1
|
Kharel K, Kraśniewska K, Gniewosz M, Prinyawiwatkul W, Fontenot K, Adhikari A. Antimicrobial screening of pecan shell extract and efficacy of pecan shell extract-pullulan coating against Listeria monocytogenes, Salmonella enterica, and Staphylococcus aureus on blueberries. Heliyon 2024; 10:e29610. [PMID: 38665559 PMCID: PMC11044034 DOI: 10.1016/j.heliyon.2024.e29610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Pecan shell is considered an agricultural waste; however, it contains various bioactive compounds with potential inhibitory effect against microorganisms. This study evaluated the antimicrobial efficacy of pecan shell extract (PSE) in vitro using disc-diffusion method and in vivo on blueberries as an antimicrobial coating using pullulan. For in vitro study, 5 and 10 % of aqueous (A-PSE) or ethanol pecan shell extract (E-PSE) incorporated into pullulan film were tested against different bacterial and fungal strains. Pullulan film disc was used as control. The diameter of growth inhibition (mm) around discs was measured. For in vivo study, PSE-P (5 % w/v aqueous pecan shell extract+5 % w/v pullulan), P (5 % w/v pullulan) or control (water) were spray coated on blueberries inoculated (∼5 log CFU/g) with Listeria monocytogenes, Salmonella enterica or Staphylococcus aureus; and stored at 4 °C, 50 ± 10 % RH for 15 days. The effect of antimicrobial coating against pathogens and its impact on quality during storage were determined. A-PSE and E-PSE films were more effective against Gram-positive bacteria and showed no antifungal effect at tested concentrations when evaluated in vitro. Immediately after coating on blueberries, PSE-P significantly reduced Listeria monocytogenes by 2 log CFU/g and lowered survival until day 5 than control or P. Native aerobic microbial population was reduced (P < 0.05) by 0.7 log CFU/g immediately after coating. PSE-P coating or storage time had no significant effect (P > 0.05) on the survival of S. enterica, S. aureus and native fungal population. PSE-P maintained the firmness of blueberry with no significant effect on its color, TSS, and pH during 15 days storage. PSE-P significantly reduced (P < 0.05) the spoilage rate by 21 % than control (28.5 %) and P (37 %); and minimized (P < 0.05) weight loss during storage. Pecan shell extracts show promise as a potential antimicrobial compound whose application on various food products or packaging material could be further explored.
Collapse
Affiliation(s)
- Karuna Kharel
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Karolina Kraśniewska
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Małgorzata Gniewosz
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Witoon Prinyawiwatkul
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Kathryn Fontenot
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Achyut Adhikari
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| |
Collapse
|
2
|
Hua Z, Thapa BB, Younce F, Tang J, Zhu MJ. Impacts of water activity on survival of Listeria innocua and Enterococcus faecium NRRL B-2354 in almonds during steam treatments. Int J Food Microbiol 2024; 413:110592. [PMID: 38308878 DOI: 10.1016/j.ijfoodmicro.2024.110592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/05/2024]
Abstract
Raw almonds have been associated with Salmonella outbreaks and multiple recalls related to Listeria monocytogenes contamination. While steam treatment has been approved for pasteurizing both conventional and organic whole almonds, there is limited understanding of how water activity (aw) influences the effectiveness of steam treatments in decontaminating almonds. Hence, this study aimed to assess and compare the efficacy of steam treatments against Listeria innocua and Enterococcus faecium NRRL B-2354, the known non-pathogenic surrogates, on almonds. It also sought to investigate the impact of almond's aw on bacterial resistance during steam treatments. Almond kernels were inoculated with ~8 log10 CFU/g of either E. faecium or L. innocua and equilibrated to aw 0.25 or 0.45 before being subjected to steam treatments at temperatures of 100-135 °C. Our results revealed that L. innocua exhibited lower resistance to steam compared to E. faecium, with 1.2-2.6 log10 CFU/g reductions for L. innocua and 1.0-2.0 log10 CFU/g reductions for E. faecium when the surface temperature of almonds reached 100-130 °C, depending on the aw of the almonds. The obtained DL. innocua, 100-130°C-values were 2.0-16.6 s, and DE. faecium, 100-130°C-values were 4.0-21.8 s, depending on the aw of almonds. In general, elevating steam temperatures and almond aw decreased the tolerance of L. innocua and E. faecium during steam inactivation. In addition, the z-values indicated that E. faecium on almonds was less sensitive to change in steam temperature compared to L. innocua, especially at lower aw. The zL. innocua-values were 36.6 °C and 35.7 °C, while zE. faecium-values were 48.9 °C and 42.7 °C in almonds with aw 0.25 and 0.45, respectively. Results from this study suggest that steam treatments serve as effective interventions for controlling pathogen contaminations in raw almonds.
