1
|
Maciel FS, Assis RQ, Rios ADO, Pertuzatti PB. Açaí powder-enriched biodegradable starch films: Characterization, release in food simulants and protective effect in photodegradation system. Int J Biol Macromol 2025; 308:142420. [PMID: 40174824 DOI: 10.1016/j.ijbiomac.2025.142420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/25/2025] [Accepted: 03/21/2025] [Indexed: 04/04/2025]
Abstract
Açaí is an important source of natural pigments with antioxidant capacity, such as anthocyanins. Among the various possibilities for its application is its incorporation into biodegradable films, which can act as carriers of these bioactive compounds. The objective of this study was to develop biodegradable films based on starch with different açaí powder concentrations (5 % and 15 %). The films were developed using the casting technique and evaluated in relation to barrier properties, physicochemical, biodegradability, release to food simulants, and protective effect against photodegradation of β-carotene. The addition of the natural antioxidant led to the development of films with greater color intensity and improved light barrier and mechanical properties (tensile strength and elongation). The retention of açaí powder in the polymer matrix was identified in the FTIR analysis through the intensification of some regions in relation to the control film. The cohesion and interaction between film:active compound showed an improvement in water-related properties, such as reduced permeability and water absorption. Furthermore, the active films showed sustained release of anthocyanins into the food simulant (maximum of 3.04 mg cyanidin 3-glycoside/100 g and 8.06 mg cyanidin 3-glycoside/100 g for films AP5% and AP15%, respectively) and better protection against photodegradation of the β-carotene solution (35-50 % retention when exposed to high light intensity). The rapid biodegradability, thermal stability, and stability at different pH may indicate potential application as packaging for foods susceptible to photodegradation.
Collapse
Affiliation(s)
- Franciele Silva Maciel
- Engenharia de Alimentos, Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso, Avenida Valdon Varjão, 6390, CEP 78600-000 Barra Do Garças, Brazil
| | - Renato Queiroz Assis
- Programa de Pós-Graduação em Ciência de Materiais, Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso, Avenida Valdon Varjão, 6390, CEP 78600-000 Barra Do Garças, Brazil
| | - Alessandro de Oliveira Rios
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, n. 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Paula Becker Pertuzatti
- Engenharia de Alimentos, Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso, Avenida Valdon Varjão, 6390, CEP 78600-000 Barra Do Garças, Brazil; Programa de Pós-Graduação em Ciência de Materiais, Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso, Avenida Valdon Varjão, 6390, CEP 78600-000 Barra Do Garças, Brazil.
| |
Collapse
|
2
|
Ghasempour A, Naderi Allaf MR, Charoghdoozi K, Dehghan H, Mahmoodabadi S, Bazrgaran A, Savoji H, Sedighi M. Stimuli-responsive carrageenan-based biomaterials for biomedical applications. Int J Biol Macromol 2025; 291:138920. [PMID: 39706405 DOI: 10.1016/j.ijbiomac.2024.138920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Carrageenan-based biomaterials have attracted considerable attention in recent years due to their unique biological properties, including their biodegradability, compatibility, and lack of adverse effects. These biomaterials exhibit a variety of beneficial properties, such as antiviral, antitumor, and immunomodulatory effects, which set them apart from other polysaccharides. Stimuli-responsive carrageenan-based biomaterials have attracted particular attention due to their unique properties, such as reducing systemic toxicity and controlling drug release. In this review, a comprehensive investigation of stimuli-responsive carrageenan-based biomaterials was conducted under the influence of various stimuli such as pH, electric field, magnetic field, temperature, light, and ions. These structures exhibited good stimulus-responsive properties and involved corresponding physical and chemical changes, such as changes in swelling ratio and gelling power among others. The biomedical application of carrageenan-based stimuli-responsive biomaterials in the field of tissue engineering, anticancer, antibacterial, and food monitoring has been investigated, showing the great potential of these structures. Although there are promising developments in the design and use of stimuli-responsive carrageenan-based biomaterials, further research is advisable to further investigate their potential applications, particularly in animal models. Extensive studies are needed to investigate the benefits and limitations of these materials to ensure their safety and effective use in biomedical applications.
Collapse
Affiliation(s)
- Alireza Ghasempour
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Naderi Allaf
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kianush Charoghdoozi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Dehghan
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Azar Bazrgaran
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Houman Savoji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5, Canada; Montreal TransMedTech Institute, Montreal, QC H3T 1J4, Canada; Centre de recherche Azrieli du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada.
| | - Mahsa Sedighi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
3
|
Bao H, Wang Y, Huang Y, Zhang Y, Dai H. The Beneficial Role of Polysaccharide Hydrocolloids in Meat Products: A Review. Gels 2025; 11:55. [PMID: 39852026 PMCID: PMC11764839 DOI: 10.3390/gels11010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Polysaccharide hydrocolloids have garnered increasing attention from consumers, experts, and food processing industries due to their advantages of abundant resources, favorable thickening properties, emulsification stability, biocompatibility, biodegradability, and high acceptance as food additives. This review focuses on the application of polysaccharide hydrocolloids and their beneficial roles in meat products by focusing on several commonly used polysaccharides (i.e., cellulose, chitosan, starch, sodium alginate, pectin, and carrageenan). Firstly, the recent advancements of polysaccharide hydrocolloids used in meat products are briefly introduced, along with their structure and potential application prospects. Then, the beneficial roles of polysaccharide hydrocolloids in meat products are comprehensively summarized and highlighted, including retarding lipid and protein oxidation, enhancing nutritional properties, improving texture and color quality, providing antibacterial activity, monitoring freshness, acting as a cryoprotectant, improving printability, and ensuring security. Finally, the challenges and opportunities of polysaccharide hydrocolloids in meat products are also introduced.
Collapse
Affiliation(s)
- Hanxiao Bao
- College of Food Science, Southwest University, Chongqing 400715, China; (H.B.); (Y.W.); (Y.Z.)
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuxi Wang
- College of Food Science, Southwest University, Chongqing 400715, China; (H.B.); (Y.W.); (Y.Z.)
| | - Yue Huang
- Chongqing Sericulture Science and Technology Research Institute, Chongqing 400700, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; (H.B.); (Y.W.); (Y.Z.)
