1
|
Shymialevich D, Wójcicki M, Sokołowska B. The Novel Concept of Synergically Combining: High Hydrostatic Pressure and Lytic Bacteriophages to Eliminate Vegetative and Spore-Forming Bacteria in Food Products. Foods 2024; 13:2519. [PMID: 39200446 PMCID: PMC11353811 DOI: 10.3390/foods13162519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
The article focuses on the ongoing challenge of eliminating vegetative and spore-forming bacteria from food products that exhibit resistance to the traditional preservation methods. In response to this need, the authors highlight an innovative approach based on the synergistic utilization of high-hydrostatic-pressure (HHP) and lytic bacteriophages. The article reviews the current research on the use of HHP and lytic bacteriophages to combat bacteria in food products. The scope includes a comprehensive review of the existing literature on bacterial cell damage following HHP application, aiming to elucidate the synergistic effects of these technologies. Through this in-depth analysis, the article aims to contribute to a deeper understanding of how these innovative techniques can improve food safety and quality. There is no available research on the use of HHP and bacteriophages in the elimination of spore-forming bacteria; however, an important role of the synergistic effect of HHP and lytic bacteriophages with the appropriate adjustment of the parameters has been demonstrated in the more effective elimination of non-spore-forming bacteria from food products. This suggests that, when using this approach in the case of spore-forming bacteria, there is a high chance of the effective inactivation of this biological threat.
Collapse
Affiliation(s)
- Dziyana Shymialevich
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (M.W.); (B.S.)
| | | | | |
Collapse
|
2
|
Yu XX, Wang XH, Zhang SA, Zhang YH, Zhang HL, Yin YQ. Study on potential antigenicity and functional properties of whey protein treated by high hydrostatic pressure based on structural analysis. Food Res Int 2023; 173:113218. [PMID: 37803536 DOI: 10.1016/j.foodres.2023.113218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 10/08/2023]
Abstract
High hydrostatic pressure (HHP) is extensively utilized in the field of food processing due to its remarkable ability to preserve the freshness of food. The potential antigenicity of β-lactoglobulin (β-LG) in whey protein isolate (WPI, 3%) treated by HHP was detected by enzyme linked immunosorbent assay (ELISA) using monoclonal antibodies. Furthermore, the impact of pressure-induced structural alterations on the emulsification properties and antioxidant activity of WPI was investigated. The findings revealed that pressures exceeding 300 MPa resulted in molecular aggregation, the formation of inter-molecular disulfide bonds, and an increase in surface hydrophobicity (H0). The percentage of β-sheet decreased along with the pressure. The results showed the increment of α-helix and β-turn with pressure. ELISA demonstrated a significant reduction in the antigenicity of β-LG following HHP treatment (100-600 MPa), with a slight recovery observed at 300 MPa. These spatial structural modifications led to the unfolding of the β-LG molecule, thereby enhancing its digestibility. Moreover, HHP treatment substantially improved the antioxidant properties, with the exposure to hydrophobic amino acids contributing to increased antioxidant properties and emulsion stability.
Collapse
Affiliation(s)
- Xin-Xin Yu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiao-Hui Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Sheng-Ao Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying-Hua Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China; National Center of Technology Innovation for Dairy, Hohhot 010020, PR China.
| | - Han-Lin Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu-Qi Yin
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
3
|
Cao H, Huang Q, Shi J, Guan X, Song H, Zhang Y, Xie J, Fang Y. Effect of conventional and microwave heating treatment on antioxidant activity of quinoa protein after simulated gastrointestinal digestion. Food Chem 2023; 415:135763. [PMID: 36870208 DOI: 10.1016/j.foodchem.2023.135763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/03/2022] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
Effects of microwave and traditional water bath treatment at different temperatures (70, 80, 90 ℃) on in vitro digestion rate and antioxidant activity of digestion products of quinoa protein were investigated. The results indicated microwave treatment at 70 ℃ produced the highest quinoa protein digestion rate and the strongest antioxidant activities of its digestion products (P < 0.05), which was further verified by the results of free amino, sulfhydryl group, gel electrophoresis, amino acid profiles and the molecular weight distribution of the digestion products. However, limited exposure of active groups induced by water bath treatment might decrease the susceptibility of digestive enzymes and subsequently lower the digestibility and antioxidant activities of quinoa protein. The results suggested that a moderate microwave treatment could be used as a potential way to enhance the in vitro digestion rate of quinoa protein, as well as increase the antioxidant activities of its digestion products.
