1
|
Homroy S, Chopra R, Singh PK, Dhiman A, Chand M, Talwar B. Role of encapsulation on the bioavailability of omega-3 fatty acids. Compr Rev Food Sci Food Saf 2024; 23:e13272. [PMID: 38284597 DOI: 10.1111/1541-4337.13272] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/21/2023] [Accepted: 10/29/2023] [Indexed: 01/30/2024]
Abstract
Omega-3 fatty acids (omega-3 FAs) have been widely recognized for their therapeutic advantages, including anti-inflammatory and cardioprotective properties. They have shown promise in enhancing regulatory function, promotingdevelopment and mitigating the progression of diabetes and cancer. The scientific communities, along with industries, are actively endorsing initiatives aimed at increasing the daily intake of lipids rich in omega-3 FAs. Nevertheless, incorporating polyunsaturated FAs (PUFAs) into food products poses several challenges due to their susceptibility to oxidation when exposed to oxygen, high temperatures, and moisture. This oxidative deterioration results in undesirable flavours and a loss of nutritional value. Various methods, including physical blending, interesterification, and encapsulation, have been utilized as ways to enhance the stability of edible oils rich in PUFA against oxidation. Encapsulation has emerged as a proven strategy for enhancing the oxidative stability and functional properties of omega-3 FA-rich oils. Multiple encapsulation methods have been developed to stabilize and improve the delivery of omega-3 FAs in food products. The selection of an appropriate encapsulation method depends on the desired application of the encapsulated oil. In addition, encapsulation enhances the bioavailability of omega-3 FAs by promoting increased absorption of the encapsulated form in the intestinal epithelium. This review discusses the techniques and principles of omega-3 FA-rich oil encapsulation and its role in improving stability and bioavailability. Furthermore, it also investigates the potential health benefits of these encapsulated oils. This review explores the variations in bioavailability based on encapsulation techniques and processing, offering vital insights for nutrition and product development.
Collapse
Affiliation(s)
- Snigdha Homroy
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Rajni Chopra
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Priyanka Kumari Singh
- Department of Food and Nutrition & Food Technology, Institute of Home Economics, University of Delhi, Delhi, India
| | - Aishwarya Dhiman
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Monika Chand
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Binanshu Talwar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| |
Collapse
|
2
|
Santos de Carvalho A, de Oliveira A, Fernandes Moya Moreira T, Gustavo Médice Arabel Costa L, Donato Marcatto G, da Silva Castilhos de Melo A, Hess Gonçalves O, Inês Dias M, Calhelha RC, Barros L, Valderrama P, Cardozo Filho L, Vitória Leimann F. In situ extraction/encapsulation of olive leaves antioxidants in zein for improved oxidative stability of edible oils. Food Res Int 2023; 173:113363. [PMID: 37803661 DOI: 10.1016/j.foodres.2023.113363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 10/08/2023]
Abstract
This study presents a sustainable and cost-effective method for preserving the bioactivity of phenolic compounds in olive leaves (OLE) during their application. The extraction and nanoencapsulation of OLE were performed in a single-step process using a rotor-stator system with zein as the encapsulating agent. The nanoprecipitation step was carried out using an aqueous sodium caseinate solution, resulting in spherical particles with an average diameter of about 640 nm, as confirmed by Transmission Electron Microscopy. Thermal characterization showed that the produced nanoparticles were more thermally stable than free OLE until 250 °C, and FTIR spectra indicated effective interaction between the phenolic compounds and zein. Antioxidant activity was evaluated using TBARS, DPPH, ABTS, and FRAP assays, with results showing that encapsulated OLE had lower antioxidant activity than free OLE. The best antioxidant capacity results were determined by TBARS assay, with IC50 results equal to 43 and 103 µgOLE/mL for free and encapsulated OLE, respectively. No anti-inflammatory potential was detected for both samples using the RAW 264.7 model, and only free OLE showed cytotoxic activity against lung cancer and gastric carcinoma. Encapsulated and free OLE were used as antioxidants in soy, palm, and palm kernel oils and compared to BHT using Rancimat. The Schaal Oven Test was also performed, and the PARAFAC chemometric method analyzed the UV-Vis spectra, which revealed high stability of the oil when 300 mg or the nanoparticles were added per kg oil. Results suggested that zein-encapsulated olive leaf antioxidants can improve the oxidative stability of edible oils.
