1
|
Du H, Zhou YY, Wu JW, Wu YY, Yan J, Tan XC, Feng DF, Huang KJ. CRISPR/Cas12a trans-cleavage cascading dual-template exponential amplification reaction for electrochemiluminescent detection of 17β-estradiol in milk. Talanta 2025; 291:127873. [PMID: 40054213 DOI: 10.1016/j.talanta.2025.127873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/12/2025] [Accepted: 03/01/2025] [Indexed: 03/24/2025]
Abstract
17β-Estradiol (E2) is a common environmental estrogen that can interfere with the endocrine systems of humans and animals, and poses a carcinogenic risk even at picomolar concentrations. In this study, a functionalized Ru(bpy)32+-embedded metal-organic framework (ZnRuMOF) is synthesized, in which Ru(bpy)32+ served as an electrochemiluminescence (ECL) indicator and the porous structure of ZnRuMOF acts as a nanoreactor to enhance the ECL signal. Based on this, we developed an E2 detection method combining a highly specific CRISPR-Cas12a system and dual-template exponential amplification. This method utilizes the trans-cleavage activity of CRISPR-Cas12a to control a light switch, achieving precise and ultra-sensitive detection of E2. The sensing platform demonstrates excellent performance in detecting E2 concentrations ranging from 1 fg mL-1 to 150 ng mL-1, with a detection limit of 0.27 fg mL-1 (S/N = 3). This study provides a reliable approach for diagnosing and treating diseases related to E2, aiming to protect environmental quality and human health.
Collapse
Affiliation(s)
- Hang Du
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Yu-Yi Zhou
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Jia-Wen Wu
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Ye-Yu Wu
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Jun Yan
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Xue-Cai Tan
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
| | - De-Fen Feng
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
| | - Ke-Jing Huang
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
| |
Collapse
|
2
|
Yang H, Shi Q, Wang Z, Chen X, Min F, Meng X, Tong P, Wu Y, Chen H. The Effect of Lipids on the Structure and Function of Egg Proteins in Response to Pasteurization. Foods 2025; 14:219. [PMID: 39856886 PMCID: PMC11764683 DOI: 10.3390/foods14020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
In recent years, the consumption of liquid eggs has failed to meet the expectations of the public due to growing concerns regarding food safety and health. It is well known that there are interactions between the components in liquid eggs, and the interaction effect on the structure and functional properties of the proteins and antigenicity remains unclear. To investigate egg component interactions, we focused on four major egg lipids, namely phosphatidylcholine, palmitic acid, oleic acid, and linoleic acid, as well as four major egg proteins, including ovalbumin, ovotransferrin, ovomucoid, and lysozyme. The protein structural changes were analyzed using polypropylene gel electrophoresis, circular dichroism, ultraviolet absorption spectra, and exogenous fluorescence spectra, and the functional properties were assessed through solubility measurements and particle size analysis, while protein antigenicity was evaluated using an enzyme-linked immunosorbent assay. All the results revealed that oleic acid had the most significant effect on proteins' secondary and tertiary structures, particularly affecting ovalbumin and ovotransferrin. Linoleic acid substantially increased the solubility of ovalbumin and ovomucoid, while palmitic acid significantly influenced the particle size of ovalbumin and lysozyme. Thus, we found that different lipids exhibit distinct effects on egg protein properties during pasteurization conditions, with oleic acid showing the most substantial impact on protein structure and antigenicity.
Collapse
Affiliation(s)
- Hao Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (H.Y.); (Q.S.); (Z.W.); (X.C.); (F.M.); (X.M.); (P.T.); (Y.W.)
- Jiangxi Province Engineering Research Center of Special Medical Purposes Intended for Allergic Population, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Qiang Shi
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (H.Y.); (Q.S.); (Z.W.); (X.C.); (F.M.); (X.M.); (P.T.); (Y.W.)
- Jiangxi Province Engineering Research Center of Special Medical Purposes Intended for Allergic Population, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Zhongliang Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (H.Y.); (Q.S.); (Z.W.); (X.C.); (F.M.); (X.M.); (P.T.); (Y.W.)
- Jiangxi Province Engineering Research Center of Special Medical Purposes Intended for Allergic Population, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Xiao Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (H.Y.); (Q.S.); (Z.W.); (X.C.); (F.M.); (X.M.); (P.T.); (Y.W.)
