1
|
Yang C, Huang L, Huang K, Seah SYK, Peng B. Effects of Patulin Stress on the Physiology, Fermentation Performance, and Aroma Profile of Saccharomyces cerevisiae During Fermentation. J Food Sci 2025; 90:e70248. [PMID: 40331780 DOI: 10.1111/1750-3841.70248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 05/08/2025]
Abstract
Patulin (PAT) is a mycotoxin commonly found in apples and their derived products, posing a significant threat to human health. Saccharomyces cerevisiae CICC 31084 exhibited excellent ability in removing PAT during fermentation. However, limited studies have addressed the physiological and fermentation-related responses of S. cerevisiae under PAT stress. This study investigated the effect of different concentrations of PAT on S. cerevisiae in simulated apple juice. The results revealed that the PAT removal process affected the growth and metabolism of S. cerevisiae. PAT stress increased the thickness and altered the structure of yeast cell walls while upregulating the expression of genes associated with cell wall biosynthesis. Furthermore, oxidative stress induced by PAT triggered elevated glutathione levels, catalase activity, and ATPase activity, suggesting a robust adaptive response. A total of 1 µg/mL PAT accelerated the changes of fermentation parameters, whereas 10 µg/mL impaired yeast performance. GC-MS analysis revealed that PAT influenced the content of key aroma compounds in the simulated juices. PAT concentration was positively correlated with the production of octanoic acid and ethyl octanoate and negatively correlated with the formation of phenylethyl alcohol, hexanoic acid, and esters. The results could provide a theoretical basis for the application of PAT detoxification by S. cerevisiae in cider, and the identified aroma compounds could serve as potential markers for PAT contamination.
Collapse
Affiliation(s)
- Chao Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Lingxuan Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kuo Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| | - Stephen Y K Seah
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Bangzhu Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
2
|
Liu Z, Sun P, He X, Lin D, Ke L, Shi C, Yang H, Deng L, Lin Z, Chen L. Synergistic inactivation effect of ultrasound and nano-emulsified basil essential oil on the metabolic responses of Salmonella on sprouts. Int J Food Microbiol 2025; 431:111082. [PMID: 39893936 DOI: 10.1016/j.ijfoodmicro.2025.111082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
This study investigated the effectiveness and mechanisms of ultrasound (US), nano-emulsified basil essential oil (NBEO), and their combination (NBEO_US) in inactivating Salmonella enterica cells inoculated on pea sprouts. The results demonstrated that the combined treatment was more effective than individual treatments in inactivating the target. This led to a decrease of 4.4 to 5.0 log CFU/g. Transmission electron microscopy showed that NBEO_US leads to the disruption of the bacteria morphology. Additionally, the leakage of cell constituents (proteins and nucleotide) demonstrated that NBEO_US disrupted the structural integrity of S. enterica cells. In addition, the metabolomics analysis using 1H NMR showed that NBEO_US had a detrimental effect on energy and amino acid metabolism in bacterial cells, specifically affecting glycolysis and amino acid production. Also, NBEO_US affected the Embden-Meyerhof-Parnas pathway in S. enterica cells by decreasing the activity of hexokinase, phosphofructokinase, and pyruvate kinase. Finally, the application of NBEO_US resulted in a substantial (P < 0.05) increase in the hardness of the treated pea sprouts while simultaneously decreasing their lightness. The present investigation illustrated the synergistic antibacterial mechanism of NBEO_US against S. enterica strains using sprouts as a food model. By understanding the microbiological changes in metabolic pathways induced by the combined treatment, sanitization strategies can be optimized to specifically target critical vulnerabilities, thereby ensuring safer and more efficient production of fresh produce.
Collapse
Affiliation(s)
- Zifei Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Peiwen Sun
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Xichen He
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Dingsong Lin
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Lijing Ke
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, UK College of Food Science and Engineering, Leeds, LS2 9JT, United Kingdom of Great Britain and Northern Ireland
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongshun Yang
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Lingchi Deng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Zejia Lin
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore 117543, Singapore.
| | - Lin Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore.