Collapse
Affiliation(s)
- Zi Hua
- School of Food Science, Washington State University, Pullman, WA 99164, United States of America
| | - Bhim Bahadur Thapa
- School of Food Science, Washington State University, Pullman, WA 99164, United States of America
| | - Frank Younce
- School of Food Science, Washington State University, Pullman, WA 99164, United States of America
| | - Juming Tang
- Biological Systems Engineering, Washington State University, Pullman, WA 99164, United States of America
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, United States of America.
| |
Collapse
|
3
|
Moreira J, McCarter K, Benitez JA, Fontenot K, King JM, Adhikari A. Effect of Type of Mulch on Microbial Food Safety Risk on Cucumbers Irrigated with Contaminated Water. J Food Prot 2023; 86:100164. [PMID: 37739314 DOI: 10.1016/j.jfp.2023.100164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/29/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Mulches are used to block light and retain soil moisture which may affect the survival of bacterial pathogens on soil. This study examined the effectiveness of different types of mulches to minimize microbial risk from contaminated water used for irrigation of cucumbers. A production bed of 120 ft2 with 18 beds (30 ft long) covered with five different types of mulch (paper, paper with fertilizer incorporated (PF), maize-based mulch, biodegradable plastic covering, and conventional plastic) including three beds with no cover was planted with Dasher 2 Variety cucumber. Soil samples from each bed were collected for the first five weeks to examine natural E. coli and coliforms. Well water contaminated with or without nalidixic acid-resistant mutant of E. coli (8 Log CFU/mL) was used for drip irrigation for 7 days before harvesting. Prior to irrigation with contaminated water, naturally present E. coli and coliform in the soil samples with or without mulch were in the range of 3.45-3.78 Log CFU/g and 4.18-5.31 Log CFU/g, respectively. E. coli levels on cucumbers harvested from mulched beds and irrigated with contaminated irrigation water had significantly higher (P < 0.05) levels of E. coli as compared with samples from similar beds irrigated with noncontaminated water. However, Cucumber, harvested within each irrigation water quality were not significantly different regardless of the type of mulch with E. coli levels from 1.72 to 3.30 Log CFU/cm2 (contaminated water) and 0.28-1.86 Log CFU/cm2 (noncontaminated water). A significant die-off of inoculated E. coli was observed on cucumber within 3 days (>1.17 Log CFU/cm2) and >1.38 Log CFU/cm2 after 4 days. Beds with maize mulch were effective on minimizing E. coli contamination on cucumber from contaminated irrigation water.
Collapse
Affiliation(s)
- Juan Moreira
- School of Nutrition and Food Sciences, Louisiana State University AgCenter, 261 Knapp Hall, Baton Rouge, LA 70803, USA
| | - Kevin McCarter
- School of Nutrition and Food Sciences, Louisiana State University AgCenter, 261 Knapp Hall, Baton Rouge, LA 70803, USA
| | - Julysa Abril Benitez
- School of Nutrition and Food Sciences, Louisiana State University AgCenter, 261 Knapp Hall, Baton Rouge, LA 70803, USA
| | - Kathryn Fontenot
- School of Nutrition and Food Sciences, Louisiana State University AgCenter, 261 Knapp Hall, Baton Rouge, LA 70803, USA
| | - Joan M King
- School of Nutrition and Food Sciences, Louisiana State University AgCenter, 261 Knapp Hall, Baton Rouge, LA 70803, USA
| | - Achyut Adhikari
- School of Nutrition and Food Sciences, Louisiana State University AgCenter, 261 Knapp Hall, Baton Rouge, LA 70803, USA.