Collapse
Affiliation(s)
- Amarilis Santos de Carvalho
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Campo Mourão, via Rosalina Maria dos Santos, 1233, CEP 87301-899, Campo Mourão, PR, Brazil
| | - Anielle de Oliveira
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Campo Mourão, via Rosalina Maria dos Santos, 1233, CEP 87301-899, Campo Mourão, PR, Brazil
| | - Thaysa Fernandes Moya Moreira
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Campo Mourão, via Rosalina Maria dos Santos, 1233, CEP 87301-899, Campo Mourão, PR, Brazil
| | - Luis Gustavo Médice Arabel Costa
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Campo Mourão, via Rosalina Maria dos Santos, 1233, CEP 87301-899, Campo Mourão, PR, Brazil
| | - Gabrielle Donato Marcatto
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Campo Mourão, via Rosalina Maria dos Santos, 1233, CEP 87301-899, Campo Mourão, PR, Brazil
| | - Andre da Silva Castilhos de Melo
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Campo Mourão, via Rosalina Maria dos Santos, 1233, CEP 87301-899, Campo Mourão, PR, Brazil
| | - Odinei Hess Gonçalves
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Campo Mourão, via Rosalina Maria dos Santos, 1233, CEP 87301-899, Campo Mourão, PR, Brazil; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Patricia Valderrama
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Campo Mourão, via Rosalina Maria dos Santos, 1233, CEP 87301-899, Campo Mourão, PR, Brazil
| | - Lucio Cardozo Filho
- Department of Chemical Engineering, State University of Maringá - UEM, Maringá, PR, Brazil
| | - Fernanda Vitória Leimann
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Campo Mourão, via Rosalina Maria dos Santos, 1233, CEP 87301-899, Campo Mourão, PR, Brazil; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
3
|
Bordón MG, Barrera GN, González A, Ribotta PD, Martínez ML. Complex coacervation and freeze drying using whey protein concentrate, soy protein isolate and arabic gum to improve the oxidative stability of chia oil. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3322-3333. [PMID: 36750451 DOI: 10.1002/jsfa.12489] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Chia oil (CO) is popular for being the richest vegetable source of α-linolenic acid (60-66%). However, this content of polyunsaturated fatty acids (PUFA) limits the incorporation of bulk CO in food products due to its high probability of oxidation. This justifies the study of alternative wall materials for microencapsulation. No reports regarding the use of dairy protein/vegetable protein/polysaccharide blends as wall material for the microencapsulation of CO have been published. Therefore, this work analyzed the behavior of a whey protein concentrate (WPC)/soy protein isolate (SPI)/arabic gum (AG) blend as wall material. The complex coacervation (CC) process was studied: pH, 4.0; total solid content, 30% w/v; WPC/SPI/AG ratio, 8:1:1 w/w/w; stirring speed, 600 rpm; time, 30 min; room temperature. RESULTS The oxidative stability index (OSI) of CO (3.25 ± 0.16 h) was significantly increased after microencapsulation (around four times higher). Furthermore, the well-known matrix-forming ability of AG and WPC helped increase the OSI of microencapsulated oils. Meanwhile, SPI contributed to the increase of the encapsulation efficiency due to its high viscosity. Enhanced properties were observed with CC: encapsulation efficiency (up to 79.88%), OSIs (from 11.25 to 12.52 h) and thermal stability of microcapsules given by the denaturation peak temperatures of WPC (from 77.12 to 86.00 °C). No significant differences were observed in the fatty acid composition of bulk and microencapsulated oils. CONCLUSION Microcapsules developed from complex coacervates based on the ternary blend represent promising omega-3-rich carriers for being incorporated into functional foods.
