1
|
Zhang Z, Chen C, Zhou J, Li C, Du X, Hou H, Cao M, Yu D, Zhang J, Gu J, He L. Carboxymethyl Poria cocos polysaccharides protect against septic kidney injury by regulating the Nrf2-NF-κB signaling pathway. Int J Biol Macromol 2025:143030. [PMID: 40216133 DOI: 10.1016/j.ijbiomac.2025.143030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/18/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
Sepsis is one of the most common causes of acute kidney injury (AKI). Oxidative stress and inflammation within renal tissues are critical pathogenic mechanisms of septic AKI (S-AKI). Carboxymethylated Poria cocos polysaccharides (CMP) exhibit significant anti-inflammatory and antioxidant properties. This study aims to examine the effects of CMP on S-AKI model in vivo and in vitro. Oral administration of CMP significantly reduced renal injury induced by lipopolysaccharide (LPS) and cecal ligation and puncture (CLP). CMP not only effectively reduced the levels of inflammatory factors in both peripheral and renal tissues, including TNF-α, IL-6, IL-1β, and MCP-1, but also enhanced the expression of antioxidant genes in renal tissues, such as NQO1, HO-1, SLC7A11, and GPX4. Additionally, in vitro studies confirmed that CMP protects HK-2 cells from LPS-induced injury. Mechanistically, Nrf2 was identified as the primary regulator of CMP in exerting its protective effects on renal function. CMP activates the expression of antioxidant genes by stimulating Nrf2, while simultaneously inhibiting the activation of NF-κB signaling by blocking the phosphorylation of IκBα. In conclusion, CMP has potential applications in the prevention and mitigation of S-AKI in clinical practice.
Collapse
Affiliation(s)
- Zongmeng Zhang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Cai Chen
- Department of Emergency, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Juan Zhou
- Department of Pathology, The First Affiliated Hospital of USTC, Hefei 230001, PR China
| | - Conghan Li
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Xianfan Du
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Hui Hou
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Ming Cao
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Daolun Yu
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, PR China
| | - Jingjing Zhang
- Cardiovascular Department for Gerontism, the second Affiliated Hospital of Anhui Medical University, Hefei 230011, PR China.
| | - Jiong Gu
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Liang He
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| |
Collapse
|
2
|
Li X, Xu S, Chen B, Gao P, Lv Y, Shang Q, Yu G, Li G. In Vitro Digestion and Gut Microbiota Fermentation of the Anticancer Marine Drug BG136: Stability and Biotransformation Investigation. Mar Drugs 2025; 23:156. [PMID: 40278277 PMCID: PMC12028602 DOI: 10.3390/md23040156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/13/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
BG136, a β-1,3/1,6-glucan derived from Durvillaea antarctica, is an injectable anticancer drug and has entered Phase II clinical trials. Rational oral formulation design is a pivotal focus for our future drug development research; therefore, elucidating the gastrointestinal fate of BG136 becomes imperative. This study investigated the stability and biotransformation of BG136 via in vitro digestion and gut microbiota fermentation. The results confirmed BG136's structural integrity, resistance to degradation in a highly acid environment and by gastrointestinal tract enzymes. In contrast, BG136 was degraded by intestinal bacteria into mid-size fragments along with smaller oligosaccharides. Additionally, the biotransformation process notably elevated total short-chain fatty acids (SCFAs) to 38.37 ± 3.29 mM, representing a 59.4% increase versus controls (24.08 ± 2.29 mM), with propionic acid exhibiting the most substantial increase. Meanwhile, the process was accompanied by significant microbial regulation, including an increase in beneficial genera (Lactobacillus, Enterococcus) and a reduction in Lachnoclostridium populations. Overall, these findings systematically map the oral bioavailability challenges and prebiotic potential of BG136, highlighting its microbiota-modulating capacity through species-specific ecological regulation, providing insights into oral drug development for BG136.
Collapse
Affiliation(s)
- Xintong Li
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.L.); (S.X.); (B.C.); (P.G.); (Y.L.); (Q.S.)
| | - Shuying Xu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.L.); (S.X.); (B.C.); (P.G.); (Y.L.); (Q.S.)
| | - Baiyuan Chen
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.L.); (S.X.); (B.C.); (P.G.); (Y.L.); (Q.S.)
| | - Pengcheng Gao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.L.); (S.X.); (B.C.); (P.G.); (Y.L.); (Q.S.)
| | - Youjing Lv
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.L.); (S.X.); (B.C.); (P.G.); (Y.L.); (Q.S.)
| | - Qingsen Shang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.L.); (S.X.); (B.C.); (P.G.); (Y.L.); (Q.S.)
