1
|
Tu Z, Li S, Xu A, Yu Q, Cao Y, Tao M, Wang S, Liu Z. Improvement of Summer Green Tea Quality Through an Integrated Shaking and Piling Process. Foods 2025; 14:1284. [PMID: 40238596 PMCID: PMC11989215 DOI: 10.3390/foods14071284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/01/2025] [Accepted: 04/05/2025] [Indexed: 04/18/2025] Open
Abstract
Summer green tea often suffers from an inferior flavor, attributed to its bitterness and astringency. In this study, an integrated shaking and piling process was performed to improve the flavor of summer green tea. The results demonstrated a significant improvement in the sweet and kokumi flavors, accompanied by a reduction in umami, astringency, and bitterness following the treatment. Additionally, the yellowness and color saturation were also enhanced by the treatment. A total of 146 non-volatile metabolites (NVMs) were identified during the study. The elevated levels of sweet-tasting amino acids (L-proline, L-glutamine, and L-threonine), soluble sugars, and peptides (such as gamma-Glu-Gln and glutathione) contributed to the enhanced sweetness and kokumi. Conversely, the decreased levels of ester-catechins, flavonoid glycosides, and procyanidins resulted in a reduction in umami, astringency, and bitterness. Furthermore, the decreased levels of certain NVMs, particularly ascorbic acid and saponarin, played a crucial role in enhancing the yellowness and color saturation of the summer green tea. Our findings offered a novel theoretical framework and practical guidelines for producing high-quality summer green tea.
Collapse
Affiliation(s)
- Zheng Tu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.T.); (S.L.); (A.X.); (Q.Y.); (Y.C.); (M.T.); (S.W.)
| | - Sixu Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.T.); (S.L.); (A.X.); (Q.Y.); (Y.C.); (M.T.); (S.W.)
- The College of Food and Health, Zhejiang A & F University, Hangzhou 311300, China
| | - Anan Xu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.T.); (S.L.); (A.X.); (Q.Y.); (Y.C.); (M.T.); (S.W.)
| | - Qinyan Yu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.T.); (S.L.); (A.X.); (Q.Y.); (Y.C.); (M.T.); (S.W.)
| | - Yanyan Cao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.T.); (S.L.); (A.X.); (Q.Y.); (Y.C.); (M.T.); (S.W.)
| | - Meng Tao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.T.); (S.L.); (A.X.); (Q.Y.); (Y.C.); (M.T.); (S.W.)
| | - Shanshan Wang
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.T.); (S.L.); (A.X.); (Q.Y.); (Y.C.); (M.T.); (S.W.)
| | - Zhengquan Liu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.T.); (S.L.); (A.X.); (Q.Y.); (Y.C.); (M.T.); (S.W.)
| |
Collapse
|
2
|
Qin C, Han Z, Jiang Z, Ke JP, Li W, Zhang L, Li D. Chemical profile and in-vitro bioactivities of three types of yellow teas processed from different tenderness of young shoots of Huoshanjinjizhong ( Camellia sinensis var. sinensis). Food Chem X 2024; 24:101809. [PMID: 39310883 PMCID: PMC11414484 DOI: 10.1016/j.fochx.2024.101809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/15/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
In the present study, bud yellow tea (BYT), small-leaf yellow tea (SYT) and large-leaf yellow tea (LYT) were produced from the same local "population" variety Huoshanjinjizhong (Camellia sinensis var. sinensis), and the effects of raw material tenderness on the chemical profile and bioactivities of these teas were investigated. The results showed that 11 crucial compounds were screened by headspace solid-phase microextraction-gas chromatography-mass spectrometry from 64 volatiles in these yellow teas, among which the heterocyclic compounds showed the greatest variations. In addition, 43 key compounds including organic acids, flavan-3-ols, amino acids, saccharides, glycosides and other compounds were screened by liquid chromatography-mass spectrometry from 1781 non-volatile compounds. BYT showed the best α-glucosidase inhibitory activity and antioxidant capacity among the selected yellow teas, which might be contributed by the higher content of galloylated catechins. These findings provided a better understanding of the chemical profile and bioactivities of yellow teas.
Collapse
Affiliation(s)
- Chunyin Qin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zisheng Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zongde Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Jia-Ping Ke
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Wen Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
3
|
Liu S, Fan B, Li X, Sun G. Global hotspots and trends in tea anti-obesity research: a bibliometric analysis from 2004 to 2024. Front Nutr 2024; 11:1496582. [PMID: 39606571 PMCID: PMC11598529 DOI: 10.3389/fnut.2024.1496582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Background The prevalence of obesity and its related ailments is on the rise, posing a substantial challenge to public health. Tea, widely enjoyed for its flavors, has shown notable potential in mitigating obesity. Yet, there remains a lack of exhaustive bibliometric studies in this domain. Methods We retrieved and analyzed multidimensional data concerning tea and obesity studies from January 2004 to June 2024, using the Web of Science Core Collection database. This bibliometric investigation utilized tools such as Bibliometrix, CiteSpace, and VOSviewer to gather and analyze data concerning geographical distribution, leading institutions, prolific authors, impactful journals, citation patterns, and prevalent keywords. Results There has been a significant surge in publications relevant to this field within the last two decades. Notably, China, Hunan Agricultural University, and the journal Food and Function have emerged as leading contributors in terms of country, institution, and publication medium, respectively. Zhonghua Liu of Hunan Agricultural University has the distinction of most publications, whereas Joshua D. Lambert of The State University of New Jersey is the most cited author. Analyses of co-citations and frequently used keywords have identified critical focus areas within tea anti-obesity research. Current studies are primarily aimed at understanding the roles of tea components in regulating gut microbiota, boosting fat oxidation, and increasing metabolic rate. The research trajectory has progressed from preliminary mechanism studies and clinical trials to more sophisticated investigations into the mechanisms, particularly focusing on tea's regulatory effects on gut microbiota. Conclusion This study offers an intricate overview of the prevailing conditions, principal focus areas, and developmental trends in the research of tea's role against obesity. It delivers a comprehensive summary and discourse on the recent progress in this field, emphasizing the study's core findings and pivotal insights. Highlighting tea's efficacy in obesity prevention and treatment, this study also points out the critical need for continued research in this area.