Collapse
Affiliation(s)
- María Gabriela Bordón
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gabriela Noel Barrera
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Química Industrial y Aplicada, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Agustín González
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA, CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pablo Daniel Ribotta
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Química Industrial y Aplicada, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Marcela Lilian Martínez
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Química Industrial y Aplicada, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV, CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
4
|
da Rocha EMT, Bracht L, Gonçalves OH, Leimann FV, Ames FQ, Schneider LCL, Duda JV, Cardia GFE, Bonetti CI, Cuman RKN, Bersani-Amado CA. Development and characterization of trans-anethole-containing solid lipid microparticles: antiinflammatory and gastroprotective effects in experimental inflammation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:469-484. [PMID: 36385686 DOI: 10.1007/s00210-022-02323-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022]
Abstract
The present study prepared, optimized, and characterized solid lipid microparticles that contained trans-anethole (SLMAN), evaluated their antiinflammatory activity in acute and chronic inflammation models, and investigated their effects on the gastric mucosa in arthritic rats. The microparticles were obtained by a hot homogenization process and characterized by physicochemical analyses. The acute inflammatory response was induced by an intradermal injection of 0.1 ml of carrageenan solution (200 μg) in the hind paw. The rats were treated orally with a single dose of SLMAN 1 h before induction of the inflammatory response. The chronic inflammatory response was induced by the subcutaneous application of 0.1 ml of complete Freund's adjuvant suspension (500 µg) in the hind paw. SLMAN was orally administered, starting on the day of arthritis induction, and continued for 21 days. The results showed that SLMAN was obtained with good encapsulation efficiency. Treatment with SLMAN at doses of 25 and 50 mg/kg was as effective as trans-anethole (AN) at a dose of 250 mg/kg on acute and chronic inflammatory responses. Histological analyses showed that treatment with SLMAN did not aggravate lesions in the gastric mucosa in arthritic rats. These results indicated that treatment with SLMAN at a dose that was 5-10 times lower than non-encapsulated AN exerted an inhibitory effect on acute and chronic inflammatory responses, suggesting the better bioavailability and efficacy of microencapsulated AN without aggravating lesions in the gastric mucosa in arthritic rats.
Collapse
Affiliation(s)
- Edvalkia Magna Teobaldo da Rocha
- Department of Pharmacology and Therapeutics, Bloco K68, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, 87020-900, Maringá, Brazil
| | - Lívia Bracht
- Department of Biochemistry, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, Maringá, PR, 87020-900, Brazil
| | - Odinei Hess Gonçalves
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná (UTFPR), BR 369, Km 0.5, POBox 271, Campo Mourão, PR, 87301-006, Brazil
| | - Fernanda Vitória Leimann
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná (UTFPR), BR 369, Km 0.5, POBox 271, Campo Mourão, PR, 87301-006, Brazil
| | - Franciele Queiroz Ames
- Department of Pharmacology and Therapeutics, Bloco K68, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, 87020-900, Maringá, Brazil
| | - Larissa Carla Lauer Schneider
- Department of Morphological Sciences, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, Maringá, PR, 87020-900, Brazil
| | - João Victor Duda
- Department of Morphological Sciences, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, Maringá, PR, 87020-900, Brazil
| | - Gabriel Fernando Esteves Cardia
- Department of Pharmacology and Therapeutics, Bloco K68, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, 87020-900, Maringá, Brazil
| | - Carla Indianara Bonetti
- Department of Biochemistry, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, Maringá, PR, 87020-900, Brazil
| | - Roberto Kenji Nakamura Cuman
- Department of Pharmacology and Therapeutics, Bloco K68, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, 87020-900, Maringá, Brazil.