Collapse
Affiliation(s)
- Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Qilong Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Junru Shi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China.
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Jian Xie
- China Grain Wuhan Scientific Research & Design Institute Co. Ltd. Wuhan, PR China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, PR China
| |
Collapse
|
4
|
Carpentieri S, Ferrari G, Donsì F. All-natural wheat gliadin-gum arabic nanocarriers for encapsulation and delivery of grape by-products phenolics obtained through different extraction procedures. Food Chem 2023; 424:136385. [PMID: 37247597 DOI: 10.1016/j.foodchem.2023.136385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/21/2023] [Accepted: 05/13/2023] [Indexed: 05/31/2023]
Abstract
Grape pomace (GP), the major winery by-product, is still rich in phenolic compounds, scarcely applied in food systems due to physicochemical instability issues. This work aimed at fabricating gliadin (G)-based nanoparticles through antisolvent precipitation, for delivery of GP extracts, investigating different extraction strategies with ethanol/water solution (70:30 v/v). Interestingly, the fabricated nanoparticles were characterized by a nanometric size range with hydraulic diameter values around 100 nm and ζ-potential of 18-22 mV. The addition of gum arabic (GA), at the optimized G/GA ratio 1:1, improved particle stability and encapsulation efficiency of GP polyphenols. The two-step extraction of GP in the G-rich solvent retrieved from G extraction, as evidenced by total phenolics (1.24 times higher than the two separately obtained extracts G/GP10:10), HPLC-PDA analysis, encapsulation efficiency (62.9% in terms of epicatechin), and simulated digestion (95.6% release of epicatechin), represented the most promising approach to obtain G nanoparticles for efficient delivery of GP extracts.
Collapse
Affiliation(s)
- Serena Carpentieri
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; ProdAl Scarl c/o University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Francesco Donsì
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| |
Collapse
|
5
|
Zang B, Qiu Z, Zheng Z, Zhang B, Qiao X. Quality Improvement of Garlic Paste by Whey Protein Isolate Combined with High Hydrostatic Pressure Treatment. Foods 2023; 12:foods12071500. [PMID: 37048321 PMCID: PMC10094670 DOI: 10.3390/foods12071500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Garlic, one of the most popular spices and medical herbs, has a unique pungent flavor and taste. Conventional homogenization and thermal treatment commonly lead to flavor and color deterioration in garlic paste, because allicin is highly susceptible to degradation and reaction. The present study was to investigate the effects of whey protein isolate (WPI) and different levels of high hydrostatic pressure (HHP, 200, 300, 400, 500, and 600 MPa) on the quality of garlic paste. Results showed that the addition of WPI in the homogenization of garlic significantly prevented green discoloration. Furthermore, WPI plus HHP under 500 MPa could better protect the color of garlic paste. Higher pressure (600 MPa) led to WPI aggregation, resulting in higher green color chroma of garlic paste. GC-MS results revealed that the application of WPI and HHP in garlic paste increased the relative level of pungent flavor compounds and decreased those of unpleasant odor compounds. The correlation analysis results revealed that WPI efficiently prevented garlic green discoloration, which is attributed to the thiol group in WPI exchanging the sulfonyl groups in allicin. In consideration of the microbial load, flavor and color quality of garlic paste, the optimal processing conditions were found at 500 MPa for 5 min with 2% WPI addition, extending shelf life to 25 days.