| |
Collapse
|
4
|
Bardsley CA, Chasteen K, Shapiro-Ilan D, Bock CH, Niemira BA, Kumar GD. Transfer of generic Escherichia coli and attenuated Salmonella enterica Typhimurium from the soil to the surface of in-shell pecans during harvest. Heliyon 2023; 9:e19676. [PMID: 37809630 PMCID: PMC10558922 DOI: 10.1016/j.heliyon.2023.e19676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
During harvest pecan nuts are at risk of contamination with foodborne pathogens from extended contact with the ground. The objective of this study was to determine the potential transfer of Escherichia coli and Salmonella from the ground to in-shell pecans during the harvesting process. Plots (2 m2) were sprayed with 1 L of a rifampicin (rif) resistant strain of either E. coli TVS 353 or an attenuated Salmonella Typhimurium inoculum at a low (∼4 log CFU/ml), mid (∼6 log CFU/ml) or high (∼8 log CFU/ml) concentrations. The following day, nuts were mechanically harvested and samples from each plot were collected at 1 min, 4 h, and 24 h. Samples were enumerated for Salmonella and E. coli on tryptic soy agar supplemented with rif. The Salmonella levels in the soil from the inoculated plots were 2.0 ± 0.3, 4.1 ± 0.1, and 6.4 ± 0.2 log CFU/g for the low, mid, and high inocula, respectively. The E. coli levels in the soil from the inoculated plots were 1.5 ± 0.4, 3.7 ± 0.3, and 5.8 ± 0.1 log CFU/g for the low, mid, and high inocula, respectively. There was a significant difference in the average daily rainfall among the three trials. Trial 3 received 23.8 ± 9.2 cm, while trials 1 and 2 received much less (0.1 ± 0.1 0.0 ± 0.0 cm, respectively). Inoculation concentration and trial were significant (P<0.05) factors that influenced the transfer of E. coli and Salmonella to pecans. For the high inoculum treatment, bacterial transfer to pecans ranged from 0.7 ± 0.3 to 4.1 ± 0.2 for E. coli and 1.3 ± 0.7 to 4.3 ± 0.4 log CFU/g for Salmonella. For the medium inoculum treatment, transfer ranged from <0.3 to 1.5 ± 0.1 for E. coli and <0.3 to 1.9 ± 0.2 log CFU/g for Salmonella. For the low treatment, transfer ranged from <0.3 to 0.4 ± 0.2 and <0.3 to 0.5 ± 0.1 log CFU/g for E. coli and Salmonella, respectively. These results show the need for implementing agricultural practices that prevent potential transfer of foodborne pathogens onto the surface of in-shell pecans during harvest.
Collapse
Affiliation(s)
- Cameron A Bardsley
- USDA-ARS Southeastern Fruit and Tree Nut Research Station, 21 Dunbar Rd. Byron, GA. 31008, USA
| | - Kaicie Chasteen
- USDA-ARS Southeastern Fruit and Tree Nut Research Station, 21 Dunbar Rd. Byron, GA. 31008, USA
| | - David Shapiro-Ilan
- USDA-ARS Southeastern Fruit and Tree Nut Research Station, 21 Dunbar Rd. Byron, GA. 31008, USA
| | - Clive H Bock
- USDA-ARS Southeastern Fruit and Tree Nut Research Station, 21 Dunbar Rd. Byron, GA. 31008, USA
| | - Brendan A Niemira
- USDA-ARS Food Safety and Intervention Technologies Research Unit, Eastern Regional Research Center, 600 E. Mermaid Ln., Wyndmoor, Pa. 19038, USA
| | - Govindaraj Dev Kumar
- Center for Food Safety, College of Agriculture and Environmental Science, University of Georgia. 350 Woodroof Dr., Griffin, GA 30223, USA
| |
Collapse
|
5
|
Moreira J, Mera E, Singh Chhetri V, King JM, Gentimis T, Adhikari A. Effect of storage temperature and produce type on the survival or growth of Listeria monocytogenes on peeled rinds and fresh-cut produce. Front Microbiol 2023; 14:1151819. [PMID: 37396364 PMCID: PMC10313384 DOI: 10.3389/fmicb.2023.1151819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Whole and fresh-cut produce are minimally processed and susceptible to microbial contamination. This study evaluated the survival or growth of L. monocytogenes on peeled rinds, and fresh-cut produce at different storage temperatures. Fresh-cut fruits and vegetables, including cantaloupe, watermelon, pear, papaya, pineapple, broccoli, cauliflower, lettuce, bell pepper, and kale (25 g pieces) were spot inoculated with 4 log CFU/g of L. monocytogenes and stored at 4 or 13°C for 6 days. Cantaloupe and bell pepper rind disks (20 cm2), mimicking whole produce were inoculated with low inoculum level (4 log CFU/mL) and high inoculum level (6 log CFU/mL) and stored at 24°C up to 8 days and 4°C up to 14 days, respectively. L. monocytogenes counts on fresh-cut pear samples stored at 4°C increased significantly by 0.27 log CFU/g. However, Listeria levels on kale (day 4), cauliflower (day 6), and broccoli (day 2) were significantly reduced by 0.73, 1.18, and 0.80 log CFU/g, respectively, at 4°C. At 13°C, the bacterial counts increased significantly after a day of storage on fresh-cut watermelons (increasing by 1.10 log CFU/g) and cantaloupes (increasing by 1.52 log CFU/g). Similar increases were observed on pears (1.00 log CFU/g), papayas (1.65 log CFU/g), and green bell peppers (1.72 log CFU/g). Pineapple samples did not support the growth of L. monocytogenes at 13°C with a significant reduction of 1.80 log CFU/g by day 6. L. monocytogenes levels significantly increased in fresh-cut lettuce at 13°C but remained stable on kale, cauliflower, and broccoli after 6 days of storage. Stable population was observed also on cantaloupe rinds up to 8 days at 24°C. While on the outer surface of bell peppers, the population level decreased below the detectable limit of the test (10 CFU/20 cm2) after 14 days of storage at 4°C. The results demonstrated variable survival behavior of L. monocytogenes on fresh-cut produce with produce type and storage temperature.