| | - Ciomar Aparecida Bersani-Amado
- Department of Pharmacology and Therapeutics, Bloco K68, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, 87020-900, Maringá, Brazil
| |
Collapse
|
5
|
Najafi Z, Bildik F, Şahin-Yeşilçubuk N, Altay F. Enhancing oxidative stability of encapsulated echium oil by incorporation of saffron extract loaded nanoliposomes into electrospun pullulan-pea protein isolate-pectin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Inácio AG, Ítavo CCBF, Dias AM, Dos Santos Difante G, de Queiroz JF, de Oliveira LCS, Dos Santos GT, Ítavo LCV. A new feed additive composed of urea and soluble carbohydrate coated with wax for controlled release in ruminal fluid. Sci Rep 2022; 12:4487. [PMID: 35296709 PMCID: PMC8927347 DOI: 10.1038/s41598-022-08372-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 03/07/2022] [Indexed: 11/09/2022] Open
Abstract
Urea is a compound widely used as a feed additive for ruminants; however, when used profusely, it can lead animals to intoxication. Another factor that affects the effectiveness of urea is the lack of synchronization between the nitrogen and the availability of carbohydrates, necessary for better development of the ruminal microbiota. In order to circumvent these problems and improve the efficiency in urea use, the present study developed two new nutritional additives (F16 and F17) with different carbohydrate sources. One of the products developed (F16) used sugarcane molasses as a carbohydrate source, while the other (F17) used cassava starch. In addition to the carbohydrate source, both products contained the same amounts of urea, sulfur, calcium carbonate and were coated with carnauba wax. The supplements developed and two other commercial products based on extruded urea (UE) and polymer-coated urea (UP) were tested for solubility and cumulative gas production. The wax used in the coating process of the developed products (F16 and F17) proved to be efficient in reducing the solubility of the ingredients used. During chemical composition analysis it was verified that both supplements developed contained protein equivalent above 150% of crude protein. The cumulative gas production showed a higher production related to the product F17 (p < 0.05). Through thermogravimetric analysis, it was found the chemical integrity of the ingredients that make up the supplements developed. Therefore, is possible to reduce the solubility of urea using carnauba wax as a coating material. The formula with cassava starch associated with urea (F17) had a better synchronization during the degradation of its ingredients.
Collapse
Affiliation(s)
- Alexandre Guimarães Inácio
- Faculty of Veterinary Medicine and Animal Science, Federal University of Mato Grosso do Sul, 2443 Senador Filinto Muller Ave., Campo Grande, MS, 79070-900, Brazil
| | - Camila Celeste Brandão Ferreira Ítavo
- Faculty of Veterinary Medicine and Animal Science, Federal University of Mato Grosso do Sul, 2443 Senador Filinto Muller Ave., Campo Grande, MS, 79070-900, Brazil
| | - Alexandre Menezes Dias
- Faculty of Veterinary Medicine and Animal Science, Federal University of Mato Grosso do Sul, 2443 Senador Filinto Muller Ave., Campo Grande, MS, 79070-900, Brazil
| | - Gelson Dos Santos Difante
- Faculty of Veterinary Medicine and Animal Science, Federal University of Mato Grosso do Sul, 2443 Senador Filinto Muller Ave., Campo Grande, MS, 79070-900, Brazil
| | - Joice Ferreira de Queiroz
- Chemistry Institute, Federal University of Mato Grosso do Sul, 1555 Senador Filinto Muller Ave., Campo Grande, MS, 79070-900, Brazil
| | - Lincoln Carlos Silva de Oliveira
- Chemistry Institute, Federal University of Mato Grosso do Sul, 1555 Senador Filinto Muller Ave., Campo Grande, MS, 79070-900, Brazil
| | - Geraldo Tadeu Dos Santos
- Faculty of Veterinary Medicine and Animal Science, Federal University of Mato Grosso do Sul, 2443 Senador Filinto Muller Ave., Campo Grande, MS, 79070-900, Brazil
| | - Luís Carlos Vinhas Ítavo
- Faculty of Veterinary Medicine and Animal Science, Federal University of Mato Grosso do Sul, 2443 Senador Filinto Muller Ave., Campo Grande, MS, 79070-900, Brazil.