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China; (H.B.); (Y.W.); (Y.Z.)
| |
Collapse
|
4
|
Yücetepe M, Tuğba Özaslan Z, Karakuş MŞ, Akalan M, Karaaslan A, Karaaslan M, Başyiğit B. Unveiling the multifaceted world of anthocyanins: Biosynthesis pathway, natural sources, extraction methods, copigmentation, encapsulation techniques, and future food applications. Food Res Int 2024; 187:114437. [PMID: 38763684 DOI: 10.1016/j.foodres.2024.114437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/04/2024] [Accepted: 04/27/2024] [Indexed: 05/21/2024]
Abstract
Numerous datasets regarding anthocyanins have been noted elsewhere. These previous studies emphasized that all processes must be carried out meticulously from the source used to obtain anthocyanins to their inclusion in relevant applications. However, today, full standardization has not yet been achieved for these processes. For this, presenting the latest developments regarding anthocyanins under one roof would be a useful approach to guide the scientific literature. The current review was designed to serve the stated points. In this context, their biosynthesis pathway was elaborated. Superior potential of fruits and certain by-products in obtaining anthocyanins was revealed compared to their other counterparts. Health-promoting benefits of anthocyanins were detailed. Also, the situation of innovative techniques (ultrasound-assisted extraction, subcritical water extraction, pulse electrical field extraction, and so on) in the anthocyanin extraction was explained. The stability issues, which is one of the most important problems limiting the use of anthocyanins in applications were discussed. The role of copigmentation and various encapsulation techniques in solving these stability problems was summarized. This critical review is a map that provides detailed information about the processes from obtaining anthocyanins, which stand out with their functional properties, to their incorporation into various systems.
Collapse
Affiliation(s)
- Melike Yücetepe
- Harran University, Engineering Faculty, Food Engineering Department, Şanlıurfa, Turkey
| | - Zeynep Tuğba Özaslan
- Harran University, Engineering Faculty, Food Engineering Department, Şanlıurfa, Turkey
| | - Mehmet Şükrü Karakuş
- Harran University, Application and Research Center for Science and Technology, Şanlıurfa, Turkey
| | - Merve Akalan
- Harran University, Engineering Faculty, Food Engineering Department, Şanlıurfa, Turkey
| | - Asliye Karaaslan
- Harran University, Vocational School, Food Processing Programme, Şanlıurfa, Turkey
| | - Mehmet Karaaslan
- Harran University, Engineering Faculty, Food Engineering Department, Şanlıurfa, Turkey
| | - Bülent Başyiğit
- Harran University, Engineering Faculty, Food Engineering Department, Şanlıurfa, Turkey.
| |
Collapse
|
5
|
Wongphan P, Promhuad K, Srisa A, Laorenza Y, Oushapjalaunchai C, Harnkarnsujarit N. Unveiling the Future of Meat Packaging: Functional Biodegradable Packaging Preserving Meat Quality and Safety. Polymers (Basel) 2024; 16:1232. [PMID: 38732702 PMCID: PMC11085279 DOI: 10.3390/polym16091232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024] Open
Abstract
Meat quality and shelf life are important parameters affecting consumer perception and safety. Several factors contribute to the deterioration and spoilage of meat products, including microbial growth, chemical reactions in the food's constituents, protein denaturation, lipid oxidation, and discoloration. This study reviewed the development of functional packaging biomaterials that interact with food and the environment to improve food's sensory properties and consumer safety. Bioactive packaging incorporates additive compounds such as essential oils, natural extracts, and chemical substances to produce composite polymers and polymer blends. The findings showed that the incorporation of additive compounds enhanced the packaging's functionality and improved the compatibility of the polymer-polymer matrices and that between the polymers and active compounds. Food preservatives are alternative substances for food packaging that prevent food spoilage and preserve quality. The safety of food contact materials, especially the flavor/odor contamination from the packaging to the food and the mass transfer from the food to the packaging, was also assessed. Flavor is a key factor in consumer purchasing decisions and also determines the quality and safety of meat products. Novel functional packaging can be used to preserve the quality and safety of packaged meat products.
Collapse
Affiliation(s)
- Phanwipa Wongphan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (P.W.); (K.P.); (A.S.); (Y.L.); (C.O.)
| | - Khwanchat Promhuad
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (P.W.); (K.P.); (A.S.); (Y.L.); (C.O.)
| | - Atcharawan Srisa
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (P.W.); (K.P.); (A.S.); (Y.L.); (C.O.)
| | - Yeyen Laorenza
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (P.W.); (K.P.); (A.S.); (Y.L.); (C.O.)
| | - Chayut Oushapjalaunchai
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (P.W.); (K.P.); (A.S.); (Y.L.); (C.O.)
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (P.W.); (K.P.); (A.S.); (Y.L.); (C.O.)
- Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
6
|
Singh S, Bhat HF, Kumar S, Aadil RM, Abdi G, Bhat ZF. Insect protein-based composite film incorporated with E. purpurea-based nanoparticles augmented the storage stability of parmesan cheese. Heliyon 2024; 10:e29036. [PMID: 38601692 PMCID: PMC11004877 DOI: 10.1016/j.heliyon.2024.e29036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/12/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
The objective of this study was to prepare an insect protein-based composite film containing plant extract-based nanoparticles to augment the lipid and microbial stability of cheese. An ultrasonication-mediated green method of synthesis was followed to develop the nanoparticles using E. purpurea flower extract (EP-NPs). The film was developed using locust protein (Loc-Pro) and different levels of EP-NPs [2.0% (T3), 1.5% (T2), 1.0% (T1), and 0.0% (T0)]. It was characterised and evaluated for efficacy using parmesan cheese (Par-Che) as a model system stored for 90 days (4 ± 1 °C). The addition of EP-NPs markedly enhanced the antioxidant and antimicrobial activities of the Loc-Pro-based film as indicated by the results of radical-scavenging activity (ABTS and DPPH), total-flavonoid and total-phenolic contents, ion-reducing potential (FRAP), and inhibitory halos (mm). It also increased (P < 0.05) the density (g/ml), redness (a*), and yellowness (b*) and reduced (P < 0.05) the WVTR (mg/m2t), transparency (%) and lightness (L*) of the Loc-Pro-based film. The film incorporated with EP-NPs showed a marked desirable impact on protein oxidation, lipid stability, microbial quality and antioxidant potential of Par-Che during 90 days of storage. While cheese samples without any film showed mean values of 2.24 mg malondialdehyde/kg, 0.79% oleic acid, 1.22 nm/mg protein, 2.52 log CFU/g and 1.24 log CFU/g on day 90 for TBARS, FFA, total carbonyl content, total plate count and psychrophilic count, samples within T3 films showed significantly lower values of 1.82, 0.67, 0.81, 2.15, and 0.81, respectively. A positive impact of the Loc-Pro-based film was found on the sensory characteristics of Par-Che. Both the Loc-Pro-based film and the digestion simulation improved the radical-scavenging activity and ion-reducing potential of the Par-Che. Our results indicate the potential of Loc-Pro-based film as a means to enhance the storage quality of cheese.