| |
Collapse
|
3
|
Cai W, Wan Y, Chen Y, Fan H, Li M, Wu S, Lin P, Zeng T, Luo H, Huang D, Fu G. Transcriptomics to evaluate the influence mechanisms of ethanol on the ester production of Wickerhamomyces anomalus with the induction of lactic acid. Food Microbiol 2024; 122:104556. [PMID: 38839235 DOI: 10.1016/j.fm.2024.104556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/17/2024] [Accepted: 04/27/2024] [Indexed: 06/07/2024]
Abstract
Wickerhamomyces anomalus is one of the most important ester-producing strains in Chinese baijiu brewing. Ethanol and lactic acid are the main metabolites produced during baijiu brewing, but their synergistic influence on the growth and ester production of W. anomalus is unclear. Therefore, in this paper, based on the contents of ethanol and lactic acid during Te-flavor baijiu brewing, the effects of different ethanol concentrations (3, 6, and 9% (v/v)) combined with 1% lactic acid on the growth and ester production of W. anomalus NCUF307.1 were studied and their influence mechanisms were analyzed by transcriptomics. The results showed that the growth of W. anomalus NCUF307.1 under the induction of lactic acid was inhibited by ethanol. Although self-repair mechanism of W. anomalus NCUF307.1 induced by lactic acid was initiated at all concentrations of ethanol, resulting in significant up-regulation of genes related to the Genetic Information Processing pathway, such as cell cycle-yeast, meiosis-yeast, DNA replication and other pathways. However, the accumulation of reactive oxygen species and the inhibition of pathways associated with carbohydrate and amino acid metabolism may be the main reason for the inhibition of growth in W. anomalus NCUF307.1. In addition, 3% and 6% ethanol combined with 1% lactic acid could promote the ester production of W. anomalus NCUF307.1, which may be related to the up-regulation of EAT1, ADH5 and TGL5 genes, while the inhibition in 9% ethanol may be related to down-regulation of ATF2, EAT1, ADH2, ADH5, and TGL3 genes.
Collapse
Affiliation(s)
- Wenqin Cai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, 330299, PR, China
| | - Yin Wan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, 330299, PR, China
| | - Yanru Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, 330299, PR, China
| | - Haowei Fan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, 330299, PR, China
| | - Mengxiang Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR, China; Liquor Making Biological Technology and Application Key Laboratory of Sichuan Province, Yibin, 644000, PR, China
| | - Shengwen Wu
- Sitir Liquor Co., Ltd, Zhangshu, 331200, PR, China
| | - Pei Lin
- Sitir Liquor Co., Ltd, Zhangshu, 331200, PR, China
| | | | - Huibo Luo
- Liquor Making Biological Technology and Application Key Laboratory of Sichuan Province, Yibin, 644000, PR, China
| | - Dan Huang
- Liquor Making Biological Technology and Application Key Laboratory of Sichuan Province, Yibin, 644000, PR, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, 330299, PR, China.
| |
Collapse
|
4
|
Wu Y, Xu P, Qiu X, Mao Y, Yu J, Tian L, Li Y, Zhang J, Zhu X, Liu Y, Shang H, Guan T. Inoculation of Zaopei with biofortification: Inducing variation in community structure and improving flavor compounds in Nongxiangxing baijiu. J Food Sci 2024; 89:4730-4744. [PMID: 38922885 DOI: 10.1111/1750-3841.17187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
The deterioration of the quality of raw liquor caused by the low content of ethyl hexanoate in Nongxiangxing baijiu has become a pervasive problem in the baijiu industry. Therefore, this study attempted to increase the synthesis of ethyl hexanoate by microorganisms with high esterase activity to increase Zaopei fermentation. The results showed that biofortification was a feasible and important way to improve the quality of the raw liquor and increase the ethyl hexanoate content. Adding Bacillus subtilis, Staphylococcus epidermidis, and Millerozyma farinosa for biofortified fermentation disturbed the microbial community structure of Zaopei and increased the abundance of Wickerhamomyces, Saccharomyces, and Thermoascus. The contents of ethyl hexanoate, ethyl valerate, ethyl caprylate, and ethyl heptanoate also increased noticeably in baijiu. The results of E-nose and sensory analysis tested and verified that the baijiu in the fortified group had better flavor characteristics.