Collapse
Affiliation(s)
- Shan Liu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Boyan Fan
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoping Li
- The Center for Treatment of Pre-disease, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Guixiang Sun
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
Li F, Shen J, Yang Q, Wei Y, Zuo Y, Wang Y, Ning J, Li L. Monitoring quality changes in green tea during storage: A hyperspectral imaging method. Food Chem X 2024; 23:101538. [PMID: 39071927 PMCID: PMC11280024 DOI: 10.1016/j.fochx.2024.101538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/19/2024] [Accepted: 06/04/2024] [Indexed: 07/30/2024] Open
Abstract
The quality of green tea deteriorates the longer it is stored. However, there is a lack of accurate and rapid methods for determining the storage period of tea. In this study, hyperspectral imaging (HSI) was used to determine the storage period of green teas stored at 4 °C (set 1) and 25 °C (set 2), and to quantify and visualize the main chemical components (e.g. catechins). In this study, three prediction algorithms were compared, in which partial least squares discriminant analysis outperformed the other models in qualitative discrimination, with 98% and 96% correct discrimination for two sets, respectively. Moreover, quantitative models for ester catechins, simple catechins, and total catechins were developed with Rp > 0.90 and RPD > 1.0, indicating that the models were reliable. Further, a more intuitive visualization of catechin content was achieved. In conclusion, the HSI provides a rapid, non-destructive method to determine the freshness of stored green tea.
Collapse
Affiliation(s)
| | | | - Qianfeng Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yongning Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yifan Zuo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yujie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Luqing Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
5
|
Tian H, Xiong J, Sun J, Du F, Xu G, Yu H, Chen C, Lou X. Dynamic transformation in flavor during hawthorn wine fermentation: Sensory properties and profiles of nonvolatile and volatile aroma compounds coupled with multivariate analysis. Food Chem 2024; 456:139982. [PMID: 38876062 DOI: 10.1016/j.foodchem.2024.139982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Fermentation stage is a crucial factor for flavor profiles formation of hawthon wine. Thus, comprehensive knowledge of dynamic relationship between nonvolatile (NVOCs) and volatile aroma compounds (VOCs) from hawthorn wine at different fermentation stages was investigated by GC-MS and HPLC coupled with multivariate analysis. The increase of alcohols/esters/acids but decrease of terpenes/aldehydes/ketones was observed as fermentation extension. Specifically, OAV of ethyl acetate, ethyl caprylate, and ethyl caprate was > 50 from the 3rd day to 10th day, giving more fruity properties. Multivariate analysis showed that 1-hexanol, ethyl myristate, isobutyric acid, et al., were linked to the sensory evaluation of "sweet", "floral" and "fruity", and fructose, glucose and bitter amino acids were responsible for reduction of "bitterness" and "astringency". Additionally, VOCs were positively correlated with organic acids while negative to amino acids/soluble sugars, probably due to metabolization as precursors, providing references for aroma enhancement by regulating NVOCs precursors.
Collapse
Affiliation(s)
- Huaixiang Tian
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Juanjuan Xiong
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jiashu Sun
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Fenglin Du
- Shaanxi Leadflow Technology Co., Ltd, Shaanxi 30032, China
| | - Guofang Xu
- Shaanxi Leadflow Technology Co., Ltd, Shaanxi 30032, China
| | - Haiyan Yu
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Chen Chen
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xinman Lou
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
6
|
Wu Y, Li T, Huang W, Zhang J, Wei Y, Wang Y, Li L, Ning J. Investigation of the quality of Lu'an Guapian tea during Grain Rain period by sensory evaluation, objective quantitative indexes and metabolomics. Food Chem X 2024; 23:101595. [PMID: 39071934 PMCID: PMC11283131 DOI: 10.1016/j.fochx.2024.101595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
The harvest date is a crucial factor in determining tea quality. For Lu'an Guapian (LAGP) tea, Grain Rain period (GRP) represents a pivotal phase in the transformation of tea quality. The sensory evaluation, computer vision and E-tongue revealed that the liquor color score, B and G values of tea infusion were increased during GRP, while the astringency, bitterness intensities and the R value of the tea infusion were decreased. Consequently, the tea infusion exhibited a greener hue and the taste became appropriate during GRP. Non-targeted metabolomics revealed that the majority of amino acids and derivatives was reduced during GRP. Furthermore, flavonoids, in particular flavonol glycosides, exhibited considerable variation during GRP. Finally, nine metabolites were identified as markers for quality transformation during GRP by PLS and Random Forest. This study investigated the quality of LAGP teas during GRP and filled the gap in the variation of LAGP tea quality during GRP.