Collapse
Affiliation(s)
- Shubam Singh
- Division of Livestock Products Technology, SKUAST-J, Jammu, India
| | - Hina F. Bhat
- Division of Animal Biotechnology, SKUAST-K, Kashmir, India
| | - Sunil Kumar
- Division of Livestock Products Technology, SKUAST-J, Jammu, India
| | | | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, 75169, Iran
| | - Zuhaib F. Bhat
- Division of Livestock Products Technology, SKUAST-J, Jammu, India
| |
Collapse
|
7
|
Kokkuvayil Ramadas B, Rhim JW, Roy S. Recent Progress of Carrageenan-Based Composite Films in Active and Intelligent Food Packaging Applications. Polymers (Basel) 2024; 16:1001. [PMID: 38611259 PMCID: PMC11014226 DOI: 10.3390/polym16071001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/23/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Recently, as concerns about petrochemical-derived polymers increase, interest in biopolymer-based materials is increasing. Undoubtedly, biopolymers are a better alternative to solve the problem of synthetic polymer-based plastics for packaging purposes. There are various types of biopolymers in nature, and mostly polysaccharides are used in this regard. Carrageenan is a hydrophilic polysaccharide extracted from red algae and has recently attracted great interest in the development of food packaging films. Carrageenan is known for its excellent film-forming properties, high compatibility and good carrier properties. Carrageenan is readily available and low cost, making it a good candidate as a polymer matrix base material for active and intelligent food packaging films. The carrageenan-based packaging film lacks mechanical, barrier, and functional properties. Thus, the physical and functional properties of carrageenan-based films can be enhanced by blending this biopolymer with functional compounds and nanofillers. Various types of bioactive ingredients, such as nanoparticles, natural extracts, colorants, and essential oils, have been incorporated into the carrageenan-based film. Carrageenan-based functional packaging film was found to be useful for extending the shelf life of packaged foods and tracking spoilage. Recently, there has been plenty of research work published on the potential of carrageenan-based packaging film. Therefore, this review discusses recent advances in carrageenan-based films for applications in food packaging. The preparation and properties of carrageenan-based packaging films were discussed, as well as their application in real-time food packaging. The latest discussion on the potential of carrageenan as an alternative to traditionally used synthetic plastics may be helpful for further research in this field.
Collapse
Affiliation(s)
- Bharath Kokkuvayil Ramadas
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, India;
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, India;
| |
Collapse
|
8
|
Singh S, Bhat HF, Kumar S, Muhammad Aadil R, Mohan MS, Proestos C, Bhat ZF. Storage stability of chocolate can be enhanced using locust protein-based film incorporated with E. purpurea flower extract-based nanoparticles. ULTRASONICS SONOCHEMISTRY 2023; 100:106594. [PMID: 37713960 PMCID: PMC10511807 DOI: 10.1016/j.ultsonch.2023.106594] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/24/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
The study aimed to develop a locust protein (Loct-Prot)-based film to enhance the lipid oxidative and storage stability of chocolate. The E. purpurea flower extract based-nanoparticles (EFNPs) were developed using ultrasonication (500 W and 20 kHz for 10 min) following a green method of synthesis. The EFPNs were incorporated at different levels [T0 (0%), T1 (1.0%), T2 (1.5%), and T3 (2.0%)] to impart bioactive properties to the Loct-Prot-based films which were used for packaging of white chocolate during 90 days trial. The addition of EFPNs increased (P < 0.05) the density of the Loct-Prot-based film which in turn decreased (P < 0.05) the transmittance (%) and WVTR (water vapour transmission rate, mg/mt2) with increasing levels of addition. While brightness (L*) showed a decrease, redness (a*) and yellowness (b*) increased with increasing concentration of EFPNs. No significant (P > 0.05) effect was recorded on other physicomechanical parameters of the film. The addition of EFPNs (P < 0.05) increased the mean values of all the antioxidant and antimicrobial parameters (total flavonoid and phenolic contents, FRAP, DPPH, and ABTS activities, antioxidant release and inhibitory halos) of the film. The presence of Loct-Prot-based film decreased the lipid (TBARS and free fatty acids) and protein (total carbonyl content) oxidation of the chocolate samples during storage. A significant (P < 0.05) increase was observed in the antioxidant properties [FRAP (µM TE/100 g) and DPPH and ABTS activities (% inhibition)] of the chocolate samples after one month and the sensory and microbial qualities towards the end of the storage. The gastrointestinal digestion simulation showed a positive impact on the antioxidant properties of the chocolate. Based on our results, Loct-Prot-based film incorporated with EFPNs can be used to enhance the storage stability of chocolate during storage.
Collapse
Affiliation(s)
- Shubam Singh
- Division of Livestock Products Technology, SKUAST-J, India
| | - Hina F Bhat
- Division of Animal Biotechnology, SKUAST-K, India.
| | - Sunil Kumar
- Division of Livestock Products Technology, SKUAST-J, India
| | | | - Maneesha S Mohan
- Dairy and Food Science, South Dakota State University, Brookings, USA.