Collapse
Affiliation(s)
- Baoyuan Zang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China
| | - Zhichang Qiu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China
| | - Zhenjia Zheng
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China
| | - Bin Zhang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China
| | - Xuguang Qiao
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China
| |
Collapse
|
6
|
Muñoz M, Fernández D, Fresno JM, Delgado D. Effect of high hydrostatic pressure processing on the rennet coagulation kinetics and physicochemical properties of sheep milk rennet-induced gels. J Dairy Sci 2023; 106:2314-2325. [PMID: 36823011 DOI: 10.3168/jds.2022-21879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/12/2022] [Indexed: 02/23/2023]
Abstract
The effects of high hydrostatic pressure on the constituents and coagulation ability and their effect on cheese production of sheep milk have not been studied in detail. The objective of this work was to evaluate the effect of high hydrostatic pressure processing on the coagulation kinetics and physicochemical properties of sheep milk and to explore how such treatment could improve the cheesemaking process. Five batches of milk were tested: 1 untreated control batch and 4 batches each subjected to a different pressure (150, 300, 450, or 600 MPa) for 5 min at 10°C. As treatment pressure increased, values of electrical conductivity and oxidation-reduction potential were found to decrease. However, no significant reduction in pH was recorded. Treatment pressures >300 MPa produced milk with lower lightness (luminosity) and a more yellow and green hue. Pressures >150 MPa resulted in micellar fragmentation, as well as significant increases in particle size, viscosity, and water-holding capacity as a consequence of the denaturing of soluble proteins. High-pressure treatments increased the solubility of colloidal calcium phosphate, leading to a considerable increase in the concentration of minerals in the serum phase. The highest concentrations of calcium and phosphorus in the rennet whey of milk were reached at 300 MPa. Curd coagulation time was reduced by 28% at pressures >300 MPa, and an increase in the curd firming rate was observed. As treatment pressure increased to 450 MPa, the firmness, elasticity, and the percentage creep recovery of gels increased, whereas values of compliance and fracture strain were reduced. Thus, we can conclude that 300 MPa is the optimum treatment pressure for milk intended for cheesemaking by enzymatic coagulation. This pressure produced milk with optimal coagulation kinetics and water-holding properties with the least loss of fat and protein to the whey.
Collapse
Affiliation(s)
- M Muñoz
- Estación Tecnológica de la Leche, ITACYL, Junta de Castilla y León, Palencia, Spain 34071.
| | - D Fernández
- Department of Food Hygiene and Technology, León University, León, Spain 24071
| | - J M Fresno
- Department of Food Hygiene and Technology, León University, León, Spain 24071
| | - D Delgado
- Estación Tecnológica de la Leche, ITACYL, Junta de Castilla y León, Palencia, Spain 34071
| |
Collapse
|
7
|
Landim APM, Tiburski JH, Mellinger CG, Juliano P, Rosenthal A. Potential Application of High Hydrostatic Pressure on the Production of Hydrolyzed Proteins with Antioxidant and Antihypertensive Properties and Low Allergenicity: A Review. Foods 2023; 12:foods12030630. [PMID: 36766158 PMCID: PMC9914325 DOI: 10.3390/foods12030630] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
The high hydrostatic pressure (HHP) process has been studied for several applications in food technology and has been commercially implemented in several countries, mainly for non-thermal pasteurization and shelf-life extension of food products. HHP processing has been demonstrated to accelerate proteolytic hydrolysis at a specific combination of pressure and pressure-holding time for a given protein source and enzyme. The enzymatic hydrolysis of proteins is a well-known alternative to producing biologically active peptides, with antioxidant and antihypertensive capacity, from different food protein sources. However, some of these protein sources contain allergenic epitopes which are often not degraded by traditional hydrolysis. Moreover, the peptide profile and related biological activity of a hydrolysate depend on the protein source, the enzymes used, the parameters of the proteolysis process (pH, temperature, time of hydrolysis), and the use of other technologies such as HHP. The present review aims to provide an update on the use of HHP for improving enzymatic hydrolysis, with a particular focus on studies which evaluated hydrolysate antihypertensive and antioxidant capacity, as well as residual allergenicity. Overall, HHP has been shown to improve the biological properties of hydrolysates. While protein allergenicity can be reduced with traditional hydrolysis, HHP can further reduce the allergenicity. Compared with traditional hydrolysis methods, HHP-assisted protein hydrolysis offers a greater opportunity to add value to protein-rich products through conversion into high-end hydrolysate products with enhanced nutritional and functional properties.