Collapse
Affiliation(s)
- Yida Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, PR China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, PR China
| | - Tiehan Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, PR China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, PR China
| | - Wenjing Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, PR China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, PR China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, PR China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, PR China
| | - Yuming Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, PR China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, PR China
| | - Yujie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, PR China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, PR China
| | - Luqing Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, PR China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, PR China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, PR China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, PR China
| |
Collapse
|
7
|
Wang W, Feng Z, Min R, Yin J, Jiang H. The Effect of Temperature and Humidity on Yellow Tea Volatile Compounds during Yellowing Process. Foods 2024; 13:3283. [PMID: 39456345 PMCID: PMC11506851 DOI: 10.3390/foods13203283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Yellowing is the key processing technology of yellow tea, and environmental conditions have a significant impact on the yellowing process. In this study, volatile compounds of the yellowing process under different environmental conditions were analyzed by GC-MS. Results showed that a total of 75 volatile compounds were identified. A partial least squares discriminant analysis (PLS-DA) determined that 42 of them were differential compounds, including 12 hydrocarbons, 8 ketones, 8 aldehydes, 6 alcohols, and 8 other compounds, and compared the contents of differential compounds under the conditions of 40 °C with 90% humidity, 50 °C with 50% humidity, and 30 °C with 70% humidity, then analyzed the variation patterns of hydrocarbons under different yellowing environmental conditions. A 40 °C with 90% humidity treatment reduced the content of more hydrocarbons and increased the aldehydes. The content of 3-hexen-1-ol was higher when treated at 50 °C with 50% humidity and was consistent with the results of sensory evaluation. This study could provide a theoretical basis for future research on the aroma of yellow tea.
Collapse
Affiliation(s)
| | | | | | | | - Heyuan Jiang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (W.W.); (Z.F.); (R.M.); (J.Y.)
| |
Collapse
|
8
|
Ao C, Niu X, Shi D, Zheng X, Yu J, Zhang Y. Dynamic Changes in Aroma Compounds during Processing of Flat Black Tea: Combined GC-MS with Proteomic Analysis. Foods 2024; 13:3243. [PMID: 39456305 PMCID: PMC11507447 DOI: 10.3390/foods13203243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Flat black tea (FBT) has been innovatively developed to alleviate homogenisation competition, but the dynamic changes in aroma components during the process remain unclear. This study employed HS-SPME-GC-MS to analyse the aroma components of tea samples from various processing stages of FBT, and to make a comparative assessment with conventional strip-like Congou black tea (SBT). Additionally, a proteomic analysis was conducted on fresh leaves, withered leaves, and frozen-thawed leaves. Significant changes were observed in the aroma components and proteins during the processing. The results of the multivariate and odour activity value analysis demonstrated that the principal aroma components present during the processing of FBT were linalool, (E)-2-hexen-1-al, methyl salicylate, geraniol, hexanal, benzeneacetaldehyde, (Z)-3-hexenyl butyrate, dimethyl sulphide, 2-methylbutanal, 2-ethylfuran, nonanal, nonanol, 3-methylbutanal, (Z)-3-hexen-1-ol, 2-pentylfuran, linalool oxide I, and β-myrcene. Freezing-thawing and final roasting are the key processing steps for forming the aroma quality of FBT. The final roasting yielded a considerable quantity of pyrazines and pyrroles, resulting in a high-fried aroma, but caused a significant reduction in linalool, geraniol, β-myrcene, and esters, which led to a loss of floral and fruity aromas. The freezing-thawing treatment resulted in an accelerated loss of aroma substances, accompanied by a decrease in the expression level of lipoxygenase and 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase. The formation of aroma substances in the linoleic acid metabolic pathway and terpenoid metabolic process was hindered, which had a negative impact on tea aroma. This study elucidates the causes of unsatisfactory aroma quality in tea products made from frozen tea leaves, providing theoretical support for the utilisation of frostbitten tea leaves, and helps us to understand the mechanism of aroma formation in black tea.
Collapse
Affiliation(s)
- Cun Ao
- Tea Research Institute, Hangzhou Academy of Agricultural Science, Hangzhou 310024, China; (C.A.); (X.N.); (D.S.); (X.Z.)
| | - Xiaojun Niu
- Tea Research Institute, Hangzhou Academy of Agricultural Science, Hangzhou 310024, China; (C.A.); (X.N.); (D.S.); (X.Z.)
| | - Daliang Shi
- Tea Research Institute, Hangzhou Academy of Agricultural Science, Hangzhou 310024, China; (C.A.); (X.N.); (D.S.); (X.Z.)
| | - Xuxia Zheng
- Tea Research Institute, Hangzhou Academy of Agricultural Science, Hangzhou 310024, China; (C.A.); (X.N.); (D.S.); (X.Z.)
| | - Jizhong Yu
- Tea Research Institute, Hangzhou Academy of Agricultural Science, Hangzhou 310024, China; (C.A.); (X.N.); (D.S.); (X.Z.)
| | - Yingbin Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
9
|
Huang D, Zheng D, Sun C, Fu M, Wu Y, Wang H, Yu J, Yang Y, Li Y, Wan X, Chen Q. Combined multi-omics approach to analyze the flavor characteristics and formation mechanism of gabaron green tea. Food Chem 2024; 445:138620. [PMID: 38382249 DOI: 10.1016/j.foodchem.2024.138620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/23/2024]
Abstract
Gabaron green tea (GAGT) has unique flavor and health benefits through the special anaerobic treatment. However, how this composite processing affects the aroma formation of GAGT and the regulatory mechanism was rarely reported. This study used nontargeted metabolomics and molecular sensory science to overlay screen differential metabolites and key aroma contributors. The potential regulatory mechanism of anaerobic treatment on the aroma formation of GAGT was investigated by transcriptomics and correlation analyses. Five volatiles: benzeneacetaldehyde, nonanal, geraniol, linalool, and linalool oxide III, were screened as target metabolites. Through the transcriptional-level differential genes screening and analysis, some CsERF transcription factors in the ethylene signaling pathway were proposed might participate the response to the anaerobic treatment. They might regulate the expression of related genes in the metabolic pathway of the target metabolites thus affecting the GAGT flavor. The findings of this study provide novel information on the flavor and its formation of GAGT.