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou 15784, Athens, Greece.
| | - Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST-J, India.
| |
Collapse
|
9
|
Sajimon A, Edakkadan AS, Subhash AJ, Ramya M. Incorporating oregano (Origanum vulgare L.) Essential oil onto whey protein concentrate based edible film towards sustainable active packaging. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2408-2422. [PMID: 37424588 PMCID: PMC10326189 DOI: 10.1007/s13197-023-05763-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 07/11/2023]
Abstract
The study's objectives were to develop a packaging film incorporating oregano essential oil, and evaluate the antioxidant, antibacterial, mechanical, and physicochemical activities of the film toward grapes packaging. The films were developed by casting method, after adding nano-emulsion of essential oil into WPC-glycerol film forming solution. The effects of the Oregano Essential Oil (OEO) at different concentrations of 1, 2, 3, and 4% (w/w) in the WPC edible films were studied. The light transmittance, colour aspects, water aspects, mechanical, antioxidant, antimicrobial activities, FTIR, SEM microstructure, and biodegradability of the film were studied. Acidity, weight, TSS, pH and 9-point hedonic sensory analysis of grapes packed in WPC-OEO film were evaluated. Results showed that 3% OEO incorporated WPC film displayed positive inhibition towards pathogenic bacteria; Staphylococcus aureus and Escherichia coli (25.36 ± 0.52-28.0 ± 0.5 mm), the antioxidant activity of 86.89 ± 0.087% and 51.24 ± 0.031% for DPPH, FRAP respectively and degradation after 10 days. The film displayed reduced light transmittance, lower water solubility (44.04 ± 2.361%) and prominent surface characteristics in SEM microstructure and FTIR spectra. The grapes packed in WPC-3% OEO film were firmer, had less surface colour change and showed negligible change in weight, pH, acidity, and Brix value throughout the storage period. Thus, the developed film displayed excellent antibacterial and antioxidant properties that potentially extended the quality of fresh grapes during refrigerated storage. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05763-7.
Collapse
Affiliation(s)
- Athul Sajimon
- Department of Food Technology, K S Rangasamy College of Technology, Tiruchengode, Erode India
| | - Athulya Sunil Edakkadan
- Department of Food Technology, K S Rangasamy College of Technology, Tiruchengode, Erode India
| | - Athira Jayasree Subhash
- Department of Food Technology, K S Rangasamy College of Technology, Tiruchengode, Erode India
- Present Address: Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - M. Ramya
- Department of Food Technology, K S Rangasamy College of Technology, Tiruchengode, Erode India
| |
Collapse
|
10
|
Siddiqui SA, Sundarsingh A, Bahmid NA, Nirmal N, Denayer JFM, Karimi K. A critical review on biodegradable food packaging for meat: Materials, sustainability, regulations, and perspectives in the EU. Compr Rev Food Sci Food Saf 2023; 22:4147-4185. [PMID: 37350102 DOI: 10.1111/1541-4337.13202] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/22/2023] [Accepted: 06/04/2023] [Indexed: 06/24/2023]
Abstract
The development of biodegradable packaging is a challenge, as conventional plastics have many advantages in terms of high flexibility, transparency, low cost, strong mechanical characteristics, and high resistance to heat compared with most biodegradable plastics. The quality of biodegradable materials and the research needed for their improvement for meat packaging were critically evaluated in this study. In terms of sustainability, biodegradable packagings are more sustainable than conventional plastics; however, most of them contain unsustainable chemical additives. Cellulose showed a high potential for meat preservation due to high moisture control. Polyhydroxyalkanoates and polylactic acid (PLA) are renewable materials that have been recently introduced to the market, but their application in meat products is still limited. To be classified as an edible film, the mechanical properties and acceptable control over gas and moisture exchange need to be improved. PLA and cellulose-based films possess the advantage of protection against oxygen and water permeation; however, the addition of functional substances plays an important role in their effects on the foods. Furthermore, the use of packaging materials is increasing due to consumer demand for natural high-quality food packaging that serves functions such as extended shelf-life and contamination protection. To support the importance moving toward biodegradable packaging for meat, this review presented novel perspectives regarding ecological impacts, commercial status, and consumer perspectives. Those aspects are then evaluated with the specific consideration of regulations and perspective in the European Union (EU) for employing renewable and ecological meat packaging materials. This review also helps to highlight the situation regarding biodegradable food packaging for meat in the EU specifically.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Department for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | | | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Yogyakarta, Indonesia
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Joeri F M Denayer
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Keikhosro Karimi
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
11
|
Mileti O, Baldino N, Filice F, Lupi FR, Sinicropi MS, Gabriele D. Formulation Study on Edible Film from Waste Grape and Red Cabbage. Foods 2023; 12:2804. [PMID: 37509896 PMCID: PMC10379064 DOI: 10.3390/foods12142804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: Recent research on the valorization of agro-industrial waste has attempted to obtain new products. Grape residue is a waste product used in the grape wine industry that is rich in anthocyanins, as well as leaves and waste parts from red cabbage processing. Anthocyanins, thanks to their various functionalities, can be recovered and used as active and intelligent agents in food packaging. Anthocyanins have antioxidant properties that help to prevent cardiovascular disease. (2) Methods: In this study, the process of extracting waste was studied using solvent and supercritical CO2 extraction. The obtained anthocyanins were used in starch-based food film formulations. Several formulations were studied using rheometric techniques and the effect of adding anthocyanins on optimal film formulation was investigated. (3) Results: Solvent extractions resulted in a maximum extraction yield. The extracts obtained were used for the preparation of coating and edible films, optimized in the formulation. (4) Conclusions: The addition of anthocyanins to films resulted in increased sample structuring and mechanical properties that are valid for applications, like dipping using coverage methods. The packaging is also attractive and pH-sensitive.
Collapse
Affiliation(s)
- Olga Mileti
- Department of Information, Modeling, Electronics and System Engineering (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, I-87036 Arcavacata Rende, CS, Italy
| | - Noemi Baldino
- Department of Information, Modeling, Electronics and System Engineering (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, I-87036 Arcavacata Rende, CS, Italy
| | - Francesco Filice
- Department of Information, Modeling, Electronics and System Engineering (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, I-87036 Arcavacata Rende, CS, Italy
| | - Francesca R Lupi
- Department of Information, Modeling, Electronics and System Engineering (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, I-87036 Arcavacata Rende, CS, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, I-87036 Rende, CS, Italy
| | - Domenico Gabriele
- Department of Information, Modeling, Electronics and System Engineering (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, I-87036 Arcavacata Rende, CS, Italy
| |
Collapse
|
12
|
Gheorghita R, Filip R, Lupaescu AV, Iavorschi M, Anchidin-Norocel L, Gutt G. Innovative Materials with Possible Applications in the Wound Dressings Field: Alginate-Based Films with Moringa oleifera Extract. Gels 2023; 9:560. [PMID: 37504439 PMCID: PMC10379161 DOI: 10.3390/gels9070560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
For a long time, biopolymers have proven their effectiveness in the development of materials with various applications, lately those intended for the biomedical and pharmaceutical industries, due to their high biocompatibility and non-toxic, non-allergenic, and non-immunogenic nature. The ability to incorporate various active substances in this matrix has yielded materials with characteristics that are far superior to those of classic, conventional ones. The beneficial effects of consuming Moringa oleifera have promoted the use of this plant, from Ayurvedic to classical medicine. The addition of such compounds in the materials intended for the treatment of surface wounds may represent the future of the development of innovative dressings. This study followed the development of materials based on sodium alginate and moringa powder or essential oil for use as dressings, pads, or sheets. Thus, three materials with the addition of 10-30% moringa powder and three materials with the addition of 10-30% essential oil were obtained. The data were compared with those of the control sample, with sodium alginate and plasticizer. The microtopography indicated that the materials have a homogeneous matrix that allows them to incorporate and maintain natural compounds with prolonged release. For example, the sample with 30% moringa essential oil kept its initial shape and did not disintegrate, although the swelling ratio value reached 4800% after 20 min. After testing the mechanical properties, the same sample had the best tensile strength (TS = 0.248 MPa) and elongation (31.41%), which is important for the flexibility of the dressing. The same sample exhibited a very high antioxidant capacity (60.78% inhibition). The materials obtained with moringa powder added presented good values of physical and mechanical properties, which supports their use as wound dressings for short-term application and the release of embedded compounds. According to the obtained results, all the biopolymeric materials with moringa added can be used as dressings for different wound types.