Collapse
Affiliation(s)
- Juan Moreira
- School of Nutrition and Food Sciences, Louisiana State University AgCenter, Baton Rouge, LA, United States
| | - Erika Mera
- School of Nutrition and Food Sciences, Louisiana State University AgCenter, Baton Rouge, LA, United States
| | - Vijay Singh Chhetri
- College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Joan M. King
- School of Nutrition and Food Sciences, Louisiana State University AgCenter, Baton Rouge, LA, United States
| | - Thanos Gentimis
- Department of Experimental Statistics, Louisiana State University, Baton Rouge, LA, United States
| | - Achyut Adhikari
- School of Nutrition and Food Sciences, Louisiana State University AgCenter, Baton Rouge, LA, United States
| |
Collapse
|
6
|
Effect of Two-Step Sous Vide Cooking and Storage on Microbiological and Oxidative Stability of Chicken Breast. Foods 2023; 12:foods12061213. [PMID: 36981140 PMCID: PMC10047949 DOI: 10.3390/foods12061213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
A two-step sous vide method, which included a low temperature initial stage, was shown to improve texture parameters, increase the solubility of proteins, and decrease the cook loss in chicken breasts. The current work was designed to determine the effect of two-step sous vide and subsequent storage on the microbiological and oxidative stability of chicken breasts. Inoculated chicken breasts were vacuum packaged and cooked at two temperatures, 50 °C and 60 °C, combined in different ratios of the same total cooking time (120 min), and then stored for 21 days at 4 °C, 10 °C, and −20 °C, and compared with the one-step temperature treatment (60 °C for 120 min). One-step sous vide treatment resulted in the total inactivation of Enterococcus faecalis NCAIM B. 01312. Meanwhile, the two-step sous vide treatments resulted in a higher than 3 log reduction in Enterococcus faecalis NCAIM B. 01312, reaching the target pasteurization performance criterion of sous vide for poultry meat. Lipid oxidation and the odor of all chicken breasts remained acceptable for 21 days of storage at 4 °C and −20 °C. Conversely, all chicken breasts had higher lipid oxidation rates and odor after 21 days of storage at 10 °C. Two-step-sous-vide-treated chicken breasts were found to be microbiologically stable regarding Enterococcus faecalis NCAIM B. 01312 and total mesophilic aerobic counts during 21 days of storage at 4 °C and −20 °C, in contrast with those stored at 10 °C. It can be concluded that two-step-sous-vide-cooked chicken breasts had acceptable oxidative and microbiological stability during chilled and frozen storage, similar to one-step sous vide ones. These outcomes highlight that two-step heat treatment can be used as an alternative cooking method to improve the quality properties without compromising the storage life of chicken breasts.
Collapse
|
7
|
Practice and Progress: Updates on Outbreaks, Advances in Research, and Processing Technologies for Low-moisture Food Safety. J Food Prot 2023; 86:100018. [PMID: 36916598 DOI: 10.1016/j.jfp.2022.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/03/2022] [Accepted: 11/20/2022] [Indexed: 12/31/2022]
Abstract
Large, renowned outbreaks associated with low-moisture foods (LMFs) bring to light some of the potential, inherent risks that accompany foods with long shelf lives if pathogen contamination occurs. Subsequently, in 2013, Beuchat et al. (2013) noted the increased concern regarding these foods, specifically noting examples of persistence and resistance of pathogens in low-water activity foods (LWAFs), prevalence of pathogens in LWAF processing environments, and sources of and preventive measures for contamination of LWAFs. For the last decade, the body of knowledge related to LMF safety has exponentially expanded. This growing field and interest in LMF safety have led researchers to delve into survival and persistence studies, revealing that some foodborne pathogens can survive in LWAFs for months to years. Research has also uncovered many complications of working with foodborne pathogens in desiccated states, such as inoculation methods and molecular mechanisms that can impact pathogen survival and persistence. Moreover, outbreaks, recalls, and developments in LMF safety research have created a cascading feedback loop of pushing the field forward, which has also led to increased attention on how industry can improve LMF safety and raise safety standards. Scientists across academia, government agencies, and industry have partnered to develop and evaluate innovate thermal and nonthermal technologies to use on LMFs, which are described in the presented review. The objective of this review was to describe aspects of the extensive progress made by researchers and industry members in LMF safety, including lessons-learned about outbreaks and recalls, expansion of knowledge base about pathogens that contaminate LMFs, and mitigation strategies currently employed or in development to reduce food safety risks associated with LMFs.