Collapse
Affiliation(s)
- Dongzhu Huang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Dongqiao Zheng
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chenyi Sun
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Maoyin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yuhan Wu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hong Wang
- Key Laboratory of Food Nutrition and Safety, Anhui Engineering Laboratory for Agro-products Processing, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jieyao Yu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yunqiu Yang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yeyun Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Food Nutrition and Safety, Anhui Engineering Laboratory for Agro-products Processing, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
10
|
Liang S, Gao Y, Granato D, Ye JH, Zhou W, Yin JF, Xu YQ. Pruned tea biomass plays a significant role in functional food production: A review on characterization and comprehensive utilization of abandon-plucked fresh tea leaves. Compr Rev Food Sci Food Saf 2024; 23:e13406. [PMID: 39030800 DOI: 10.1111/1541-4337.13406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/18/2024] [Accepted: 06/21/2024] [Indexed: 07/22/2024]
Abstract
Tea is the second largest nonalcoholic beverage in the world due to its characteristic flavor and well-known functional properties in vitro and in vivo. Global tea production reaches 6.397 million tons in 2022 and continues to rise. Fresh tea leaves are mainly harvested in spring, whereas thousands of tons are discarded in summer and autumn. Herein, pruned tea biomass refers to abandon-plucked leaves being pruned in the non-plucking period, especially in summer and autumn. At present, no relevant concluding remarks have been made on this undervalued biomass. This review summarizes the seasonal differences of intrinsic metabolites and pays special attention to the most critical bioactive and flavor compounds, including polyphenols, theanine, and caffeine. Additionally, meaningful and profound methods to transform abandon-plucked fresh tea leaves into high-value products are reviewed. In summer and autumn, tea plants accumulate much more phenols than in spring, especially epigallocatechin gallate (galloyl catechin), anthocyanins (catechin derivatives), and proanthocyanidins (polymerized catechins). Vigorous carbon metabolism induced by high light intensity and temperature in summer and autumn also accumulates carbohydrates, such as soluble sugars and cellulose. The characteristics of abandon-plucked tea leaves make them not ideal raw materials for tea, but suitable for novel tea products like beverages and food ingredients using traditional or hybrid technologies such as enzymatic transformation, microbial fermentation, formula screening, and extraction, with the abundant polyphenols in summer and autumn tea serving as prominent flavor and bioactive contributors.
Collapse
Affiliation(s)
- Shuang Liang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Gao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Daniel Granato
- Bioactivity and Applications Lab, Department of Biological Sciences, School of Natural Sciences Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Jian-Hui Ye
- Zhejiang University Tea Research Institute, Hangzhou, China
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Jun-Feng Yin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Yong-Quan Xu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
11
|
Liu H, Huang Y, Liu Z, Pang Y, Yang C, Li M, Wu Q, Nie J. Determination of the variations in the metabolic profiles and bacterial communities during traditional craftsmanship Liupao tea processing. Food Chem X 2024; 22:101516. [PMID: 38911914 PMCID: PMC11190490 DOI: 10.1016/j.fochx.2024.101516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
In this study, the metabolic profiles of traditional craftsmanship (TC) Liupao tea presented great changes at different processing stages. The contents of flavonoids and their glycosides generally exhibited a continuing downward trend, resulting in the sensory quality of TC-Liupao tea gradually improved. However, the taste of TC-Liupao tea faded when piling exceeded 12 h, as a result of the excessive degradation of some key flavor substances. Therefore, it could be deduced that piling for 10 h might be optimum for the quality formation of TC-Liupao tea. Sphingomonas, Acrobacter, Microbacterium, and Methylobacterium were the dominant bacteria during piling. The correlation analysis between differential metabolites and bacteria showed that only Sphingomonas and Massilia were significantly correlated to metabolites, demonstrating that the bacteria had less effect on the transformation of metabolites. Thus, the metabolic structure change during the process of TC-Liupao tea might be mainly attributed to the high temperature and humidity environment.