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.L.); (S.X.); (B.C.); (P.G.); (Y.L.); (Q.S.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Guoyun Li
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.L.); (S.X.); (B.C.); (P.G.); (Y.L.); (Q.S.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
3
|
Yu L, Gao Y, Ye Z, Duan H, Zhao J, Zhang H, Narbad A, Tian F, Zhai Q, Chen W. Interaction of beta-glucans with gut microbiota: Dietary origins, structures, degradation, metabolism, and beneficial function. Crit Rev Food Sci Nutr 2023; 64:9884-9909. [PMID: 37272431 DOI: 10.1080/10408398.2023.2217727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Beta-glucan (BG), a polysaccharide comprised of interfacing glucose monomers joined via beta-glycosidic linkages, can be defined as a type of dietary fiber with high specificity based on its interaction with the gut microbiota. It can induce similar interindividual microbiota responses, thereby having beneficial effects on the human body. In this paper, we review the four main sources of BG (cereals, fungi, algae, and bacteria) and their differences in structure and content. The interaction of BG with gut microbiota and the resulting health effects have been highlighted, including immune enhancement, regulation of serum cholesterol and insulin levels, alleviation of obesity and improvement of cognitive disorders. Finally, the application of BG in food products and its beneficial effects on the gut microbiota of consumers were discussed. Although some of the mechanisms of action remain unclear, revealing the beneficial functions of BG from the perspective of gut microbiota can help provide theoretical support for the development of diets that target the regulation of microbiota.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuhang Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zi Ye
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hui Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Huang Y, Guo Z, Chen Z, Lei D, Li S, Zhu Z, Barba FJ, Cheng S. Combination with litchi procyanidins under PEF treatment alters the physicochemical and processing properties of inulin. Food Chem X 2023; 18:100635. [PMID: 36968317 PMCID: PMC10031345 DOI: 10.1016/j.fochx.2023.100635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
A novel alternative to prepare the inulin-procyanidin complex assisted by pulsed electric field (PEF) treatment was explored in this study. Results showed that the optimal condition of PEF treatment enhanced the adsorption rate of procyanidins to inulin from 78.56 to 103.46 μg/mg. Based on well fitted by Redlich-Peterson model and spectral analysis including UV and FT-IR, the interaction between inulin and procyanidin was evidenced to be dominated by hydrogen bonds. The DSC curve and the SEM spectrum displayed better stability of the PEF-treated inulin-procyanidin complex than the untreated complex. The PEF-treated complex had lower solubility but higher water-holding capacity than inulin, which exhibited stronger shear-thinning property and more stable flow behavior referring to rheological analysis. Furthermore, the gel formed from the PEF-treated complex possessed greater hardness, chewiness and viscosity, with no significant effects noted in terms of springiness, cohesiveness and resilience.
Collapse
|
5
|
Three Phenolic Extracts Regulate the Physicochemical Properties and Microbial Community of Refrigerated Channel Catfish Fillets during Storage. Foods 2023; 12:foods12040765. [PMID: 36832840 PMCID: PMC9956086 DOI: 10.3390/foods12040765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
It has been demonstrated that polyphenols have the potential to extend the shelf life of fish products. Thus, the effects of phenolic extracts from grape seed (GSE), lotus seedpod (LSPC), and lotus root (LRPE) were investigated in this study, focusing on the physicochemical changes and bacterial community of refrigerated channel catfish fillets during storage at 4 °C, using ascorbic acid (AA) as reference. As a result, GSE, LSPC, LRPE and AA inhibit the reproduction of microbials in catfish fillets during storage. According to the microbial community analysis, the addition of polyphenols significantly reduced the relative abundance of Proteobacterial in the early stage and changed the distribution of the microbial community in the later stage of storage. After 11 days of storage, the increase in total volatile base nitrogen (TVB-N) in fish was significantly reduced by 25.85%, 25.70%, 22.41%, and 39.31% in the GSE, LSPC, LRPE, and AA groups, respectively, compared to the control group (CK). Moreover, the lipid oxidation of samples was suppressed, in which thiobarbituric acid-reactive substances (TBARS) decreased by 28.77% in the GSE group, compared with the CK. The centrifugal loss, LF-NMR, and MRI results proved that GSE significantly delayed the loss of water and the increase in immobilized water flowability in catfish fillets. The polyphenol-treated samples also showed less decrease in shear force and muscle fiber damage in histology, compared to the CK. Therefore, the dietary polyphenols including GSE, LSPC, and LRPE could be developed as natural antioxidants to protect the quality and to extend the shelf life of freshwater fish.
Collapse
|
6
|
Wang YF, Shen ZC, Li J, Liang T, Lin XF, Li YP, Zeng W, Zou Q, Shen JL, Wang XY. Phytochemicals, biological activity, and industrial application of lotus seedpod ( Receptaculum Nelumbinis): A review. Front Nutr 2022; 9:1022794. [PMID: 36267901 PMCID: PMC9577462 DOI: 10.3389/fnut.2022.1022794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Lotus (Nelumbo nucifera Gaertn.) is a well-known food and medicinal plant. Lotus seedpod (Receptaculum Nelumbinis) is the by-products during lotus products processing, which is considered as waste. Numerous studies have been conducted on its phytochemicals, biological activity and industrial application. However, the information on lotus seedpod is scattered and has been rarely summarized. In this review, summaries on preparation and identification of phytochemicals, the biological activities of extracts and phytochemicals, and applications of raw material, extracts and phytochemicals for lotus seedpod were made. Meanwhile, the future study trend was proposed. Recent evidence indicated that lotus seedpods extracts, obtained by non-organic and organic solvents, possessed several activities, which were influenced by extraction solvents and methods. Lotus seedpods were rich in phytochemicals categorized as different chemical groups, such as proanthocyanidins, oligomeric procyanidins, flavonoids, alkaloids, terpenoids, etc. These phytochemicals exhibited various bioactivities, including ameliorating cognitive impairment, antioxidation, antibacterial, anti-glycative, neuroprotection, anti-tyrosinase and other activities. Raw material, extracts and phytochemicals of lotus seedpods could be utilized as sources for biochar and biomass material, in food industry and as dye. This review gives well-understanding on lotus seedpod, and provides theoretical basis for its future research and application.