Collapse
Affiliation(s)
- Ana Paula Miguel Landim
- Embrapa Agroindústria de Alimentos, Rio de Janeiro 23020-470, RJ, Brazil
- Postgraduate Program in Food Science and Technology, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica 23897-000, RJ, Brazil
| | - Julia Hauck Tiburski
- Department of Food Technology, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica 23897-000, RJ, Brazil
| | - Caroline Grassi Mellinger
- Embrapa Agroindústria de Alimentos, Rio de Janeiro 23020-470, RJ, Brazil
- Postgraduate Program in Food Science and Technology, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica 23897-000, RJ, Brazil
| | - Pablo Juliano
- CSIRO Agriculture and Food, Werribee, VIC 3030, Australia
| | - Amauri Rosenthal
- Embrapa Agroindústria de Alimentos, Rio de Janeiro 23020-470, RJ, Brazil
- Postgraduate Program in Food Science and Technology, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica 23897-000, RJ, Brazil
- Correspondence: ; Tel./Fax: +55-21-3622-9620
| |
Collapse
|
8
|
Changes in structural and functional properties of whey protein cross-linked by polyphenol oxidase. Food Res Int 2023; 164:112377. [PMID: 36737962 DOI: 10.1016/j.foodres.2022.112377] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/07/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
The natural whey protein is unstable, to achieve more efficient utilization, the functional properties of whey protein were modified by changing its structure, and enzymatic cross-linking is one of the common methods in dairy products to change the functional characterization. This study was conducted with objective to evaluate the structural and functional of whey protein which was cross-linked by polyphenol oxidase from Agaricus bisporus. Whey protein was cross-linked by polyphenol oxidase, and the polymers and dimers were revealed by SDS-PAGE and LC-MS/MS, the structural alterations of the polymers were analyzed by UV-vis, fluorescence spectroscopy and SEM, and the effects of functional properties of whey protein after cross-linked were also explored. Results showed that dimer and high polymer of β-lactoglobulin were formed, the secondary structure of whey protein was exhibited a significant variation, and the microstructure changed obviously. Moreover, the foaming and antioxidant activity of whey protein was enhanced although the emulsifying was reduced after cross-linked. These findings emphasize the feasible application of enzymatic cross-linking in improving the functional properties of whey protein, and provide a new direction for changing the traditional processing technology of whey protein and developing high-quality products.
Collapse
|
9
|
Liu P, Hou M, Yue Y, Tong Y, Zhang T, Lu Z, Yang L. Effects of ultrahigh magnetic field on the structure and properties of whey protein. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
10
|
Separation of α-Lactalbumin Enriched Fraction from Bovine Native Whey Concentrate by Combining Membrane and High-Pressure Processing. Foods 2023; 12:foods12030480. [PMID: 36766009 PMCID: PMC9914712 DOI: 10.3390/foods12030480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Whey exhibits interesting nutritional properties, but its high β-Lactoglobulin (β-Lg) content could be a concern in infant food applications. In this study, high-pressure processing (HPP) was assessed as a β-Lg removal strategy to generate an enriched α-Lactalbumin (α-La) fraction from bovine native whey concentrate. Different HPP treatment parameters were considered: initial pH (physiological and acidified), sample temperature (7-35 °C), pressure (0-600 MPa) and processing time (0-490 s). The conditions providing the best α-La yield and α-La purification degree balance (46.16% and 80.21%, respectively) were 4 min (600 MPa, 23 °C), despite the significant decrease of the surface hydrophobicity and the total thiol content indexes in the α-La-enriched fraction. Under our working conditions, the general effects of HPP on α-La and β-Lg agreed with results reported in other studies of cow milk or whey. Notwithstanding, our results also indicated that the use of native whey concentrate could improve the β-Lg precipitation degree and the α-La purification degree, in comparison to raw milk or whey. Future studies should include further characterization of the α-La-enriched fraction and the implementation of membrane concentration and HPP treatment to valorize cheese whey.