Collapse
Affiliation(s)
- Yijiao Wu
- College of Food and Biological Engineering, Xihua University, Chengdu, China
- Food Microbiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Pei Xu
- College of Food and Biological Engineering, Xihua University, Chengdu, China
- Food Microbiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Xianping Qiu
- Sichuan Quanxing Liquor Co., Ltd., Chengdu, China
| | - Yichen Mao
- Xinjiang Kaiduhe Liquor Co., Ltd, Hejing, China
| | - Jianshen Yu
- Sichuan Quanxing Liquor Co., Ltd., Chengdu, China
| | - Lei Tian
- College of Food and Biological Engineering, Xihua University, Chengdu, China
- Food Microbiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Yanzhong Li
- Sichuan Jiangkouchun Longding Liquor Co., Ltd, Bazhong, China
| | - Juan Zhang
- Sichuan Jiangkouchun Longding Liquor Co., Ltd, Bazhong, China
| | - Xiangting Zhu
- College of Food and Biological Engineering, Xihua University, Chengdu, China
- Food Microbiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Ying Liu
- College of Food and Biological Engineering, Xihua University, Chengdu, China
- Food Microbiology Key Laboratory of Sichuan Province, Chengdu, China
| | | | - Tongwei Guan
- College of Food and Biological Engineering, Xihua University, Chengdu, China
- Food Microbiology Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
5
|
Lu X, Yang C, Yang Y, Peng B. Analysis of the Formation of Characteristic Aroma Compounds by Amino Acid Metabolic Pathways during Fermentation with Saccharomyces cerevisiae. Molecules 2023; 28:molecules28073100. [PMID: 37049863 PMCID: PMC10095983 DOI: 10.3390/molecules28073100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Amino acid metabolic pathways can have profound impacts on the activities of key enzymes in the biosynthesis of specific aroma compounds during yeast fermentation. Aroma compounds, pyruvic acid and glucose were monitored in relation to the key enzymes of leucine aminotransferase (LTR), phenylalanine aminotransferase (PAL), pyruvate kinase (PK) and acetyl-CoA in the amino acid metabolic pathways during the fermentation of simulated juice systems with added amino acids in order to explore the formation of characteristic aroma compounds. The addition of L-phenylalanine or L-leucine to the simulated juice systems significantly improved the activities of PK, PAL and LTR, and the content of acetyl-CoA, and significantly increased the concentrations of phenylethyl alcohol, octanoic acid, isoamyl acetate, phenylethyl acetate, ethyl hexanoate and ethyl caprylate during fermentation. Correlation analysis showed that there was a significant positive correlation between PAL, LTR, PK and acetyl-CoA and pyruvic acid formation. Path analysis revealed that the addition of amino acids affected the metabolism of pyruvate to alcohols, acids and esters to some extent.
Collapse
|
6
|
Sun X, Wang J, Li C, Zheng M, Zhang Q, Xiang W, Tang J. The Use of γ-Aminobutyric Acid-Producing Saccharomyces cerevisiae SC125 for Functional Fermented Beverage Production from Apple Juice. Foods 2022; 11:foods11091202. [PMID: 35563926 PMCID: PMC9102084 DOI: 10.3390/foods11091202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
The development of functional fermented beverages enriched with γ-aminobutyric acid (GABA) has been pursued because of the health benefits of GABA; however, few studies have described GABA production by yeast. Therefore, this study aimed to produce fermented apple beverages enriched with GABA produced by Saccharomyces cerevisiae SC125. Golden Delicious apples were fermented by S. cerevisiae SC125 to produce a novel functional beverage; commercial yeast was used as the control. The GABA, organic acid, and volatile compound content during the fermentation process was investigated by high-performance liquid chromatography and headspace solid-phase microextraction/gas chromatography-mass spectrometry. A yield of 898.35 ± 10.10 mg/L GABA was achieved by the efficient bioconversion of L-monosodium glutamate. Notably, the S. cerevisiae SC125-fermented beverage produced several unique volatile compounds, such as esters, alcohols, 6-decenoic acid, and 3-hydroxy−2-butanone, and showed significantly enhanced contents of organic acids, including malic acids, citric acid, and quinic acid. Sensory analysis demonstrated that the S. cerevisiae SC125-fermented apple beverage had improved aroma, flavor, and overall acceptability. In conclusion, a fermented functional apple beverage containing GABA was efficiently produced using S. cerevisiae SC125.
Collapse
|
7
|
Hinkley JL, Bingman MT, Lee JS, Bradley CP, Cole CA. Volatile Profile Survey of Five Apple Varieties Grown in Southwest Colorado from Juice to Finished, Dry-Hopped Cider. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2022. [DOI: 10.1080/03610470.2021.2013645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Matthew T. Bingman
- Department of Chemistry & Biochemistry, University of Oregon, Eugene, OR, U.S.A.
| | - Joslynn S. Lee
- Department of Chemistry & Biochemistry, Fort Lewis College, Durango, CO, U.S.A.
| | - Colin P. Bradley
- Department of Chemistry, Columbia Basin College, Pasco, WA, U.S.A
| | - Callie A. Cole
- Department of Chemistry & Biochemistry, Fort Lewis College, Durango, CO, U.S.A.
| |
Collapse
|
8
|
Zang J, Yu D, Zhang P, Xu Y, Xia W. The key enzymes and flavor precursors involved in formation of characteristic flavor compounds of low-salt fermented common carp (Cyprinus carpio L.). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Transcriptomic analysis reveals the metabolic mechanism of patulin by Saccharomyces cerevisiae during fermentation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|