- Jiangxi Province Engineering Research Center of Special Medical Purposes Intended for Allergic Population, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Fangfang Min
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (H.Y.); (Q.S.); (Z.W.); (X.C.); (F.M.); (X.M.); (P.T.); (Y.W.)
- Jiangxi Province Engineering Research Center of Special Medical Purposes Intended for Allergic Population, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Xuanyi Meng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (H.Y.); (Q.S.); (Z.W.); (X.C.); (F.M.); (X.M.); (P.T.); (Y.W.)
- Jiangxi Province Engineering Research Center of Special Medical Purposes Intended for Allergic Population, Nanchang University, Nanchang 330047, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (H.Y.); (Q.S.); (Z.W.); (X.C.); (F.M.); (X.M.); (P.T.); (Y.W.)
- Jiangxi Province Engineering Research Center of Special Medical Purposes Intended for Allergic Population, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Yong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (H.Y.); (Q.S.); (Z.W.); (X.C.); (F.M.); (X.M.); (P.T.); (Y.W.)
- Jiangxi Province Engineering Research Center of Special Medical Purposes Intended for Allergic Population, Nanchang University, Nanchang 330047, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (H.Y.); (Q.S.); (Z.W.); (X.C.); (F.M.); (X.M.); (P.T.); (Y.W.)
- Jiangxi Province Engineering Research Center of Special Medical Purposes Intended for Allergic Population, Nanchang University, Nanchang 330047, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
3
|
da Silva-Padilha MP, Oliveira Júnior FD, Francisco CRL, da Cunha RL. Combining heat treatment and conjugation between guarana extract and pea protein isolate to produce O/W emulsions loaded with vitamin D 3. Food Res Int 2024; 197:115150. [PMID: 39593363 DOI: 10.1016/j.foodres.2024.115150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/29/2024] [Accepted: 09/25/2024] [Indexed: 11/28/2024]
Abstract
Growing interest in plant-based materials for stabilizing food emulsions is driven by the clean-label trend. Conjugating plant proteins with phenolic compounds from plant extracts enhances their techno-functionality and allows their use as stabilizers of emulsion-based systems. This study aimed to (i) combine heat treatment (HT) and conjugation with guarana extract (GE) to improve the emulsifying ability of pea protein isolate (PPI); (ii) encapsulate vitamin D3 (VD) in PPI/GE-stabilized emulsions; (iii) evaluate the potential of these formulations in improving VD retention during storage and in vitro bioaccessibility. The particles showed a size distribution ranging from 0.5 to 10 µm, depending on the processing sequence. Furthermore, HT on PPI dispersions followed by conjugation with GE led to microgels that stabilized emulsions during 30 days of storage at 25 °C. Also, the conjugates significantly improved VD retention, ranging from 74 to 100 %, after 30 days of storage at 25 °C, even in the presence of UV light. VD-loaded emulsions produced by PPI-GE conjugates showed higher bioaccessibility values (>65 %) compared to emulsions produced by PPI alone (∼58 %) and VD-incorporated sunflower oil (37 %). Given the above, the technological modification of PPI through conjugation with GE phenolic compounds and HT efficiently produced O/W emulsions loaded with VD, improving its bioaccessibility and tailoring a system with potential application in plant-based beverage and dessert formulations.
Collapse
Affiliation(s)
| | - Fernando Divino Oliveira Júnior
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Cristhian Rafael Lopes Francisco
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Rosiane Lopes da Cunha
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
4
|
Liu F, Liu Y, Zhang S, Liu G, Ritzoulis C, Zhang Y. Impact of pH on the fabrication of egg white reinforced soy protein composite microgels for gastrointestinal delivery purposes. Food Funct 2024; 15:11608-11618. [PMID: 39511985 DOI: 10.1039/d4fo03997a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Protein molecules such as soy protein isolate (SPI) and egg white (EW) are highly promising materials for developing hydrogels (especially micro/nanogels) for the encapsulation, protection and controlled release of bioactive substances. However, there are limited numbers of studies on the formulation and behavior of these two gelling materials as microgels. In our study, composite microgels of SPI and EW at various component ratios and pH conditions have been successfully prepared; the rheological behavior and structural properties of these composite microgels before, during and after in vitro digestion have been analyzed; and their performance in curcumin encapsulation and gastrointestinal delivery has also been investigated. It was concluded that the SPI-EW composites at a mass ratio of 50 : 50 showed the best gelling properties in terms of storage modulus. Composite microgels prepared at pH 4 had larger particle sizes with more compact structures than those prepared at pH 7, due to their acidic complex coacervation, and therefore were more resistant to gastrointestinal digestion. The results suggest that the SPI-EW composite microgel particles prepared at pH 4 could achieve better sustained-release of curcumin in the in vitro gastrointestinal tract, with preserved antioxidant activity. Our study shows promise for the utilization of protein-based composite micro/nanogels for oral delivery applications.