Collapse
Affiliation(s)
- Huahong Liu
- Guangxi Research Institute of Tea Science, Guilin 541004, China
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
- Guangxi Field Scientific Observation and Research Station for Tea Resources, Guilin 541004, China
| | - Yingyi Huang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
- Guangxi Field Scientific Observation and Research Station for Tea Resources, Guilin 541004, China
| | - Zhusheng Liu
- Guangxi Research Institute of Tea Science, Guilin 541004, China
- Guangxi Field Scientific Observation and Research Station for Tea Resources, Guilin 541004, China
| | - Yuelan Pang
- Guangxi Research Institute of Tea Science, Guilin 541004, China
- Guangxi Field Scientific Observation and Research Station for Tea Resources, Guilin 541004, China
| | - Chun Yang
- Guangxi Research Institute of Tea Science, Guilin 541004, China
- Guangxi Field Scientific Observation and Research Station for Tea Resources, Guilin 541004, China
| | - Min Li
- Guangxi Research Institute of Tea Science, Guilin 541004, China
- Guangxi Field Scientific Observation and Research Station for Tea Resources, Guilin 541004, China
| | - Qianhua Wu
- Guangxi Research Institute of Tea Science, Guilin 541004, China
- Guangxi Field Scientific Observation and Research Station for Tea Resources, Guilin 541004, China
| | - Jinfang Nie
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
- Guangxi Field Scientific Observation and Research Station for Tea Resources, Guilin 541004, China
| |
Collapse
|
12
|
Sun L, Wen S, Zhang S, Li Q, Cao J, Chen R, Chen Z, Zhang Z, Li Z, Li Q, Lai Z, Sun S. Study on flavor quality formation in green and yellow tea processing by means of UPLC-MS approach. Food Chem X 2024; 22:101342. [PMID: 38665631 PMCID: PMC11043817 DOI: 10.1016/j.fochx.2024.101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Yellow tea (YT) has an additional process of yellowing before or after rolling than green tea (GT), making YT sweeter. We analyzed the variations of composition and taste throughout the withering, fixing and rolling steps using UPLC-MS/MS and sensory evaluation, and investigated the influence of various yellowing times on flavor profile of YT. 532 non-volatile metabolites were identified. Withering and fixing were the important processes to form the taste quality of GT. Withering, fixing and yellowing were important processes to form flavor profile of YT. Withering mainly regulated bitterness and astringency, and fixing mainly regulated bitterness, astringency and sweetness of YT and GT. Yellowing mainly regulated sweetness of YT. Trans-4-hydroxy-L-proline and glutathione reduced form as the key characteristic components of YT, increased significantly during yellowing mainly through Arginine and proline metabolism and ABC transporters. The paper offers a systematic insight into intrinsic mechanisms of flavor formation in YT and GT.
Collapse
Affiliation(s)
- Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Shuai Wen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Suwan Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
- College of Food Science/Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, China
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Zhongzheng Chen
- College of Food Science/Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, China
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Zhigang Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Qian Li
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Zhaoxiang Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| |
Collapse
|
13
|
Zhang J, Feng W, Xiong Z, Dong S, Sheng C, Wu Y, Deng G, Deng WW, Ning J. Investigation of the effect of over-fired drying on the taste and aroma of Lu'an Guapian tea using metabolomics and sensory histology techniques. Food Chem 2024; 437:137851. [PMID: 37897824 DOI: 10.1016/j.foodchem.2023.137851] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Lu'an Guapian (LAGP) tea, a representative Chinese roasted green tea, undergoes significant changes in taste and aroma during over-fired drying. However, limited studies have been conducted on these effects. This study employed metabolomics and sensory histology techniques to analyze non-volatile and volatile compounds the second drying and pulley liquefied gas drying (PLD) samples. The results revealed that after PLD, the samples exhibited lower umami, bitterness, and astringency; whereas floral, sweet, roasted, cooked corn-like, and cooked chestnut-like aromas became stronger. Among them, the content of (-)-epigallocatechin gallate, glutamic acid, and theogallin, which were closely related to taste, decreased by 4.5 %, 12.3 %, and 10.4 %, respectively. Eight key aroma components were identified as the main contributors to the sample aroma changes: (E)-β-ionone, dimethyl sulfide, (E,E)-2,4-heptadienal, geraniol, linalool, benzeneacetaldehyde, 2-ethyl-3,5-dimethylpyrazine, and hexanal. This study provides a theoretical basis for enhancing the quality of LAGP teas.
Collapse
Affiliation(s)
- Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Wanzhen Feng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Zhichao Xiong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Shuai Dong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Caiyan Sheng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yida Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Guojian Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Wei-Wei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.