| |
Collapse
|
7
|
Martín-Torres S, Ruiz-Castro L, Jiménez-Carvelo AM, Cuadros-Rodríguez L. Applications of multivariate data analysis in shelf life studies of edible vegetal oils – A review of the few past years. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Bordón MG, Alasino NPX, Villanueva-Lazo Á, Carrera-Sánchez C, Pedroche-Jiménez J, Millán-Linares MDC, Ribotta PD, Martínez ML. Scale-up and optimization of the spray drying conditions for the development of functional microparticles based on chia oil. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Formulation, spray-drying and physicochemical characterization of functional powders loaded with chia seed oil and prepared by complex coacervation. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.06.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Shelf life estimation and kinetic degradation modeling of chia seeds (Salvia hispanica) using principal component analysis based on NIR-hyperspectral imaging. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107777] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Bordón MG, Alasino NP, Martínez V, Gauna Peter R, Iturralde R, Ribotta PD, Martínez ML. Influence of the spray drying operating conditions on the estimated drying kinetics of emulsion single droplets and the properties of microencapsulated chia oil. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.01.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Sorita G, Santamaria-Echart A, Gozzo A, Gonçalves O, Leimann F, Bona E, Manrique Y, Fernandes I, Ferreira I, Barreiro M. Lipid composition optimization in spray congealing technique and testing with curcumin-loaded microparticles. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.03.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
|
14
|
Nanoliposomes and Nanoemulsions Based on Chia Seed Lipids: Preparation and Characterization. Int J Mol Sci 2020; 21:ijms21239079. [PMID: 33260309 PMCID: PMC7731419 DOI: 10.3390/ijms21239079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/16/2020] [Accepted: 11/26/2020] [Indexed: 12/27/2022] Open
Abstract
Polyunsaturated fatty acids (PUFA) are important in reducing the risk for cardiovascular, metabolic and neurodegenerative diseases. Chia (Salvia hispanica L.) seeds contain high levels of omega-3 PUFA, α-linolenic acid (ALA) in particular, and are a potential source for development of omega-3 PUFA-based products. Our objective was to obtain and characterize chia seed lipids, focusing on phospholipid fraction, and to investigate their use in the formulation of nanoemulsions (NE) and nanoliposomes (NL). Solvent-based lipid extraction was performed on the ORURO variety of chia seeds, followed by lipid composition analysis using GC and LC-MS and physico-chemical characterization of chia NL and NE. Folch extraction led to a slightly higher yield of ALA as compared to Soxhlet extraction. Lipid, phospholipid, and fatty acid composition analysis of the oil and residue revealed that the residue was rich in phospholipids; these were used to prepare NE and NL. Physico-chemical characterization showed that NE and NL were generally spherical (transmission electron microscopy), with a size of <120 nm under hydrated conditions that remained stable over 5 days. In conclusion, chia oil and phospholipid-rich residue can be used to obtain stable NL or NE using a simple method that involves spontaneous emulsification during lipid hydration, which potentially may be useful in cosmetics, pharmaceutical, and other health applications.