Collapse
Affiliation(s)
- Feng Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Yi Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Suyun Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Gang Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Christos Ritzoulis
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
- Department of Food Technology, ATEI of Thessaloniki, PO Box 141, Thessaloniki 57400, Greece
| | - Yue Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
5
|
Ma D, Zhang X, Yin C, Xu Z, Zhao S, Qin M, Zhao Q, Li Y, Zhang S. Fabrication and characterization of curcumin-encapsulated composite nanoparticles based on soybean protein isolate hydrolysate/soybean polysaccharides: Interaction mechanism, stability and controlled release properties. Int J Biol Macromol 2024; 282:137540. [PMID: 39537045 DOI: 10.1016/j.ijbiomac.2024.137540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/02/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
This study developed a stable nanoparticle (CUR-SPIH/SSPS) using soybean protein isolate hydrolysate (SPIH) and soybean polysaccharides (SPSS) to protect curcumin (CUR) from degradation during storage and exposure to light and heat conditions, achieving controlled release. The SPIH to SPSS mass ratio of 5:1 gave the CUR-SPIH/SPSS nanoparticles with the highest CUR encapsulation efficiency (95.60 ± 3.00 %) and the strongest antioxidant capacity (90.26 ± 2.42 % and 66.78 ± 1.89 % for ABTS•+ and DPPH radical scavenging ability, respectively), and CUR was successfully encapsulated within the CUR-SPIH/SPSS as evidenced by X-ray diffraction. FTIR and fluorescence spectroscopy analysis confirmed that the interactions in CUR-SPIH/SPSS are primarily driven by electrostatic, hydrogen bonding, and hydrophobic interactions. Moreover, the CUR-SPIH/SPSS nanoparticles significantly enhanced CUR's thermal and UV light stability. The UV degradation kinetics showed that the half-life of CUR-SPIH/SPSS (247.55 min) was 1.61 times longer than that of free CUR (154.03 min). The release rate of CUR incorporated into CUR-SPIH/SPSS was significantly delayed during in vitro gastrointestinal digestion. This study introduces an innovative nanoparticle strategy for the stable delivery of lipophilic compounds.
Collapse
Affiliation(s)
- Danhua Ma
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaoying Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chengpeng Yin
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zheng Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Siru Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Mengxing Qin
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qingkui Zhao
- Shandong Guohong Biotechnology Co, Liaocheng, Shandong 252000, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
6
|
Ma D, Zhang X, Mahmood N, Zhao Q, Li Y, Zhang S. Utilization of soybean protein isolate hydrolysates as carriers: Improved encapsulation efficiency and stability of curcumin. Food Chem 2024; 467:141920. [PMID: 39662249 DOI: 10.1016/j.foodchem.2024.141920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/15/2024] [Accepted: 11/01/2024] [Indexed: 12/13/2024]
Abstract
This study aimed to explore the potential of soybean protein isolate hydrolysates (SPIH) prepared via Alcalase as delivery carriers and develop novel SPIH-Cur nanoparticles. Hydrolysis caused the varying degrees degradation in the 7S and 11S subunits, significantly enhancing SPI's antioxidant activity. The reduction in particle size and the exposure of hydrophobic groups in SPIH contributed to the formation of stable SPIH-Cur nanoparticles, due to their well binding capacity to curcumin (Cur). The 30 min SPIH-Cur sample exhibited the highest encapsulation efficiency (83.09 %), owing to its high binding affinity (Ka = 9.56 × 103 M-1). Encapsulation by SPIH also significantly improved Cur's thermal and light stability. Moreover, FTIR, fluorescence spectra, and molecular docking analyses revealed that the formation of SPIH-Cur were primarily driven by hydrophobic forces and hydrogen bonds. Above results provide a foundation for fabricating nanoparticles that deliver lipophilic bioactive compounds with high encapsulation efficiency and stability derived from SPIH.