Collapse
Affiliation(s)
- Yi-Fei Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Zi-Chun Shen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jing Li
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Tian Liang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Xiao-Fan Lin
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yan-Ping Li
- Scientific Research Center, Gannan Medical University, Ganzhou, China
| | - Wei Zeng
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Qi Zou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Jian-Lin Shen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Xiao-Yin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China,*Correspondence: Xiao-Yin Wang,
| |
Collapse
|
7
|
Xu T, Zhang H, Wang S, Xiang Z, Kong H, Xue Q, He M, Yu X, Li Y, Sun D, Gao P, Cong Z. A review on the advances in the extraction methods and structure elucidation of Poria cocos polysaccharide and its pharmacological activities and drug carrier applications. Int J Biol Macromol 2022; 217:536-551. [PMID: 35843404 DOI: 10.1016/j.ijbiomac.2022.07.070] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 11/05/2022]
Abstract
Poria cocos polysaccharide (PCP) is one of the main active components of Poria cocos that is extensively used in the world. PCP can be divided into intro-polysaccharides and exopolysaccharides. PCP is mainly composed of glucose, galactose and mannose. There are many methods to exact PCP, and methods can affect its yield. PCP and its derivatives exhibit diverse biological functions such as antitumour, antioxidant, anti-inflammatory, immune-regulatory, hepatoprotective, etc. There is the potential application of PCP as drug carriers. The review provides a comprehensive summary of the latest extraction and purification methods of PCP, its chemistry, synthesis of PCP derivates, their pharmacological activities and their applications as drug carriers. This review provides comprehensive information on PCP, which can be used as the basis for further research on PCP and its derivates.
Collapse
Affiliation(s)
- Tianren Xu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hongmeng Zhang
- Laboratory management office, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shengguang Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zedong Xiang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hongwei Kong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qing Xue
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Mengyuan He
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaojun Yu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yanan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Dongjie Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Peng Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Zhufeng Cong
- Shandong First Medical University Affiliated Shandong Tumor Hospital and Institute: Shandong Cancer Hospital and Institute, Jinan 250117, China.
| |
Collapse
|
8
|
Li X, Wang J, Gao X, Xie B, Sun Z. Inhibitory effects of lotus seedpod procyanidins against lipid and protein oxidation and spoilage organisms in chilled-storage beef. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Liu D, Lin R, Wu H, Ji J, Wang D, Xue Z, Feng S, Chen X. Green synthesis, characterization of procyanidin-mediated gold nanoparticles and its application in fluorescence detection of prazosin. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Ink melanin from Sepiapharaonis ameliorates colitis in mice via reducing oxidative stress, andprotecting the intestinal mucosal barrier. Food Res Int 2022; 151:110888. [PMID: 34980415 DOI: 10.1016/j.foodres.2021.110888] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/08/2021] [Accepted: 12/08/2021] [Indexed: 12/16/2022]
Abstract
Melanin is the major component from Sepiapharaonis ink (MSI), and its anti-inflammatory and antioxidant activities indicate the potential for improvement of inflammatory bowel diseases. The study aimed to investigate how orally-administered MSI on alleviating the dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) and the potential mechanisms. We found that MSI significantly improved DSS-induced weight loss, colon shortening, hematochezia, DAI score, histopathology, and antioxidant indices (SOD and MDA). Further analysis demonstrated that MSI could significantly down-regulate the expression of pro-inflammatory cytokines (TNF-α, IL-1β and IFN-γ) and up-regulate the concentration of anti-inflammatory cytokine IL-10 by regulating TLR4/NF-κB and NLRP3/ASC/Caspase-1 signal pathway. Moreover, tight junction proteins in melanin groups were also maintained by ZO-1 and occludin expressions. In addition, MSI also regulated cellular apoptosis by reducing the expression of pro-apoptosis protein Caspase-3. Interestingly, MSI treatments increased the proportion of dominant bacteria (such as Bacteroidetes and Clostridium) and the abundance of community (alpha diversity, β-diversity, etc.), which significantly balanced microbiota in a dose-dependent manner. In conclusion, oral administration of MSI alleviated DSS-induced colitis by modulating inflammatory cytokines and oxidation stress, maintaining the mucosal barrier, and reverting microbiota changes.
Collapse
|