Collapse
|
15
|
|
16
|
|
17
|
Jurić S, Jurić M, Siddique MAB, Fathi M. Vegetable Oils Rich in Polyunsaturated Fatty Acids: Nanoencapsulation Methods and Stability Enhancement. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1717524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Slaven Jurić
- Department of Chemistry, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Marina Jurić
- Department of Food Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Md Abu Bakar Siddique
- Department of Agriculture and Food Science, University College Dublin (UCD) Belfield, Dublin, Ireland
| | - Milad Fathi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
18
|
VIEIRA MDC, BAKOF KK, SCHUCH NJ, SKUPIEN JA, BOECK CR. The benefits of omega-3 fatty acid nanocapsulation for the enrichment of food products: a review. REV NUTR 2020. [DOI: 10.1590/1678-9865202033e190165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT Polyunsaturated fatty acids oxidize easily due to their chemical structure, causing a reduction of their nutritional properties. Nanostructured systems may be an alternative to protect fatty acids against oxidation, improving solubility and stability. Consequently, nutritional value of food is maintained as well as the sensory characteristics (color, flavor, texture, and aroma) when fatty acids are added to food products. The present study is a narrative review to introduce the potential benefits of omega-3 unsaturated fatty acids nanoparticles incorporated in food products. The literature review includes publications in English and Portuguese issued between March 1985 and March 2019, in PubMed, ScienceDirect and Web of Science databases. Manual searches were conducted in the articles references lists of the articles included to identify other relevant studies. There were studies that evaluated the stability of fatty acids in food products such as bread, fruit juice, milk, yogurt, and meat. In this study, the most used nanostructured systems for the incorporation of fatty acids were the nanocapsules and the nanoliposomes. Currently, the nanostructured system demonstrates a potential to improve protection of polyunsaturated fatty acids against oxidization and thermal degradation. In this way, they maintain their functional properties and their bioavailability increases and therapeutic efficacy and sensory properties are improved. There are several methodologies being tested, which makes it difficult to identify the most efficient formulation to protect fatty acids. Nanostructured systems seem to be the best alternative to protect polyunsatured fatty acids from oxidization. The encapsulation efficiency, particle’s size and type are relevant factors to be considered to evaluate oxidization. In conclusion, the review showed that currently it is impossible to determine the most efficient methodology. Besides, nanoformulations should follow international guidelines to present more standardized and therefore more efficient particles.
Collapse
|
19
|
Venturini LH, Moreira TFM, da Silva TBV, de Almeida MMC, Francisco CRL, de Oliveira A, de Campos SS, Bilck AP, de Souza Leone R, Tanamati AAC, Gonçalves OH, Leimann FV. Partial Substitution of Margarine by Microencapsulated Chia Seeds Oil in the Formulation of Cookies. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2188-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Rojas VM, Marconi LFDCB, Guimarães-Inácio A, Leimann FV, Tanamati A, Gozzo ÂM, Fuchs RHB, Barreiro MF, Barros L, Ferreira ICFR, Tanamati AAC, Gonçalves OH. Formulation of mayonnaises containing PUFAs by the addition of microencapsulated chia seeds, pumpkin seeds and baru oils. Food Chem 2018; 274:220-227. [PMID: 30372930 DOI: 10.1016/j.foodchem.2018.09.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/10/2018] [Accepted: 09/03/2018] [Indexed: 11/28/2022]
Abstract
There is an increasing demand for healthier foodstuff containing specific compounds such as Polyunsaturated Fatty Acids (PUFAs). In the case of PUFAs, protection against oxidative degradation is challengeable and microencapsulation emerges as an alternative. Mayonnaises containing microencapsulated oils could be a source of PUFAs. The objective was to formulate mayonnaises containing microencapsulated chia seeds oil, pumpkin seeds oil or baru oil. Micrometric particles with high encapsulation efficiency were produced and thermal analyses indicated an increased thermal stability of all oils after encapsulation. Rheology studies highlighted an increase in the mayonnaise viscosity when microparticles containing chia and pumpkin seeds oil were added. Mechanical texture was not affected by the presence of microparticles in the mayonnaise in all formulations tested. Nevertheless, samples containing microcapsules up to 5%wt were not distinguished from the base-mayonnaise in the sensorial test. Overall, enriched mayonnaises were successfully produced and encapsulation was efficient in protecting oils from oxidation.