Collapse
Affiliation(s)
- Danhua Ma
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaoying Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Naveed Mahmood
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qingkui Zhao
- Shandong Guohong Biotechnology Co, Liaocheng, Shandong 252000, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
7
|
González-Félix GK, Luna-Suárez S, García-Ulloa M, Martínez-Montaño E, Barreto-Curiel F, Rodríguez-González H. Extraction methods and nutritional characterization of protein concentrates obtained from bean, chickpea, and corn discard grains. Curr Res Food Sci 2023; 7:100612. [PMID: 37868001 PMCID: PMC10587706 DOI: 10.1016/j.crfs.2023.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023] Open
Abstract
Protein concentrates obtained from discarded grain flours of white chickpea Sinaloa (Cicer arietinum) (CC), "Azufrazin" bean (Phaseolus vulgaris) (BC), and white corn (Zea mays) (MC), were characterized biochemically through bromatological analyses (protein, lipid, fiber, moisture, ashes, and nitrogen free extract), HPLC techniques (amino acids content), and spectrophotometry (anti-nutrients: phytic acid, trypsin inhibitors, and saponins). The percentage of protein obtained from CC, BC, and MC was 71.23, 81.10, and 55.69%, respectively. Most peptides in the BC and CC flours had a molecular weight of <1.35 kDa, meanwhile, MC peptides were heavier (1.35 to 17 kDa). The amino acids (AA) profile of flours and protein concentrates were similar; however, all the protein concentrates showed an increased AA accumulation (300 to -400%) compared with their flours. The protein concentrates from BC registered the highest AA accumulation (77.4 g of AA/100 g of protein concentrates). Except for the phytic acid in CC and trypsin inhibitor in CC and MC, respectively, the rest of the protein concentrates exhibited higher amounts of the anti-nutrients compared with their flours; however, these levels do not exceed the reported toxicity for some animals, mainly when used in combination with other ingredients for feed formulations. It is concluded that CC and BC protein concentrates showed better nutritional characteristics than MC (level of protein, size of peptides, and AA profile). After biochemical characterization, protein concentrates derived from by-products have nutritional potential for the animal feed industry.
Collapse
Affiliation(s)
- Griselda Karina González-Félix
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa, Departamento de Acuacultura, Guasave, Sinaloa, 81101, Mexico
| | - Silvia Luna-Suárez
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Tepetitla, Tlaxcala, 90700, Mexico
| | - Manuel García-Ulloa
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa, Departamento de Acuacultura, Guasave, Sinaloa, 81101, Mexico
| | - Emmanuel Martínez-Montaño
- Maestría en Ciencias Aplicadas. Unidad Académica de Ingeniería en Biotecnología. Universidad Politécnica de Sinaloa, Mazatlán, Sinaloa, 82199, Mexico
- Consejo Nacional de Humanidades Ciencias y Tecnologías, CONAHCYT, México City, Mexico
| | - Fernando Barreto-Curiel
- Universidada Autónoma de Baja California, Facultad de Ciencias Marinas, Ensenada, BCS, Mexico
| | - Hervey Rodríguez-González
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa, Departamento de Acuacultura, Guasave, Sinaloa, 81101, Mexico
| |
Collapse
|
8
|
Liu F, Zhang S, Chen K, Zhang Y. Fabrication, in-vitro digestion and pH-responsive release behavior of soy protein isolate glycation conjugates-based hydrogels. Food Res Int 2023; 169:112884. [PMID: 37254332 DOI: 10.1016/j.foodres.2023.112884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 06/01/2023]
Abstract
Hydrogel made by glycated soy protein isolate (SPI) conjugates is a promising gastrointestinal targeted delivery system for bioactives. In this study, SPI conjugates were prepared with dextran molecules at various molecular weights by Maillard reaction -based heating, and then used to fabricate hydrogel aided by transglutaminase. The modification on the structure, interfacial and rheological properties of SPI by dextran was studied. The physicochemical properties, digestion behavior and curcumin-encapsulation capacity of resultant SPI-dextran hydrogels were comprehensively studied. As compared to SPI and SPI-glucose conjugates-based hydrogels, SPI-dextran hydrogels showed lower mechanical properties but more homogeneous gel network. Dextran with higher molecular weight showed lower grafting degree on SPI, but was more effective on improving the thermos-set gel performance, and resistance to in vitro gastrointestinal digestion. The contribution of glycinin and β-conglycinin, two major individual proteins of SPI, in the dextran conjugates formation were predicated by molecular docking for the first time. The impact of molecular weight of dextran on glycated SPI hydrogel-based delivery systems was comprehensively investigated, which is promising for development of functional food applications.