| |
Collapse
|
14
|
Li Y, Li Y, Xiao T, Jia H, Xiao Y, Liu Z, Wang K, Zhu M. Integration of non-targeted/targeted metabolomics and electronic sensor technology reveals the chemical and sensor variation in 12 representative yellow teas. Food Chem X 2024; 21:101093. [PMID: 38268841 PMCID: PMC10805769 DOI: 10.1016/j.fochx.2023.101093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/09/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Yellow tea is a lightly fermented tea with unique sensory qualities and health benefits. However, chemical composition and sensory quality of yellow tea products have rarely been studied. 12 representative yellow teas, which were basically covered the main products of yellow tea, were chosen in this study. Combined analysis of non-targeted/targeted metabolomics and electronic sensor technologies (E-eye, E-nose, E-tongue) revealed the chemical and sensor variation. The results showed that yellow big tea differed greatly from yellow bud teas and yellow little teas, but yellow bud teas could not be effectively distinguished from yellow little teas based on chemical constituents and electronic sensory characteristics. Sensor variation of yellow teas might be attributed to some compounds related to bitterness and aftertaste-bitterness (4'-dehydroxylated gallocatechin-3-O-gallate, dehydrotheasinensin C, myricitin 3-O-galactoside, phloroglucinol), aftertaste-astringency (methyl gallate, 1,5-digalloylglucose, 2,6-digalloylglucose), and sweetness (maltotriose). This study provided a comprehensive understanding of yellow tea on chemical composition and sensory quality.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Lab of Dark Tea and Jin-hua, Hunan City University, Yiyang 413000, China
| | - Yilong Li
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Tian Xiao
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Huimin Jia
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Yu Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Kunbo Wang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Mingzhi Zhu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
15
|
Wang X, He C, Cui L, Liu Z, Liang J. Effects of Different Expansion Temperatures on the Non-Volatile Qualities of Tea Stems. Foods 2024; 13:398. [PMID: 38338533 PMCID: PMC10855559 DOI: 10.3390/foods13030398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Tea stems are a type of tea by-product, and a considerable amount of them is discarded during picking, with their value often being overlooked. To enhance the utilization of tea stems, we investigated the effects of different expansion temperatures on the non-volatile compounds of tea stems. The results showed that the contents of EC, EGC, EGCG, tea polyphenols, and amino acids all decreased with the expansion temperature, while the contents of GA and C increased. The best effect was observed at 220 °C for 20 s. Additionally, as the temperature increased, the umami and aftertaste of astringency values of tea stems decreased, and the value of bitterness increased. Meanwhile, the value of sweetness decreased first and then increased. EGC was identified as the key differential compound of tea stems at different temperatures. In this investigation, determining the optimum expansion temperature was deemed advantageous for enhancing the flavor quality of tea stems, consequently elevating the utilization efficacy of tea stems and tea by-products.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Changxu He
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Leyin Cui
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhengquan Liu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jin Liang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
16
|
Li G, Zhang J, Cui H, Feng Z, Gao Y, Wang Y, Chen J, Xu Y, Niu D, Yin J. Research Progress on the Effect and Mechanism of Tea Products with Different Fermentation Degrees in Regulating Type 2 Diabetes Mellitus. Foods 2024; 13:221. [PMID: 38254521 PMCID: PMC10814445 DOI: 10.3390/foods13020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
A popular non-alcoholic beverage worldwide, tea can regulate blood glucose levels, lipid levels, and blood pressure, and may even prevent type 2 diabetes mellitus (T2DM). Different tea fermentation levels impact these effects. Tea products with different fermentation degrees containing different functional ingredients can lower post-meal blood glucose levels and may prevent T2DM. There are seven critical factors that shed light on how teas with different fermentation levels affect blood glucose regulation in humans. These factors include the inhibition of digestive enzymes, enhancement of cellular glucose uptake, suppression of gluconeogenesis-related enzymes, reduction in the formation of advanced glycation end products (AGEs), inhibition of dipeptidyl peptidase-4 (DPP-4) activity, modulation of gut flora, and the alleviation of inflammation associated with oxidative stress. Fermented teas can be used to lower post-meal blood glucose levels and can help consumers make more informed tea selections.
Collapse
Affiliation(s)
- Guangneng Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530003, China
| | - Jianyong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Z.)
| | - Hongchun Cui
- Tea Research Institute, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Zhihui Feng
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Z.)
| | - Ying Gao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Z.)
| | - Yuwan Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Z.)
| | - Jianxin Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Z.)
| | - Yongquan Xu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Z.)
| | - Debao Niu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530003, China
| | - Junfeng Yin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Z.)
| |
Collapse
|
17
|
Suo K, Feng Y, Zhang Y, Yang Z, Zhou C, Chen W, Shi L, Yan C. Comparative Evaluation of Quality Attributes of the Dried Cherry Blossom Subjected to Different Drying Techniques. Foods 2023; 13:104. [PMID: 38201132 PMCID: PMC10778660 DOI: 10.3390/foods13010104] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Choosing an appropriate drying method is crucial for producing dried cherry blossoms with desirable quality. This study is designed to assess the effects of seven different drying methods-hot-air drying (HAD), infrared hot-air drying (IHAD), catalytic infrared drying (CID), relative humidity drying (RHD), pulsed vacuum drying (PVD), microwave vacuum drying (MVD), and vacuum freeze drying (VFD)-on drying time and various attributes of cherry blossoms, such as appearance, bioactive compounds, antioxidant activity, α-glucosidase activity, and sensory properties. Our findings revealed that MVD recorded the shortest drying time, followed by PVD, CID, IHAD, RHD, HAD, and VFD. In qualities, VFD-dried petals exhibited superior appearance, bioactive compounds, antioxidant activity, and α-glucosidase inhibitory capability; MVD-dried petals were a close second. Furthermore, the quality of tea infusions prepared from the dried petals was found to be significantly correlated with the quality of the dried petals themselves. Regarding sensory attributes, VFD-dried petals produced tea infusions most similar in flavor and taste to those made with fresh petals and received the highest sensory evaluation scores, followed by MVD, PVD, RHD, CID, IHAD, and HAD. These results could offer a scientific foundation for the mass production of high-quality dried cherry blossoms in the future.
Collapse
Affiliation(s)
- Kui Suo
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China (Z.Y.)
| | - Yabin Feng
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China (Z.Y.)
| | - Yang Zhang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China (Z.Y.)
| | - Zhenfeng Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China (Z.Y.)