Collapse
|
8
|
Effect of steam conditioning on microbial safety and quality of pecans. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Wang Y, Yang H. Metabolomics elucidating the effect of water activity on the thermal resistance of Salmonella in wheat flour. Food Res Int 2022; 162:112203. [DOI: 10.1016/j.foodres.2022.112203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
|
10
|
Wang Y, Gao X, Yang H. Integrated metabolomics of "big six" Escherichia coli on pea sprouts to organic acid treatments. Food Res Int 2022; 157:111354. [PMID: 35761617 DOI: 10.1016/j.foodres.2022.111354] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022]
Abstract
Naturally occurring organic acids (OAs) have demonstrated satisfactory effects in inhibiting common pathogens on fresh produce; however, their effectiveness on "big six" Escherichia coli serotypes, comprised of E. coli O26:H11, O45:H2, O103:H11, O111, O121:H19 and O145, remained unaddressed. Regarding this, using nuclear magnetic resonance (NMR) spectroscopy and ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS), the sanitising efficacy and the underlying antimicrobial mechanisms of 10-min treatments with 0.2 mol/L ascorbic acid (AA), citric acid (CA) and malic acid (MA) against the "big six" strains on pea sprouts were thoroughly investigated in this study. Despite the varying antimicrobial efficacy (AA: 0.12-0.99, CA: 0.36-1.72, MA: 0.75-3.28 log CFU/g reductions), the three OAs induced consistent metabolic changes in the E. coli strains, particularly in the metabolism of membrane lipids, nucleotide derivatives and amino acids. Comparing all strains, the most OA-resistant strain, O26 (0.36-1.12 log CFU/g reductions), had the largest total amino acids accumulated to resist osmotic stress; its ulteriorly suppressed cell activity further strengthened its endurance. In contrast, the lowest OA-resistance of O121 (0.99-3.28 log CFU/g reductions) might be explained by the depletion of putrescine, an oxidative stress regulator. Overall, the study sheds light on the effectiveness of a dual-platform metabolomics investigation in elucidating the metabolic responses of "big six" E. coli to OAs. The manifested antimicrobial effects of OAs, especially MA, together with the underlying metabolic perturbations detected in the "big six" strains, provided scientific basis for applying OA treatments to future fresh produce sanitisation.
Collapse
Affiliation(s)
- Yue Wang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Xianfu Gao
- Shanghai Profleader Biotech Co., Ltd, Jiading District, Shanghai 201805, PR China
| | - Hongshun Yang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
11
|
Metabolic Responses of "Big Six" Escherichia coli in Wheat Flour to Thermal Treatment Revealed by Nuclear Magnetic Resonance Spectroscopy. Appl Environ Microbiol 2022; 88:e0009822. [PMID: 35285244 DOI: 10.1128/aem.00098-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Escherichia coli outbreaks linked to wheat flour consumption have kept emerging in recent years, which necessitated an antimicrobial step being incorporated into the flour production process. The objectives of this in vivo study were to holistically evaluate the sanitizing efficacy of thermal treatment at 60 and 70°C against the "big six" E. coli strains (O26:H11, O45:H2, O103:H11, O111, O121:H19, and O145) in wheat flour and to assess the strain-specific metabolic responses using nuclear magnetic resonance (NMR) spectroscopy. The 70°C treatment temperature indiscriminatingly inactivated all strains by over 4.3-log CFU/g within 20 min, suggesting the high sanitization effectiveness of this treatment temperature, whereas the treatment at 60°C inactivated the strains to various degrees during the 1-h process. The most resistant strains at 60°C, O26 and O45, were characterized by amino acid and sugar depletion, and their high resistance was attributed to the dual effects of activated heat shock protein (HSP) synthesis and promoted glycolysis. O121 also demonstrated these metabolic changes, yet its thermal resistance was largely impaired by the weakened membrane structure and diminished osmotic protection due to phosphorylcholine exhaustion. In contrast, O111, O145, and O103 presented a substantial elevation of metabolites after stress at 60°C; their moderate thermal resistance was mainly explained by the accumulation of amino acids as osmolytes. Overall, the study enhanced our understanding of the metabolic responses of big six E. coli to heat stress and provided a model for conducting NMR-based metabolomic studies in powdered food matrices. IMPORTANCE "Big six" Escherichia coli strains have caused several outbreaks linked to wheat flour consumption in the last decade, revealing the vital importance of adopting an antimicrobial treatment during the flour production process. Therefore, the present study was carried out to evaluate the efficacy of a typical sanitizing approach, thermal treatment, against the big six strains in wheat flour along with the underlying antimicrobial mechanisms. Findings showed that thermal treatment at 60 and 70°C could markedly mitigate the loads of all strains in wheat flour. Moreover, activated heat shock protein synthesis combined with expedited glycolysis and enhanced osmotic protection were identified as two major metabolic alteration patterns in the E. coli strains to cope with the heat stress. With the responses of big six in wheat flour to thermal treatment elucidated, scientific basis for incorporating a thermal inactivation step in wheat flour production was provided.