Collapse
Affiliation(s)
- Roxana Gheorghita
- College of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Roxana Filip
- College of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
- Suceava Emergency County Hospital, 720224 Suceava, Romania
| | - Ancuta-Veronica Lupaescu
- College of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Monica Iavorschi
- College of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Liliana Anchidin-Norocel
- College of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Gheorghe Gutt
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
13
|
Sanches MAR, de Paiva GB, Darros-Barbosa R, Silva-Barretto ACD, Telis-Romero J. Mass transfer modeling during wet salting of caiman meat (Caiman crocodilus yacare) at different brine temperatures. Meat Sci 2023; 199:109128. [PMID: 36738590 DOI: 10.1016/j.meatsci.2023.109128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/10/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
Caiman meat is considered exotic and its consumption has significantly increased due to its nutritional quality. This study aimed to evaluate the kinetics of water content (WC) and salt content (SC) at different temperatures (1, 5, 10 and 15 °C) and to evaluate the use of mathematical models to predict the mass transfer kinetics until equilibrium conditions during the wet salting of caiman tail fillets. Moisture and chloride analyses were performed throughout the wet salting process. Four models (Peleg; Weibull; Zugarramurdi and Lupín; Diffusion) were tested to predict WC and SC kinetics in caiman tail fillets subjected to wet salting. The increase in the temperature resulted in a reduction (P < 0.05) in WC and an increase (P < 0.05) in SC. Nonlinear effects on WC and SC kinetics were observed between the different temperatures evaluated. Furthermore, the effective diffusion coefficients (Dw and Ds) increased (P < 0.05) with increasing temperature. Peleg, Weibull, Zugarramurdi and Lupín, and the Diffusion model satisfactorily represented WC and SC rates throughout the process. The kinetic behavior of the parameters of the models corroborated the effects of temperature on those parameters. Peleg was the best model for predicting WC and SC kinetics, and Zugarramurdi and Lupín was the best for predicting the equilibrium conditions of the process (WC∞ SC∞), all parameters which can be used to describe the mass transfer kinetics during wet salting of caiman tail fillets.
Collapse
Affiliation(s)
- Marcio Augusto Ribeiro Sanches
- São Paulo State University - UNESP, Institute of Biosciences, Humanities and Exacts Sciences - IBILCE, Campus São José do Rio Preto, Department of Food Technology and Engineering, Cristovão Colombo St. 2265, Zip Code 15.054-000, São José do Rio Preto, São Paulo, Brazil
| | - Gilmar Borges de Paiva
- São Paulo State University - UNESP, Institute of Biosciences, Humanities and Exacts Sciences - IBILCE, Campus São José do Rio Preto, Department of Food Technology and Engineering, Cristovão Colombo St. 2265, Zip Code 15.054-000, São José do Rio Preto, São Paulo, Brazil; Federal Institute of Education, Science, and Technology of Mato Grosso, IFMT, Highway MT 235, KM 12, Rural Zone, Zip Code 78360-000 Campo Novo of Parecis, MT, Brazil
| | - Roger Darros-Barbosa
- São Paulo State University - UNESP, Institute of Biosciences, Humanities and Exacts Sciences - IBILCE, Campus São José do Rio Preto, Department of Food Technology and Engineering, Cristovão Colombo St. 2265, Zip Code 15.054-000, São José do Rio Preto, São Paulo, Brazil
| | - Andrea Carla da Silva-Barretto
- São Paulo State University - UNESP, Institute of Biosciences, Humanities and Exacts Sciences - IBILCE, Campus São José do Rio Preto, Department of Food Technology and Engineering, Cristovão Colombo St. 2265, Zip Code 15.054-000, São José do Rio Preto, São Paulo, Brazil.