Collapse
Affiliation(s)
- Feng Liu
- School of Food Science and Bioengineering, Zhejiang Gongshang University, Hangzhou 310018, China; Food Nutrition Science Centre, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Suyun Zhang
- School of Food Science and Bioengineering, Zhejiang Gongshang University, Hangzhou 310018, China; Food Nutrition Science Centre, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Kexian Chen
- School of Food Science and Bioengineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yue Zhang
- School of Food Science and Bioengineering, Zhejiang Gongshang University, Hangzhou 310018, China; Food Nutrition Science Centre, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
9
|
Mo H, Chen X, Cui B, Chen Y, Chen M, Xu Z, Wen L, Cheng Y, Jiao Y. Formation and Characterization of Self-Assembled Rice Protein Hydrolysate Nanoparticles as Soy Isoflavone Delivery Systems. Foods 2023; 12:foods12071523. [PMID: 37048344 PMCID: PMC10094372 DOI: 10.3390/foods12071523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
In this study, soy isoflavones-loaded nanoparticles were prepared using rice proteins (RPs) hydrolyzed by four types of enzyme (alcalase, neutrase, trypsin, and flavorzyme). After optimizing the preparation conditions, the encapsulation efficiency (EE) of the nanoparticles ranged from 61.16% ± 0.92% to 90.65% ± 0.19%. The RPs that were hydrolyzed by flavorzyme with a molecular weight of <5 KDa showed better characters on the formation of nanoparticles, and the formed nanoparticles had the highest EE and loading capacity (9.06%), the smallest particle size (64.77 nm), the lowest polymer dispersity index (0.19), and the lowest zeta potential (−25.64 mV).The results of Fourier transform ion cyclotron resonance, X-ray diffraction, and fluorescence spectroscopy showed that the nanoparticles were successfully encapsulated. The study of interaction showed that the formation of nanoparticles may depend mainly on hydrogen bonds, but other interactions, such as hydrophobic interactions and electrostatic interactions, cannot be ignored. After encapsulation, the pH stability, temperature stability, ionic stability, and oxidation resistance of the nanoparticles were enhanced. Moreover, the in vitro release experiment showed that the encapsulated nanoparticles had a certain protective effect on soybean isoflavones. In summary, rice protein hydrolysates are promising carriers for soybean isoflavones.
Collapse
Affiliation(s)
- Haoran Mo
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Xiuwen Chen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Bo Cui
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yangling Chen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Maolong Chen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Zhou Xu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Li Wen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yunhui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Ye Jiao
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| |
Collapse
|
10
|
Feng S, Zhang S, Jiang M, Liu F, Chen K, Zhang Y. Effects of glycation methods on the interfacial behavior and emulsifying performance of soy protein isolate-gum Arabic conjugates. Int J Biol Macromol 2023; 233:123554. [PMID: 36740109 DOI: 10.1016/j.ijbiomac.2023.123554] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Glycated conjugation of plant protein such as soy protein isolate (SPI) with saccharides is one popular strategy to modify the physicochemical characteristics of these plant protein resources, which may be affected by the glycation methods including dry-heating and wet-heating. In this study, the impact of these two glycation methods on the rheological and emulsifying properties of a binary system made by SPI-gum Arabic (GA) was studied. The results indicated that dry-heating conjugates had higher viscosity and more elastic characteristics than those wet-heating conjugates. The emulsifying properties of SPI-GA conjugates by different preparation routes were evaluated by various oil phases including eugenol, cinnamaldehyde and soybean oil. Overall, emulsions stabilized by dry-heating conjugates showed lower zeta-potential value than those with wet heating conjugates. The interfacial properties of these conjugates were compared using soybean oil emulsion as a model. Higher emulsifying ability and stability were obtained by emulsions with dry-heating conjugates, which was attributed to their more compact structures, higher protein adsorption capacity and thicker viscoelastic films formed at the interface, and therefore enhanced electrostatic repulsion between droplets. The findings in this study are useful for fabrication and utilization of protein-polysaccharide glycation conjugates as emulsifiers in functional foods.