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wei Chen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China (Z.Y.)
| | - Liyu Shi
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China (Z.Y.)
| | - Chunfeng Yan
- Haishu Agricultural Extension Center of Zhejiang, Ningbo 315100, China
| |
Collapse
|
18
|
Wei Y, Yin X, Zhao M, Zhang J, Li T, Zhang Y, Wang Y, Ning J. Metabolomics analysis reveals the mechanism underlying the improvement in the color and taste of yellow tea after optimized yellowing. Food Chem 2023; 428:136785. [PMID: 37467693 DOI: 10.1016/j.foodchem.2023.136785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/10/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023]
Abstract
In this study, an optimized yellowing process for yellow tea (YT) was developed by response surface methodology. The results showed that increasing the yellowing temperature from 20 °C to 34 °C, increasing the relative humidity from 55% to 67%, and reducing the yellowing time from 48 h to 16 h, caused a 40.5% and 43.2% increase in the yellowness and sweetness of YT, respectively, and improved the consumer acceptability by 36.8%. Moreover, metabolomics was used to explore the involved mechanisms that resulted in the improved YT quality. The optimized yellowing promoted the hydrolysis of 5 gallated catechins, 6 flavonoid glycosides, theogallin and digalloylglucose, resulting in the accumulation of 5 soluble sugars and gallic acid. Meanwhile, it promoted the oxidative polymerization of catechins (e.g., theaflagallin, δ-type dehydrodicatechin and theasinensin A), but decelerated the degradation of chlorophylls. Overall, this optimized yellowing process could serve as a guide to a shorter yellowing cycle.
Collapse
Affiliation(s)
- Yuming Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei, Anhui 230036, People's Republic of China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Xuchao Yin
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei, Anhui 230036, People's Republic of China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Mengjie Zhao
- The National Key Engineering Lab of Crop Stress Resistance Breeding, the School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei, Anhui 230036, People's Republic of China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Tiehan Li
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei, Anhui 230036, People's Republic of China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yiyi Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei, Anhui 230036, People's Republic of China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yujie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei, Anhui 230036, People's Republic of China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei, Anhui 230036, People's Republic of China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.
| |
Collapse
|
19
|
Wen M, Zhu M, Han Z, Ho CT, Granato D, Zhang L. Comprehensive applications of metabolomics on tea science and technology: Opportunities, hurdles, and perspectives. Compr Rev Food Sci Food Saf 2023; 22:4890-4924. [PMID: 37786329 DOI: 10.1111/1541-4337.13246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 10/04/2023]
Abstract
With the development of metabolomics analytical techniques, relevant studies have increased in recent decades. The procedures of metabolomics analysis mainly include sample preparation, data acquisition and pre-processing, multivariate statistical analysis, as well as maker compounds' identification. In the present review, we summarized the published articles of tea metabolomics regarding different analytical tools, such as mass spectrometry, nuclear magnetic resonance, ultraviolet-visible spectrometry, and Fourier transform infrared spectrometry. The metabolite variation of fresh tea leaves with different treatments, such as biotic/abiotic stress, horticultural measures, and nutritional supplies was reviewed. Furthermore, the changes of chemical composition of processed tea samples under different processing technologies were also profiled. Since the identification of critical or marker metabolites is a complicated task, we also discussed the procedure of metabolite identification to clarify the importance of omics data analysis. The present review provides a workflow diagram for tea metabolomics research and also the perspectives of related studies in the future.
Collapse
Affiliation(s)
- Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Mengting Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Zisheng Han
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Daniel Granato
- Department of Biological Sciences, School of Natural Sciences Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
20
|
Wen S, Sun L, Zhang S, Chen Z, Chen R, Li Z, Lai X, Zhang Z, Cao J, Li Q, Sun S, Lai Z, Li Q. The formation mechanism of aroma quality of green and yellow teas based on GC-MS/MS metabolomics. Food Res Int 2023; 172:113137. [PMID: 37689901 DOI: 10.1016/j.foodres.2023.113137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 09/11/2023]
Abstract
Aroma is a crucial determinant of tea quality. While some studies have examined the aroma of yellow tea, there are no reports of the difference and formation mechanism of aroma quality between yellow and green teas from the same tea tree variety. This study employed gas chromatography-mass spectrometry to investigate the difference and formation mechanism of the aroma of yellow and green tea at the omics level, based on sensory evaluation. The sensory evaluation revealed that green tea has a distinct faint scent and bean aroma, while yellow tea, which was yellowed for 48 h, has a noticeable corn aroma and sweet fragrance. A total of 79 volatile metabolites were detected in the processing of yellow and green tea, covering 11 subclasses and 27 were differential volatile metabolites. Benzoic acid, 2-(methylamino-), methyl ester, terpinen-4-ol ethanone, 1-(1H-pyrrol-2-yl-), 3-penten-2-one, 4-methyl- and benzaldehyde were characteristic components of the difference in aroma quality between green and yellow teas. Eleven volatile metabolites significantly contributed to the aroma quality of green and yellow teas, especially acetic acid, 2-phenylethyl ester, with rose and fruity aromas. KEGG enrichment analysis showed that the arginine and proline metabolism might be the key mechanism of aroma formation during green and yellow teas' processing. These finding provide a theoretical basis way for the aroma formation of green and yellow teas.
Collapse
Affiliation(s)
- Shuai Wen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Suwan Zhang
- College of Food Science/Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, China.
| | - Zhongzheng Chen
- College of Food Science/Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, China.