Collapse
|
11
|
Wang W, Yang P, Rao L, Zhao L, Wu X, Wang Y, Liao X. Effect of high hydrostatic pressure processing on the structure, functionality, and nutritional properties of food proteins: A review. Compr Rev Food Sci Food Saf 2022; 21:4640-4682. [PMID: 36124402 DOI: 10.1111/1541-4337.13033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/19/2022] [Accepted: 08/05/2022] [Indexed: 01/28/2023]
Abstract
Proteins are important food ingredients that possess both functional and nutritional properties. High hydrostatic pressure (HHP) is an emerging nonthermal food processing technology that has been subject to great advancements in the last two decades. It is well established that pressure can induce changes in protein folding and oligomerization, and consequently, HHP has the potential to modify the desired protein properties. In this review article, the research progress over the last 15 years regarding the effect of HHP on protein structures, as well as the applications of HHP in modifying protein functionalities (i.e., solubility, water/oil holding capacity, emulsification, foaming and gelation) and nutritional properties (i.e., digestibility and bioactivity) are systematically discussed. Protein unfolding generally occurs during HHP treatment, which can result in increased conformational flexibility and the exposure of interior residues. Through the optimization of HHP and environmental conditions, a balance in protein hydrophobicity and hydrophilicity may be obtained, and therefore, the desired protein functionality can be improved. Moreover, after HHP treatment, there might be greater accessibility of the interior residues to digestive enzymes or the altered conformation of specific active sites, which may lead to modified nutritional properties. However, the practical applications of HHP in developing functional protein ingredients are underutilized and require more research concerning the impact of other food components or additives during HHP treatment. Furthermore, possible negative impacts on nutritional properties of proteins and other compounds must be also considered.
Collapse
Affiliation(s)
- Wenxin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Peiqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lei Rao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Key laboratory for Food Non-Thermal Processing, Beijing, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center for Fruit & Vegetable Processing, Beijing, China.,Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiaomeng Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Key laboratory for Food Non-Thermal Processing, Beijing, China
| | - Yongtao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center for Fruit & Vegetable Processing, Beijing, China.,Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Key laboratory for Food Non-Thermal Processing, Beijing, China.,National Engineering Research Center for Fruit & Vegetable Processing, Beijing, China.,Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
12
|
Feng Y, Yuan D, Cao C, Kong B, Sun F, Xia X, Liu Q. Changes of in vitro digestion rate and antioxidant activity of digestion products of ethanol-modified whey protein isolates. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
13
|
Gharbi N, Marciniak A, Doyen A. Factors affecting the modification of bovine milk proteins in high hydrostatic pressure processing: An updated review. Compr Rev Food Sci Food Saf 2022; 21:4274-4293. [PMID: 35904187 DOI: 10.1111/1541-4337.13012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/17/2022] [Accepted: 07/03/2022] [Indexed: 01/28/2023]
Abstract
High hydrostatic pressure (HHP) treatment induces structural changes in bovine milk proteins depending on factors such as the temperature, pH, concentration, decompression rate, cycling, composition of the medium and pressure level and duration. An in-depth understanding of the impact of these factors is important for controlling HHP-induced modification of milk proteins and the interactions within or between them, which can be applied to prevent undesired aggregation, gelation, and precipitation during HHP processing or to obtain specific milk protein modifications to attain specific protein properties. In this regard, understanding the influences of these factors can provide insight into the modulation and optimization of HHP conditions to attain specific milk protein structures. In recent years, there has been a great research attention on HHP-induced changes in milk proteins influenced by factors such as pH, temperature, concentration, cycling, decompression condition, and medium composition. Hence, to provide insight into how these factors control milk protein structures under HHP treatment and to understand if their effects depend on HHP parameters and environmental conditions, this review discusses recent findings on how various factors (pH, temperature, cycling, decompression rate, medium composition, and concentration) affect HHP-induced bovine milk protein modification. Practical Application: The information provided in this review will be very useful to anticipate the challenges related to the formulation and development of pressure-treated milk and dairy products.