Collapse
Affiliation(s)
- Valquíria Maeda Rojas
- Post-Graduation Program of Food Technology, Federal University of Technology - Paraná, Via Rosalina M. Santos, 1233, 87301-899, Campo Mourão, Paraná, Brazil
| | | | - Alexandre Guimarães-Inácio
- Post-Graduation Program of Food Technology, Federal University of Technology - Paraná, Via Rosalina M. Santos, 1233, 87301-899, Campo Mourão, Paraná, Brazil
| | - Fernanda Vitória Leimann
- Post-Graduation Program of Food Technology, Federal University of Technology - Paraná, Via Rosalina M. Santos, 1233, 87301-899, Campo Mourão, Paraná, Brazil; Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Bragança, Campus Santa Apolónia, 5301-857 Bragança, Portugal; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Augusto Tanamati
- Food Department, Federal University of Technology - Paraná, Via Rosalina M. Santos, 1233, CEP 87301-899, Campo Mourão, Paraná, Brazil
| | - Ângela Maria Gozzo
- Food Department, Federal University of Technology - Paraná, Via Rosalina M. Santos, 1233, CEP 87301-899, Campo Mourão, Paraná, Brazil
| | - Renata Hernandez Barros Fuchs
- Food Department, Federal University of Technology - Paraná, Via Rosalina M. Santos, 1233, CEP 87301-899, Campo Mourão, Paraná, Brazil
| | - Maria Filomena Barreiro
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Bragança, Campus Santa Apolónia, 5301-857 Bragança, Portugal; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Ailey Aparecida Coelho Tanamati
- Post-Graduation Program of Food Technology, Federal University of Technology - Paraná, Via Rosalina M. Santos, 1233, 87301-899, Campo Mourão, Paraná, Brazil
| | - Odinei Hess Gonçalves
- Post-Graduation Program of Food Technology, Federal University of Technology - Paraná, Via Rosalina M. Santos, 1233, 87301-899, Campo Mourão, Paraná, Brazil; Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Bragança, Campus Santa Apolónia, 5301-857 Bragança, Portugal; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
21
|
Kozłowska M, Gruczyńska E. Comparison of the oxidative stability of soybean and sunflower oils enriched with herbal plant extracts. CHEMICKE ZVESTI 2018; 72:2607-2615. [PMID: 30147227 PMCID: PMC6096694 DOI: 10.1007/s11696-018-0516-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 05/25/2018] [Indexed: 12/04/2022]
Abstract
The present study was conducted to determine and compare the oxidative stability of soybean and sunflower oils using differential scanning calorimetry (DSC). These edible oils were enriched with marjoram (Origanum majorana L.), thyme (Thymus vulgaris L.), and oregano (Origanum vulgare L.) extracts at three different concentrations and synthetic antioxidant (BHA). The fatty acid composition of studied oils was determined by gas chromatography mass spectrometry to evaluate the content of unsaturated fatty acids that are sensitive to oxidation process. Oil samples were heated in the DSC at different heating rates (4.0, 7.5, 10.0, 12.5, and 15.0 °C min-1) and oxidation kinetic parameters (activation energy, pre-exponential factor, and oxidation rate constant) were calculated. The results showed that the oxidative stability of sunflower oil samples enriched with oregano extracts and soybean oil supplemented with thyme extracts was improved compared to samples without the addition of herbal plant extracts and the synthetic antioxidant.
Collapse
Affiliation(s)
- Mariola Kozłowska
- Faculty of Food Sciences, Department of Chemistry, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159C St, 02-776 Warsaw, Poland
| | - Eliza Gruczyńska
- Faculty of Food Sciences, Department of Chemistry, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159C St, 02-776 Warsaw, Poland
| |
Collapse
|
22
|
de Almeida MMC, Francisco CRL, de Oliveira A, de Campos SS, Bilck AP, Fuchs RHB, Gonçalves OH, Velderrama P, Genena AK, Leimann FV. Textural, Color, Hygroscopic, Lipid Oxidation, and Sensory Properties of Cookies Containing Free and Microencapsulated Chia Oil. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2057-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|