Collapse
|
12
|
Yan B, Bao X, Liao X, Wang P, Zhou M, Yu Y, Yuan J, Cui L, Wang Q. Sensitive Micro-Breathing Sensing and Highly-Effective Photothermal Antibacterial Cinnamomum camphora Bark Micro-Structural Cotton Fabric via Electrostatic Self-Assembly of MXene/HACC. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2132-2145. [PMID: 34939796 DOI: 10.1021/acsami.1c22740] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Natural fabrics are gradually becoming the ideal substrate for flexible smart wearable devices due to their excellent moisture absorption, softness, and skin-friendliness. However, the bonding fastness of the conductive layer and the corresponding durability during service have not yet been well satisfied. In this report, we successfully prepared a smart wearable multifunctional protective cotton fabric with microbreathing monitoring and rapid-photothermal antibacterial abilities of Cinnamomum camphora bark microstructure, by combining chitosan quaternary ammonium salt (HACC) with MXene nanosheets through electrostatic self-assembly. Impressively, MXene nanosheets and HACC established a strong interaction using the electrostatic attraction, endowing the fiber surface with ordered nanosheets. Meanwhile, the fabric decorated with MXene/HACC retains its original characteristics of outstanding breathability and softness, and its conductivity exhibits noticeable stability in terms of resistances to oxidation, washing, various solvents, and long-term bending cycles. On the basis of the principle of adsorption and release of water molecules in the MXene multilayer structures, the MXene/HACC fabric could accurately monitor the physiological health activities of users according to their breathing frequency and depth. Benefiting from the local surface plasmon resonance (LSPR) effect, the MXene/HACC shows encouraging photothermal conversion ability, photothermal stability under long time irradiation, washing resistance, and cycle stability. In addition, the fabric achieved an antibacterial efficiency of nearly 100% against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus within 5 min under an irradiation intensity of 400 mW/cm2. More importantly, after 10 washes, the antibacterial efficiency against the two bacteria could still reach 99.975% and 99.98%, respectively. This multifunctional protective MXene/HACC cotton fabric is expected to play a unique role in the new generation of smart wearable microbreathing sensing and against to bacterial attack, and shows a broad application prospect.
Collapse
Affiliation(s)
- Biaobiao Yan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xueming Bao
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xiaoting Liao
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Ping Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Man Zhou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Yuanyuan Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Jiugang Yuan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Li Cui
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| |
Collapse
|
13
|
Comparison of the metabolic responses of eight Escherichia coli strains including the “big six” in pea sprouts to low concentration electrolysed water by NMR spectroscopy. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108458] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Diaz CI, Molina S, Smith MW, Rohla C, Ma LM. Prevalence of Shiga Toxin-Producing Escherichia coli and Salmonella in Native Pecan Orchards as Influenced by Waiting Periods between Grazing and Harvest. J Food Prot 2022; 85:36-43. [PMID: 34499730 DOI: 10.4315/jfp-21-163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/07/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Animals (grazing, working, or intrusion) in produce production areas may present a potential contamination source of foodborne pathogens on produce. Cattle grazing on native pecan production orchards, a common practice in the southern United States, provides an opportunity to study the impact of grazing practice and waiting periods on contamination rates of foodborne pathogens of tree nuts. Therefore, the objective of this study was to determine the prevalence of Salmonella and Shiga toxin-producing Escherichia coli (STEC) in native pecan production orchards as influenced by waiting periods between grazing cattle and pecan harvest. Soil (10 g), cattle feces (10 g), and in-shell pecans (25 g) were sampled from five cattle-grazed orchards in areas with cattle removed 2 or 4 months before harvest and not removed. Five nongrazing orchards were sampled at harvest for comparison. Detection and isolation of the pathogens were performed by enrichment, selective isolation, and multiplex PCR. Statistical analyses were performed using contingency tables with Pearson's chi-square test. The prevalence of STEC (36%) and Salmonella (29%) in cattle-grazed orchards was significantly higher than in nongrazed orchards (13 and 7%, respectively). STEC prevalence in cattle-grazed orchards was higher (38%) in areas with cattle at harvest than in fenced areas where cattle were removed 2 (29%) and 4 (27%) months before harvest. Salmonella prevalence was similar in areas without fencing (31%) and areas with cattle removed at 2 (22%) and 4 (30%) months before harvest. However, there were no significant differences (P > 0.05) in contamination rates between waiting periods for either pathogen, suggesting a limited impact of waiting periods on reducing the risk of contamination. HIGHLIGHTS
Collapse
Affiliation(s)
- Claudia I Diaz
- Institute for Biosecurity and Microbial Forensics, Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Santiago Molina
- Institute for Biosecurity and Microbial Forensics, Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Michael W Smith