| | - Javier Telis-Romero
- São Paulo State University - UNESP, Institute of Biosciences, Humanities and Exacts Sciences - IBILCE, Campus São José do Rio Preto, Department of Food Technology and Engineering, Cristovão Colombo St. 2265, Zip Code 15.054-000, São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
14
|
Rosseto M, Rigueto CVT, Alessandretti I, de Oliveira R, Raber Wohlmuth DA, Loss RA, Dettmer A, Richards NSPDS. Whey-based polymeric films for food packaging applications: a review of recent trends. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3217-3229. [PMID: 36329662 DOI: 10.1002/jsfa.12310] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
The food industry is always looking for new strategies to extend the shelf life of food. In recent years, the focus has been on edible films and coatings. These play an essential role in the quality, safety, transport, storage, and display of a wide variety of fresh and processed foods and contribute to environmental sustainability. In this sense, this study aimed to carry out a bibliometric analysis and literature review on the production of whey-based films for application in food packaging. Whey-based films have different characteristics when compared to other biopolymers, such as antimicrobial and immunomodulatory capacity. A wide variety of compounds were found that can be incorporated into whey films, aiming to overcome their limitations related to high solubility and low mechanical properties. These compounds range from plasticizing agents, secondary biomacromolecules added to balance the polymer matrix (gelatin, starch, chitosan), and bioactive agents (essential oils, pigments extracted from plants, and other antimicrobial agents). The most cited foods as application matrix were meat (fish, chicken, ham, and beef), in addition to different types of cheese. Edible and biodegradable films have the potential to replace synthetic polymers, combining social, environmental, and economic aspects. The biggest challenge on a large scale is the stability of physical, chemical, and biological properties during application. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marieli Rosseto
- Federal University of Santa Maria (UFSM), Rural Science Center, Postgraduate Program in Food Science and Technology (PPGCTA), Santa Maria, Brazil
| | - Cesar Vinicius Toniciolli Rigueto
- Federal University of Santa Maria (UFSM), Rural Science Center, Postgraduate Program in Food Science and Technology (PPGCTA), Santa Maria, Brazil
| | - Ingridy Alessandretti
- Faculty of Agronomy and Veterinary Medicine (FAMV), University of Passo Fundo (UPF), Postgraduate Program in Food Science and Technology (PPGCTA), Passo Fundo, Brazil
| | - Rafaela de Oliveira
- Faculty of Engineering and Architecture (FEAR), Chemical Engineering Course, University of Passo Fundo (UPF), Passo Fundo, Brazil
| | - Daniela Alexia Raber Wohlmuth
- Faculty of Engineering and Architecture (FEAR), Chemical Engineering Course, University of Passo Fundo (UPF), Passo Fundo, Brazil
| | - Raquel Aparecida Loss
- Food Engineering Department, Faculty of Architecture and Engineering (FAE), Mato Grosso State University (UNEMAT), Barra do Bugres, Brazil
| | - Aline Dettmer
- Faculty of Agronomy and Veterinary Medicine (FAMV), University of Passo Fundo (UPF), Postgraduate Program in Food Science and Technology (PPGCTA), Passo Fundo, Brazil
- Faculty of Engineering and Architecture (FEAR), Chemical Engineering Course, University of Passo Fundo (UPF), Passo Fundo, Brazil
| | | |
Collapse
|
15
|
Abstract
For each kilogram of food protein wasted, between 15 and 750 kg of CO2 end up in the atmosphere. With this alarming carbon footprint, food protein waste not only contributes to climate change but also significantly impacts other environmental boundaries, such as nitrogen and phosphorus cycles, global freshwater use, change in land composition, chemical pollution, and biodiversity loss. This contrasts sharply with both the high nutritional value of proteins, as well as their unique chemical and physical versatility, which enable their use in new materials and innovative technologies. In this review, we discuss how food protein waste can be efficiently valorized not only by reintroduction into the food chain supply but also as a template for the development of sustainable technologies by allowing it to exit the food-value chain, thus alleviating some of the most urgent global challenges. We showcase three technologies of immediate significance and environmental impact: biodegradable plastics, water purification, and renewable energy. We discuss, by carefully reviewing the current state of the art, how proteins extracted from food waste can be valorized into key players to facilitate these technologies. We furthermore support analysis of the extant literature by original life cycle assessment (LCA) examples run ad hoc on both plant and animal waste proteins in the context of the technologies considered, and against realistic benchmarks, to quantitatively demonstrate their efficacy and potential. We finally conclude the review with an outlook on how such a comprehensive management of food protein waste is anticipated to transform its carbon footprint from positive to negative and, more generally, have a favorable impact on several other important planetary boundaries.
Collapse
Affiliation(s)
- Mohammad Peydayesh
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
| | - Massimo Bagnani
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
| | - Wei Long Soon
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University, 639798 Singapore
| | - Raffaele Mezzenga
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
- Department
of Materials, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
16
|
Luz RF, Ferreira RDR, Silva CNS, Miranda BM, Piccoli RH, Silva MS, Paula LC, Leles MIG, Fernandes KF, Cruz MV, Batista KA. Development of a Halochromic, Antimicrobial, and Antioxidant Starch-Based Film Containing Phenolic Extract from Jaboticaba Peel. Foods 2023; 12:653. [PMID: 36766181 PMCID: PMC9914361 DOI: 10.3390/foods12030653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
In this study, the antioxidant, antimicrobial, mechanical, optical, and barrier attributes of Solanum lycocarpum starch bio-based edible films incorporated with a phenolic extract from jaboticaba peel were investigated. Aiming to determine the effect of the polymers and the phenolic extract on the properties of the films, a three-factor simplex-lattice design was employed, and the formulation optimization was based on the produced films' antioxidant potential. The optimized formulation of the starch-PEJP film showed a reddish-pink color with no cracks or bubbles and 91% antioxidant activity against DPPH radical. The optimized starch-PEJP film showed good transparency properties and a potent UV-blocking action, presenting color variation as a function of the pH values. The optimized film was also considerably resistant and highly flexible, showing a water vapor permeability of 3.28 × 10-6 g m-1 h-1 Pa-1. The microbial permeation test and antimicrobial evaluation demonstrated that the optimized starch-PEJP film avoided microbial contamination and was potent in reducing the growth of Escherichia coli, Staphylococcus aureus, and Salmonella spp. In summary, the active starch-PEJP film showed great potential as an environmentally friendly and halochromic material, presenting antioxidant and antimicrobial properties and high UV-protecting activity.
Collapse
Affiliation(s)
- Rafaela F. Luz
- Federal University of Goias, Samambaia Campus, Goiânia 74690-900, GO, Brazil
| | | | - Cassio N. S. Silva
- Federal University of Goias, Samambaia Campus, Goiânia 74690-900, GO, Brazil
| | - Bruna M. Miranda
- Federal University of Goias, Samambaia Campus, Goiânia 74690-900, GO, Brazil
| | - Roberta H. Piccoli
- Food Science Department, Federal University of Lavras, Lavras 37200-000, MG, Brazil
| | - Monique S. Silva
- Food Science Department, Federal University of Lavras, Lavras 37200-000, MG, Brazil
| | - Ladyslene C. Paula
- Department of Food Engineering, Federal University of Rondônia, Ariquemes 76870-000, RO, Brazil
| | - Maria Inês G. Leles
- Federal University of Goias, Samambaia Campus, Goiânia 74690-900, GO, Brazil
| | - Kátia F. Fernandes
- Federal University of Goias, Samambaia Campus, Goiânia 74690-900, GO, Brazil
| | - Maurício V. Cruz
- Federal Institute for Education, Science, and Technology of Goias, Goiânia 74270-040, GO, Brazil
| | - Karla A. Batista
- Federal Institute for Education, Science, and Technology of Goias, Goiânia 74270-040, GO, Brazil
| |
Collapse
|
17
|
Latest Trends in Sustainable Polymeric Food Packaging Films. Foods 2022; 12:foods12010168. [PMID: 36613384 PMCID: PMC9818434 DOI: 10.3390/foods12010168] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023] Open
Abstract
Food packaging is the best way to protect food while it moves along the entire supply chain to the consumer. However, conventional food packaging poses some problems related to food wastage and excessive plastic production. Considering this, the aim of this work was to examine recent findings related to bio-based alternative food packaging films by means of conventional methodologies and additive manufacturing technologies, such as 3D printing (3D-P), with potential to replace conventional petroleum-based food packaging. Based on the findings, progress in the development of bio-based packaging films, biopolymer-based feedstocks for 3D-P, and innovative food packaging materials produced by this technology was identified. However, the lack of studies suggests that 3D-P has not been well-explored in this field. Nonetheless, it is probable that in the future this technology will be more widely employed in the food packaging field, which could lead to a reduction in plastic production as well as safer food consumption.