Collapse
Affiliation(s)
- Sirui Feng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China; Food Nutrition Science Centre, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Suyun Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China; Food Nutrition Science Centre, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Minghao Jiang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China; Food Nutrition Science Centre, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Feng Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China; Food Nutrition Science Centre, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Kexian Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Yue Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China; Food Nutrition Science Centre, Zhejiang Gongshang University, Hangzhou 310012, PR China; Food Safety Key Laboratory of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| |
Collapse
|
11
|
Zhang Y, Guo Y, Liu F, Luo Y. Recent development of egg protein fractions and individual proteins as encapsulant materials for delivery of bioactives. Food Chem 2023; 403:134353. [DOI: 10.1016/j.foodchem.2022.134353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 10/14/2022]
|
12
|
Li Y, Tan L, Liu F, Li M, Zeng S, Gui Y, Zhao Y, Wang JJ. Effects of soluble Antarctic krill protein-curcumin complex combined with photodynamic inactivation on the storage quality of shrimp. Food Chem 2023; 403:134388. [DOI: 10.1016/j.foodchem.2022.134388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/04/2022] [Accepted: 09/20/2022] [Indexed: 12/29/2022]
|
13
|
Guan T, Zhang Z, Li X, Cui S, McClements DJ, Wu X, Chen L, Long J, Jiao A, Qiu C, Jin Z. Preparation, Characteristics, and Advantages of Plant Protein-Based Bioactive Molecule Delivery Systems. Foods 2022; 11:foods11111562. [PMID: 35681312 PMCID: PMC9180007 DOI: 10.3390/foods11111562] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
As a renewable resource, the market trend of plant protein has increased significantly in recent years. Compared with animal protein, plant protein production has strong sustainability factors and a lower environmental impact. Many bioactive substances have poor stability, and poor absorption effects limit their application in food. Plant protein-based carriers could improve the water solubility, stability, and bioavailability of bioactive substances by different types of delivery systems. In this review, we present a detailed and concise summary of the effects and advantages of various plant protein-based carriers in the encapsulation, protection, and delivery of bioactive substances. Furthermore, the research progress of food-grade bioactive ingredient delivery systems based on plant protein preparation in recent years is summarized, and some current challenges and future research priorities are highlighted. There are some key findings and conclusions: (i) plant proteins have numerous functions: as carriers for transportation systems, a shell or core of a system, or food ingredients; (ii) plant protein-based carriers could improve the water solubility, stability, and bioavailability of bioactive substances by different types of delivery systems; and (iii) plant protein-based carriers stabilize bioactive substances with potential applications in the food and nutrition fields.
Collapse
Affiliation(s)
- Tongwei Guan
- College of Food & Bioengineering, Xihua University, Chengdu 610039, China; (T.G.); (X.W.)
| | - Zhiheng Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.C.); (J.L.); (A.J.); (C.Q.)
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Shaoning Cui
- Department of Food, Yantai Nanshan University, Yantai 264005, China;
| | | | - Xiaotian Wu
- College of Food & Bioengineering, Xihua University, Chengdu 610039, China; (T.G.); (X.W.)
| | - Long Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.C.); (J.L.); (A.J.); (C.Q.)
| | - Jie Long
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.C.); (J.L.); (A.J.); (C.Q.)
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.C.); (J.L.); (A.J.); (C.Q.)
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.C.); (J.L.); (A.J.); (C.Q.)
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.C.); (J.L.); (A.J.); (C.Q.)
- Correspondence: ; Tel.: +86-5108-5327-006
| |
Collapse
|
14
|
Yu L, Li Y, Yang Y, Guo C, Li M. Inhibitory effects of curcumin and piperine on fluorescent advanced glycation end products formation in a bovine serum albumin–fructose model. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ligang Yu
- School of Life Science Shanxi University Taiyuan 030006 China
| | - Yong Li
- School of Life Science Shanxi University Taiyuan 030006 China
| | - Yukun Yang
- School of Life Science Shanxi University Taiyuan 030006 China
| | - Caixia Guo
- School of Life Science Shanxi University Taiyuan 030006 China
| | - Meiping Li
- School of Life Science Shanxi University Taiyuan 030006 China
| |
Collapse
|
15
|
Yan X, Zhang G, Zhao J, Ma M, Bao X, Zeng Z, Gong X, Yu P, Wen X, Gong D. Influence of phenolic compounds on the structural characteristics, functional properties and antioxidant activities of Alcalase-hydrolyzed protein isolate from Cinnamomum camphora seed kernel. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|