- Department of Horticulture and Landscape Architecture, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Charles Rohla
- Noble Research Institute, Ardmore, Oklahoma 73401, USA
| | - Li Maria Ma
- Institute for Biosecurity and Microbial Forensics, Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma 74078
| |
Collapse
|
15
|
Carvacrol and Thymol Combat Desiccation Resistance Mechanisms in Salmonella enterica Serovar Tennessee. Microorganisms 2021; 10:microorganisms10010044. [PMID: 35056493 PMCID: PMC8779931 DOI: 10.3390/microorganisms10010044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
Some Salmonella enterica serovars are frequently associated with disease outbreaks in low-moisture foods (LMF) due to their ability to adapt efficiently to desiccation stress. These serovars are often persistent during food processing. Disruption of these resistance responses was accomplished previously using the membrane-active lipopeptide, paenibacterin. This study was initiated to determine how desiccation resistance mechanisms are overcome when Salmonella Tennessee, a known resistant serovar, is treated with the membrane-active food additives carvacrol and thymol. Knowing that the minimum inhibitory concentrations (MICs) of carvacrol and thymol against Salmonella Tennessee are 200 and 100 µg/mL, the concentrations tested were 100–400 and 50–200 µg/mL, respectively. Results show that desiccation-adapted Salmonella Tennessee, prepared by air drying at 40% relative humidity and 22–25 °C for 24 h, was not inactivated when exposed for 4.0 h to less than 2xMIC of the two additives. Additionally, treatment of desiccation-adapted Salmonella Tennessee for 120 min with carvacrol and thymol at the MIC-level sensitized the cells (1.4–1.5 log CFU/mL reduction) to further desiccation stress. Treating desiccation-adapted Salmonella Tennessee with carvacrol and thymol induced leakage of intracellular potassium ions, reduced the biosynthesis of the osmoprotectant trehalose, reduced respiratory activity, decreased ATP production, and caused leakage of intracellular proteins and nucleic acids. Carvacrol, at 200–400 µg/mL, significantly downregulated the transcription of desiccation-related genes (proV, STM1494, and kdpA) as determined by the reverse-transcription quantitative PCR. The current study revealed some of the mechanisms by which carvacrol and thymol combat desiccation-resistant Salmonella Tennessee, raising the feasibility of using these additives to control desiccation-adapted S. enterica in LMF.
Collapse
|
16
|
|
17
|
Effects of moisture content and mild heat on the ability of gaseous chlorine dioxide against Salmonella and Enterococcus faecium NRRL B-2354 on almonds. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Dhowlaghar N, Zhu MJ. Control of Salmonella in low-moisture foods: Enterococcus faecium NRRL B-2354 as a surrogate for thermal and non-thermal validation. Crit Rev Food Sci Nutr 2021; 62:5886-5902. [PMID: 33798006 DOI: 10.1080/10408398.2021.1895055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Salmonella has been implicated in multiple foodborne outbreaks and recalls associated with low water activity foods (LawF). To verify the effectiveness of a process against Salmonella in LawF, validation using a nonpathogenic surrogate strain is essential. Enterococcus faecium NRRL B-2354 strain has been used as a potential surrogate of Salmonella in different processing of LawF. However, the survival of Salmonella and E. faecium in LawF during food processing is a dynamic function of aw, food composition and structure, processing techniques, and other factors. This review assessed pertinent literature on the thermal and non-thermal inactivation of Salmonella and its presumable surrogate E. faecium in various LawF and provided an overview of its suitibility in different LawF. Overall, based on the D-values, survival/reduction, temperature/time to obtain 4 or 5-log reductions, most studies concluded that E. faecium is a suitable surrogate of Salmonella during LawF processing as its magnitude of resistance was slightly greater or equal (i.e., statistical similar) as compared to Salmonella. Studies also showed its unsuitability which either does not provide a proper margin of safety or being overly resistant and may compromise the quality and organoleptic properties of food. This review provides useful information and guidance for future validation studies of LawF.
Collapse
Affiliation(s)
- Nitin Dhowlaghar
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, Washington, USA
| |
Collapse
|
19
|
Huang L, Xu S, Wang Z, Xue K, Su J, Song Y, Chen S, Zhu C, Tang BZ, Ye R. Self-Reporting and Photothermally Enhanced Rapid Bacterial Killing on a Laser-Induced Graphene Mask. ACS NANO 2020; 14:12045-12053. [PMID: 32790338 DOI: 10.1021/acsnano.0c05330] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Wearing face masks has been widely recommended to contain respiratory virus diseases, yet the improper use of masks poses a threat of jeopardizing the protection effect. We here identified the bacteria viability on common face masks and found that the majority of bacteria (90%) remain alive after 8 h. Using laser-induced graphene (LIG), the inhibition rate improves to ∼81%. Combined with the photothermal effect, 99.998% bacterial killing efficiency could be attained within 10 min. For aerosolized bacteria, LIG also showed superior antibacterial capacity. The LIG can be converted from a diversity of carbon precursors including biomaterials, which eases the supply stress and environmental pressure amid an outbreak. In addition, self-reporting of mask conditions is feasible using the moisture-induced electricity from gradient graphene. Our results improve the safe use of masks and benefit the environment.