Collapse
|
18
|
Moradi M, Jouki M, Emtiazjoo M, Mooraki N, Shakouri MJ. Biocompatible pH-sensitive intelligent film made by bioactive compounds of Dutch rose, potato starch and nanocrystals in detection of trout fillet spoilage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01710-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
19
|
Sharaby MR, Soliman EA, Abdel-Rahman AB, Osman A, Khalil R. Novel pectin-based nanocomposite film for active food packaging applications. Sci Rep 2022; 12:20673. [PMID: 36450774 PMCID: PMC9712656 DOI: 10.1038/s41598-022-25192-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Novel pectin-based films reinforced with crystalline nanocellulose (CNC) and activated with zinc oxide nanoparticles (ZnO NPs) were prepared by solvent-casting method. Film ingredients enhanced UV-blocking, thermal, and antibacterial properties of active films against well-known foodborne pathogens. Optimal active films exhibited higher mechanical, water vapor barrier properties compared to pristine pectin films. SEM confirmed the even distribution of CNC and ZnO NPs in pectin matrix and their interactions were proven using FTIR. Wrapping hard cheese samples artificially contaminated with Staphylococcus aureus and Salmonella enterica with the ternary nanocomposite film at 7 °C for 5 days significantly reduced the total population counts by at least 1.02 log CFU/g. Zn2+ migrating to wrapped cheese samples was below the specific limit (5 mg/kg), confirming their safety for food contact. Overall, ZnO/CNC/pectin nanocomposite films represent promising candidates for active food packaging as safe, eco-friendly alternatives for synthetic packaging materials.
Collapse
Affiliation(s)
- Muhammed R Sharaby
- Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, 21934, Egypt.
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Emad A Soliman
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Adel B Abdel-Rahman
- Department of Electronics and Communications Engineering, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Ahmed Osman
- Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, 21934, Egypt
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Rowaida Khalil
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| |
Collapse
|
20
|
Singh AK, Kim JY, Lee YS. Phenolic Compounds in Active Packaging and Edible Films/Coatings: Natural Bioactive Molecules and Novel Packaging Ingredients. Molecules 2022; 27:7513. [PMID: 36364340 PMCID: PMC9655785 DOI: 10.3390/molecules27217513] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 08/01/2023] Open
Abstract
In recent years, changing lifestyles and food consumption patterns have driven demands for high-quality, ready-to-eat food products that are fresh, clean, minimally processed, and have extended shelf lives. This demand sparked research into the creation of novel tools and ingredients for modern packaging systems. The use of phenolic-compound-based active-packaging and edible films/coatings with antimicrobial and antioxidant activities is an innovative approach that has gained widespread attention worldwide. As phenolic compounds are natural bioactive molecules that are present in a wide range of foods, such as fruits, vegetables, herbs, oils, spices, tea, chocolate, and wine, as well as agricultural waste and industrial byproducts, their utilization in the development of packaging materials can lead to improvements in the oxidative status and antimicrobial properties of food products. This paper reviews recent trends in the use of phenolic compounds as potential ingredients in food packaging, particularly for the development of phenolic compounds-based active packaging and edible films. Moreover, the applications and modes-of-action of phenolic compounds as well as their advantages, limitations, and challenges are discussed to highlight their novelty and efficacy in enhancing the quality and shelf life of food products.
Collapse
|
21
|
Oladzadabbasabadi N, Mohammadi Nafchi A, Ghasemlou M, Ariffin F, Singh Z, Al-Hassan A. Natural anthocyanins: Sources, extraction, characterization, and suitability for smart packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
22
|
Chacha JS, Ofoedu CE, Xiao K. Essential
Oil‐Based
Active
Polymer‐Based
Packaging System: A Review on its Effect on the Antimicrobial, Antioxidant, and Sensory Properties of Beef and Chicken Meat. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James S. Chacha
- School of Food Science and Engineering South China University of Technology Guangzhou Guangdong China
- Department of Food Science and Agroprocessing School of Engineering and Technology Sokoine University of Agriculture, P.O. Box 3006, Chuo Kikuu Morogoro Tanzania
| | - Chigozie E. Ofoedu
- School of Food Science and Engineering South China University of Technology Guangzhou Guangdong China
- Department of Food Science and Technology, School of Engineering and Engineering Technology Federal University of Technology Imo State Owerri Nigeria
| | - Kaijun Xiao
- School of Food Science and Engineering South China University of Technology Guangzhou Guangdong China
| |
Collapse
|
23
|
He J, Ye S, Correia P, Fernandes I, Zhang R, Wu M, Freitas V, Mateus N, Oliveira H. Dietary polyglycosylated anthocyanins, the smart option? A comprehensive review on their health benefits and technological applications. Compr Rev Food Sci Food Saf 2022; 21:3096-3128. [PMID: 35534086 DOI: 10.1111/1541-4337.12970] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 02/01/2022] [Accepted: 04/07/2022] [Indexed: 01/01/2023]
Abstract
Over the years, anthocyanins have emerged as one of the most enthralling groups of natural phenolic compounds and more than 700 distinct structures have already been identified, illustrating the exceptional variety spread in nature. The interest raised around anthocyanins goes way beyond their visually appealing colors and their acknowledged structural and biological properties have fueled intensive research toward their application in different contexts. However, the high susceptibility of monoglycosylated anthocyanins to degradation under certain external conditions might compromise their application. In that regard, polyglycosylated anthocyanins (PGA) might offer an alternative to overcome this issue, owing to their peculiar structure and consequent less predisposition to degradation. The most recent scientific and technological findings concerning PGA and their food sources are thoroughly described and discussed in this comprehensive review. Different issues, including their physical-chemical characteristics, consumption, bioavailability, and biological relevance in the context of different pathologies, are covered in detail, along with the most relevant prospective technological applications. Due to their complex structure and acyl groups, most of the PGA exhibit an overall higher stability than the monoglycosylated ones. Their versatility allows them to act in a wide range of pathologies, either by acting directly in molecular pathways or by modulating the disease environment attributing an added value to their food sources. Their recent usage for technological applications has also been particularly successful in different industry fields including food and smart packaging or in solar energy production systems. Altogether, this review aims to put into perspective the current state and future research on PGA and their food sources.
