuaranteeNanjing Agricultural University Nanjing China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety ControlNanjing Agricultural University Nanjing China
| | - Saisai Ji
- School of Food Science and Pharmaceutical EngineeringNanjing Normal University Nanjing China
| | - Jinlong Yu
- School of Food Science and Pharmaceutical EngineeringNanjing Normal University Nanjing China
| | - Wenjing Fu
- School of Food Science and Pharmaceutical EngineeringNanjing Normal University Nanjing China
| | - Lin Zhang
- College of Animal Science and TechnologyNanjing Agricultural University Nanjing China
- Jiangsu Key Laboratory of Animal Origin Food Production and Safety GuaranteeNanjing Agricultural University Nanjing China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety ControlNanjing Agricultural University Nanjing China
| | - Jiaolong Li
- College of Animal Science and TechnologyNanjing Agricultural University Nanjing China
- Jiangsu Key Laboratory of Animal Origin Food Production and Safety GuaranteeNanjing Agricultural University Nanjing China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety ControlNanjing Agricultural University Nanjing China
| | - Feng Gao
- College of Animal Science and TechnologyNanjing Agricultural University Nanjing China
- Jiangsu Key Laboratory of Animal Origin Food Production and Safety GuaranteeNanjing Agricultural University Nanjing China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety ControlNanjing Agricultural University Nanjing China
| | - Yun Jiang
- School of Food Science and Pharmaceutical EngineeringNanjing Normal University Nanjing China
| |
Collapse
|
12
|
Hu S, Yu Y, Zhou D, Li R, Xiao X, Wu H. Global transcriptomic Acid Tolerance Response in Salmonella Enteritidis. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.02.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|