Collapse
Affiliation(s)
- Negar Gharbi
- Departement of Food Sciences, Institute of Nutrition and Functional Foods (INAF) and Dairy Science and Technology Research Centre (STELA), Laval University, Quebec City, Canada
| | - Alice Marciniak
- Department of Food Science, University of Guelph, Guelph, Canada
| | - Alain Doyen
- Departement of Food Sciences, Institute of Nutrition and Functional Foods (INAF) and Dairy Science and Technology Research Centre (STELA), Laval University, Quebec City, Canada
| |
Collapse
|
14
|
Peslerbes M, Fellenberg A, Jardin J, Deglaire A, Ibáñez RA. Manufacture of Whey Protein Hydrolysates Using Plant Enzymes: Effect of Processing Conditions and Simulated Gastrointestinal Digestion on Angiotensin-I-Converting Enzyme (ACE) Inhibitory Activity. Foods 2022; 11:2429. [PMID: 36010429 PMCID: PMC9407499 DOI: 10.3390/foods11162429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
Hydrolysis of proteins leads to the release of bioactive peptides with positive impact on human health. Peptides exhibiting antihypertensive properties (i.e., inhibition of angiotensin-I-converting enzyme) are commonly found in whey protein hydrolysates made with enzymes of animal, plant or microbial origin. However, bioactive properties can be influenced by processing conditions and gastrointestinal digestion. In this study, we evaluated the impact of three plant enzymes (papain, bromelain and ficin) in the manufacture of whey protein hydrolysates with varying level of pH, enzyme-to-substrate ratio and time of hydrolysis, based on a central composite design, to determine the degree of hydrolysis and antihypertensive properties. Hydrolysates made on laboratory scales showed great variation in the type of enzyme used, their concentrations and the pH level of hydrolysis. However, low degrees of hydrolysis in papain and bromelain treatments were associated with increased antihypertensive properties, when compared to ficin. Simulated gastrointestinal digestion performed for selected hydrolysates showed an increase in antihypertensive properties of hydrolysates made with papain and bromelain, which was probably caused by further release of peptides. Several peptides with reported antihypertensive properties were found in all treatments. These results suggest plant enzymes used in this study can be suitable candidates to develop ingredients with bioactive properties.
Collapse
Affiliation(s)
- Marie Peslerbes
- Departamento de Ciencias Animales, Facultad de Agronomia e Ingenieria Forestal, Pontificia Universidad Catolica de Chile, Macul, Santiago 7820436, Chile
- École Supérieure D’agricultures Angers Loire, 49000 Angers, France
| | - Angélica Fellenberg
- Departamento de Ciencias Animales, Facultad de Agronomia e Ingenieria Forestal, Pontificia Universidad Catolica de Chile, Macul, Santiago 7820436, Chile
| | | | | | - Rodrigo A. Ibáñez
- Departamento de Ciencias Animales, Facultad de Agronomia e Ingenieria Forestal, Pontificia Universidad Catolica de Chile, Macul, Santiago 7820436, Chile
- Center for Dairy Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
15
|
Magalhães IS, Guimarães ADB, Tribst AAL, Oliveira EBD, Leite Júnior BRDC. Ultrasound-assisted enzymatic hydrolysis of goat milk casein: Effects on hydrolysis kinetics and on the solubility and antioxidant activity of hydrolysates. Food Res Int 2022; 157:111310. [DOI: 10.1016/j.foodres.2022.111310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/08/2022] [Accepted: 04/26/2022] [Indexed: 11/04/2022]
|
16
|
Zhang L, Liu F, Jin Y, Wu S, Xu X, Yang N. Current Applications and Challenges of Induced Electric Fields for the Treatment of Foods. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Han X, Liang Z, Tian S, Liu L, Wang S. Epigallocatechin gallate (EGCG) modification of structural and functional properties of whey protein isolate. Food Res Int 2022; 158:111534. [DOI: 10.1016/j.foodres.2022.111534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/11/2022] [Accepted: 06/17/2022] [Indexed: 11/04/2022]
|
18
|
Mehra R, Kumar H, Kumar N, Ranvir S, Jana A, Buttar HS, Telessy IG, Awuchi CG, Okpala COR, Korzeniowska M, Guiné RP. Whey proteins processing and emergent derivatives: An insight perspective from constituents, bioactivities, functionalities to therapeutic applications. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104760] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
19
|