Collapse
Affiliation(s)
- Jingren He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
| | - Shuxin Ye
- Yun-Hong Group Co. Ltd, Wuhan, China
| | - Patrícia Correia
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Iva Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Rui Zhang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
| | - Muci Wu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
| | - Victor Freitas
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Nuno Mateus
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Hélder Oliveira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
24
|
de Barros Vinhal GLRR, Ribeiro Sanches MA, Barcia MT, Rodrigues D, Pertuzatti PB. Murici (Byrsonima verbascifolia): A high bioactive potential fruit for application in cereal bars. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Barretto TL, Sanches MAR, Pateiro M, Lorenzo JM, Telis-Romero J, da Silva Barretto AC. Recent advances in the application of ultrasound to meat and meat products: Physicochemical and sensory aspects. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2028285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Tiago Luis Barretto
- São Paulo State University – Unesp, Institute of Biosciences, Humanities and Exact Sciences – Ibilce, Campus São José Do Rio Preto, Food Engineering and Technology Department - Meat and Meat Products Laboratory, São Paulo, Brazil
- Federal Institute of São Paulo – Ifsp, Campus Barretos, São Paulo, Brazil
| | - Marcio Augusto Ribeiro Sanches
- São Paulo State University – Unesp, Institute of Biosciences, Humanities and Exact Sciences – Ibilce, Campus São José Do Rio Preto, Food Engineering and Technology Department - Meat and Meat Products Laboratory, São Paulo, Brazil
| | - Mirian Pateiro
- Centro Tecnológico de La Carne de Galicia, Avda. Galicia N° 4, Parque Tecnológico de Galícia, San Cibrao Das Viñas, Ourense, Spain
| | - Jose Manuel Lorenzo
- Centro Tecnológico de La Carne de Galicia, Avda. Galicia N° 4, Parque Tecnológico de Galícia, San Cibrao Das Viñas, Ourense, Spain
- Área de Tecnologia de Los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| | - Javier Telis-Romero
- São Paulo State University – Unesp, Institute of Biosciences, Humanities and Exact Sciences – Ibilce, Campus São José Do Rio Preto, Food Engineering and Technology Department - Meat and Meat Products Laboratory, São Paulo, Brazil
| | - Andrea Carla da Silva Barretto
- São Paulo State University – Unesp, Institute of Biosciences, Humanities and Exact Sciences – Ibilce, Campus São José Do Rio Preto, Food Engineering and Technology Department - Meat and Meat Products Laboratory, São Paulo, Brazil
| |
Collapse
|
26
|
Puscaselu RG, Anchidin-Norocel L, Petraru A, Ursachi F. Strategies and Challenges for Successful Implementation of Green Economy Concept: Edible Materials for Meat Products Packaging. Foods 2021; 10:3035. [PMID: 34945586 PMCID: PMC8701328 DOI: 10.3390/foods10123035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 02/07/2023] Open
Abstract
Currently, the problem of pollution due to plastic waste is a major one. The food industry, and especially that of meat and meat products, is intensely polluting, both due to the raw materials used and also to the packaging materials. The aim of the present study was to develop, test, and characterize the biopolymeric materials with applications in the meat industry. To obtain natural materials which are completely edible and biodegradable, different compositions of agar, sodium alginate, water and glycerol were used, thus obtaining 15 films. The films were tested to identify physical properties such as smell, taste, film uniformity and regularity of edges, microstructure, color, transmittance, and opacity. These determinations were supplemented by the evaluation of mechanical properties and solubility. According to the results obtained and the statistical interpretations, three films with the best results were used for packing the slices of dried raw salami. The salami was tested periodically for three months of maintenance in refrigeration conditions, and the results indicate the possibility of substituting conventional materials with the biopolymer ones obtained in the study.
Collapse
Affiliation(s)
- Roxana Gheorghita Puscaselu
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Liliana Anchidin-Norocel
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| | - Ancuţa Petraru
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (A.P.); (F.U.)
| | - Florin Ursachi
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (A.P.); (F.U.)
| |
Collapse
|
27
|
|
28
|
pH-responsive double-layer indicator films based on konjac glucomannan/camellia oil and carrageenan/anthocyanin/curcumin for monitoring meat freshness. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106695] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Claudia Leites L, Julia Menegotto Frick P, Isabel Cristina T. Influence of the incorporation form of waste from the production of orange juice in the properties of cassava starch-based films. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Sani MA, Azizi-Lalabadi M, Tavassoli M, Mohammadi K, McClements DJ. Recent Advances in the Development of Smart and Active Biodegradable Packaging Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1331. [PMID: 34070054 PMCID: PMC8158105 DOI: 10.3390/nano11051331] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
Interest in the development of smart and active biodegradable packaging materials is increasing as food manufacturers try to improve the sustainability and environmental impact of their products, while still maintaining their quality and safety. Active packaging materials contain components that enhance their functionality, such as antimicrobials, antioxidants, light blockers, or oxygen barriers. Smart packaging materials contain sensing components that provide an indication of changes in food attributes, such as alterations in their quality, maturity, or safety. For instance, a smart sensor may give a measurable color change in response to a deterioration in food quality. This article reviews recent advances in the development of active and smart biodegradable packaging materials in the food industry. Moreover, studies on the application of these packaging materials to monitor the freshness and safety of food products are reviewed, including dairy, meat, fish, fruit and vegetable products. Finally, the potential challenges associated with the application of these eco-friendly packaging materials in the food industry are discussed, as well as potential future directions.
Collapse
Affiliation(s)
- Mahmood Alizadeh Sani
- Food Safety and Hygiene Division, School of Public Health, Tehran University of Medical Sciences, Tehran 1417614411, Iran;
| | - Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran;
| | - Milad Tavassoli
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran;
| | - Keyhan Mohammadi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran;
| | | |
Collapse
|