Collapse
Affiliation(s)
- Libei Huang
- Department of Chemistry, City University of Hong Kong, 999077, Hong Kong, China
| | - Siyu Xu
- Department of Chemistry, City University of Hong Kong, 999077, Hong Kong, China
| | - Zhaoyu Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ke Xue
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jianjun Su
- Department of Chemistry, City University of Hong Kong, 999077, Hong Kong, China
| | - Yun Song
- Department of Chemistry, City University of Hong Kong, 999077, Hong Kong, China
| | - Sijie Chen
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China
| | - Chunlei Zhu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- SCUT-HKUST Joint Research Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing First Road, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Tianhe Qu, Guangzhou 510640, China
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou 510530, China
| | - Ruquan Ye
- Department of Chemistry, City University of Hong Kong, 999077, Hong Kong, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 999077, Hong Kong, China
| |
Collapse
|
20
|
Espinosa MF, Sancho AN, Mendoza LM, Mota CR, Verbyla ME. Systematic review and meta-analysis of time-temperature pathogen inactivation. Int J Hyg Environ Health 2020; 230:113595. [DOI: 10.1016/j.ijheh.2020.113595] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/04/2020] [Accepted: 07/06/2020] [Indexed: 11/16/2022]
|
21
|
Kharel K, Prinyawiwatkul W, Yemmireddy VK, Graham CJ, Adhikari A. Effect of hot water treatment of in‐shell pecans on physicochemical properties and consumer acceptability of roasted pecan kernels. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Karuna Kharel
- School of Nutrition and Food Sciences Louisiana State University Agricultural Center Baton Rouge LA 70803‐4200 USA
| | - Witoon Prinyawiwatkul
- School of Nutrition and Food Sciences Louisiana State University Agricultural Center Baton Rouge LA 70803‐4200 USA
| | - Veerachandra K. Yemmireddy
- School of Nutrition and Food Sciences Louisiana State University Agricultural Center Baton Rouge LA 70803‐4200 USA
- School of Earth, Environmental and Marine Sciences University of Texas Rio Grande Valley Edinburg TX 78539‐2909 USA
| | - Charles J. Graham
- Red River Research Station Louisiana State University Agricultural Center Bossier City LA 71112 USA
| | - Achyut Adhikari
- School of Nutrition and Food Sciences Louisiana State University Agricultural Center Baton Rouge LA 70803‐4200 USA
| |
Collapse
|
22
|
Brar PK, Danyluk MD. Validation of Enterococcus faecium as a surrogate for Salmonella under different processing conditions for peanuts and pecans. Food Microbiol 2018; 80:9-17. [PMID: 30704601 DOI: 10.1016/j.fm.2018.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 11/18/2022]
Abstract
Food Safety and Modernization Act (FSMA) Preventive Control rules require nut processors validate thermal processes to ensure a desirable log reduction of Salmonella is achieved. Due to the complex nature of nut and nut products, processes and equipment, it is difficult to use one validation study for all and may requires individual equipment be validated at the plant level. In plant validation studies, pathogens such as Salmonella cannot be used due to the risk of contamination, thus the suitability of a non-pathogenic organism, Enterococcus faecium as a surrogate for Salmonella was evaluated for peanut and pecan thermal processing. Stagnant and forced dry air heating conditions, (120 °C (20, 30, 40 min), 130 °C (10, 20, 30 min), 140 °C (10, 20, 30 min)) were evaluated for unblanched peanut kernels. Oil heating conditions (116 °C, 121 °C, and 127 °C for 0.5, 1.0, 1.5, 2.0, 2.5 min) were evaluated for pecan kernels. Inshell pecans are conditioned in hot or cold water to facilitate the shelling process. Water heating conditions (75 °C (20, 40, 80, 120 s), 80 °C (20, 40, 80, 120 s), 85 °C (20, 40, 80, 120 s), 90 °C (20, 40, 60, 80 s), and 95 °C (20, 40, 60, 80 s)) were evaluated for inshell pecans. Under conditions, except forced air treatment, E. faecium reductions (Log N/N0) were either not significantly different (P > 0.05) or significantly lower than Salmonella (P < 0.05), making it a suitable surrogate for the processes evaluated.
Collapse
Affiliation(s)
- Pardeepinder K Brar
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA
| | - M D Danyluk
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA.
| |
Collapse
|