Li J, Yang Z, Lin X, Wu S, Li G, Li N, Otter D, Zhu F, Hartinger C, Corke H, Hemar Y. In-flow SAXS investigation of whey protein isolate hydrolyzed by bromelain. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Jadhav HB, Annapure US, Deshmukh RR. Non-thermal Technologies for Food Processing. Front Nutr 2021; 8:657090. [PMID: 34169087 PMCID: PMC8217760 DOI: 10.3389/fnut.2021.657090] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022] Open
Abstract
Food is subjected to various thermal treatments during processes to enhance its shelf-life. But these thermal treatments may result in deterioration of the nutritional and sensory qualities of food. With the change in the lifestyle of people around the globe, their food needs have changed as well. Today's consumer demand is for clean and safe food without compromising the nutritional and sensory qualities of food. This directed the attention of food professionals toward the development of non-thermal technologies that are green, safe, and environment-friendly. In non-thermal processing, food is processed at near room temperature, so there is no damage to food because heat-sensitive nutritious materials are intact in the food, contrary to thermal processing of food. These non-thermal technologies can be utilized for treating all kinds of food like fruits, vegetables, pulses, spices, meat, fish, etc. Non-thermal technologies have emerged largely in the last few decades in food sector.
Collapse
Affiliation(s)
- Harsh Bhaskar Jadhav
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| | - Uday S. Annapure
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| | | |
Collapse
|
21
|
Zhang J, Yu X, Xu B, Yagoub AEA, Mustapha AT, Zhou C. Effect of intensive pulsed light on the activity, structure, physico-chemical properties and surface topography of polyphenol oxidase from mushroom. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Tang CH. Assembled milk protein nano-architectures as potential nanovehicles for nutraceuticals. Adv Colloid Interface Sci 2021; 292:102432. [PMID: 33934002 DOI: 10.1016/j.cis.2021.102432] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 12/21/2022]
Abstract
Nanoencapsulation of hydrophobic nutraceuticals with food ingredients has become one of topical research subjects in food science and pharmaceutical fields. To fabricate food protein-based nano-architectures as nanovehicles is one of effective strategies or approaches to improve water solubility, stability, bioavailability and bioactivities of poorly soluble or hydrophobic nutraceuticals. Milk proteins or their components exhibit a great potential to assemble or co-assemble with other components into a variety of nano-architectures (e.g., nano-micelles, nanocomplexes, nanogels, or nanoparticles) as potential nanovehicles for encapsulation and delivery of nutraceuticals. This article provides a comprehensive review about the state-of-art knowledge in utilizing milk proteins to assemble or co-assemble into a variety of nano-architectures as promising encapsulation and delivery nano-systems for hydrophobic nutraceuticals. First, a brief summary about composition, structure and physicochemical properties of milk proteins, especially caseins (or casein micelles) and whey proteins, is presented. Then, the disassembly and reassembly behavior of caseins or whey proteins into nano-architectures is critically reviewed. For caseins, casein micelles can be dissociated and further re-associated into novel micelles, through pH- or high hydrostatic pressure-mediated disassembly and reassembly strategy, or can be directly formed from caseinates through a reassembly process. In contrast, the assembly of whey protein into nano-architectures usually needs a structural unfolding and subsequent aggregation process, which can be induced by heating, enzymatic hydrolysis, high hydrostatic pressure and ethanol treatments. Third, the co-assembly of milk proteins with other components into nano-architectures is also summarized. Last, the potential and effectiveness of assembled milk protein nano-architectures, including reassembled casein micelles, thermally induced whey protein nano-aggregates, α-lactalbumin nanotubes or nanospheres, co-assembled milk protein-polysaccharide nanocomplexes or nanoparticles, as nanovehicles for nutraceuticals (especially those hydrophobic) are comprehensively reviewed. Due to the fact that milk proteins are an important part of diets for human nutrition and health, the review is of crucial importance not only for the development of novel milk protein-based functional foods enriched with hydrophobic nutraceuticals, but also for providing the newest knowledge in the utilization of food protein assembly behavior in the nanoencapsulation of nutraceuticals.
Collapse
|