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Zhigang Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Qian Li
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Zhaoxiang Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| |
Collapse
|
21
|
Liu L, Zareef M, Wang Z, Li H, Chen Q, Ouyang Q. Monitoring chlorophyll changes during Tencha processing using portable near-infrared spectroscopy. Food Chem 2023; 412:135505. [PMID: 36716622 DOI: 10.1016/j.foodchem.2023.135505] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/25/2022] [Accepted: 01/15/2023] [Indexed: 01/29/2023]
Abstract
Monitoring chlorophyll during Tencha (the raw ingredient for matcha) processing is critical for determining the matcha's color and quality. The purpose of this study is to explore the mechanism of chlorophyll changes during Tencha processing and evaluate the viability of predicting its content by a portable near-infrared (NIR) spectrometer. The Tencha samples' spectral data were first preprocessed using various preprocessing techniques. Subsequently, iteratively variable subset optimization (IVSO), bootstrapping soft shrinkage (BOSS), and competitive adaptive reweighted sampling (CARS) were used to optimize and build partial least square (PLS) models. The CARS-PLS models achieved the best predictive accuracy, with correlation coefficients of prediction (Rp) = 0.9204 for chlorophyll a, Rp = 0.9282 for chlorophyll b, and Rp = 0.9385 for total chlorophyll. These findings suggest that NIR spectroscopy could be used as a surrogate for immediate quantification and monitoring of chlorophyll during Tencha processing.
Collapse
Affiliation(s)
- Lihua Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Muhammad Zareef
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Zhen Wang
- National Research and Development Center for Matcha Processing Technology, Jiangsu Xinpin Tea Co., Ltd, Changzhou, 213254, PR China; Tea Industry Research Institute, Changzhou Academy of Modern Agricultural Sciences, Changzhou, 213254, PR China
| | - Haoquan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
22
|
Tang MG, Zhang S, Xiong LG, Zhou JH, Huang JA, Zhao AQ, Liu ZH, Liu AL. A comprehensive review of polyphenol oxidase in tea (Camellia sinensis): Physiological characteristics, oxidation manufacturing, and biosynthesis of functional constituents. Compr Rev Food Sci Food Saf 2023; 22:2267-2291. [PMID: 37043598 DOI: 10.1111/1541-4337.13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 04/14/2023]
Abstract
Polyphenol oxidase (PPO) is a metalloenzyme with a type III copper core that is abundant in nature. As one of the most essential enzymes in the tea plant (Camellia sinensis), the further regulation of PPO is critical for enhancing defensive responses, cultivating high-quality germplasm resources of tea plants, and producing tea products that are both functional and sensory qualities. Due to their physiological and pharmacological values, the constituents from the oxidative polymerization of PPO in tea manufacturing may serve as functional foods to prevent and treat chronic non-communicable diseases. However, current knowledge of the utilization of PPO in the tea industry is only available from scattered sources, and a more comprehensive study is required to reveal the relationship between PPO and tea obviously. A more comprehensive review of the role of PPO in tea was reported for the first time, as its classification, catalytic mechanism, and utilization in modulating tea flavors, compositions, and nutrition, along with the relationships between PPO-mediated enzymatic reactions and the formation of functional constituents in tea, and the techniques for the modification and application of PPO based on modern enzymology and synthetic biology are summarized and suggested in this article.
Collapse
Affiliation(s)
- Meng-Ge Tang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Sheng Zhang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Li-Gui Xiong
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Jing-Hui Zhou
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Jian-An Huang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Ai-Qing Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhong-Hua Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Ai-Ling Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
23
|
Feng X, Yang S, Pan Y, Zhou S, Ma S, Ou C, Fan F, Gong S, Chen P, Chu Q. Yellow tea: more than turning green leaves to yellow. Crit Rev Food Sci Nutr 2023; 64:7836-7853. [PMID: 37009836 DOI: 10.1080/10408398.2023.2193271] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Yellow tea (YT), a slightly-fermented tea originated from Ming Dynasty with distinctive "Three yellows," mild-sweet smell, and mellow taste attributed to the unique yellowing process. Based on current literature and our previous work, we aim to comprehensively illustrate the key processing procedures, characteristic chemical compounds, health benefits and applications, as well as the interlocking relationships among them. Yellowing is the most vital procedure anchored on the organoleptic quality, characteristic chemical components, and bioactivities of YT, which is influenced by temperature, moisture content, duration, and ventilation conditions. Pheophorbides, carotenoids, thearubigins and theabrownins are the major pigments contributing to the "three yellows" appearance. Alcohols, such as terpinol and nerol, are attributed to the refreshing and sweet aroma of bud and small-leaf YT, while heterocyclics and aromatics forming during roasting result in the crispy rice-like large-leaf YT. Hygrothermal effects and enzymatic reactions during yellowing result in the decline of astringent substances. Meanwhile, multiple bioactive compounds such as catechins, ellagitannins, and vitexin, endow YT with antioxidant, anti-metabolic syndrome, anti-cancer, gut microbiota regulation, and organ injury protection effects. Future studies focusing on the standard yellowing process technology, quality evaluation system, and functional factors and mechanisms, possible orientations, and perspectives are guaranteed.
Collapse
Affiliation(s)
- Xinyu Feng
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, P. R. China
| | - Shiyan Yang
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Yani Pan
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Su Zhou
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, P. R. China
| | - Shicheng Ma
- Wuzhou Liubao Tea Research Association, Wuzhou, P. R. China
| | - Cansong Ou
- Wuzhou Tea Industry Development Service Center, Wuzhou, P. R. China
| | - Fangyuan Fan
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Shuying Gong
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Ping Chen
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Qiang Chu
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
24
|
Zhao F, Wu W, Wang C, Wang X, Liu H, Qian J, Cai C, Xie Y, Lin Y. Dynamic change of oligopeptides and free amino acids composition in five types of tea with different fermentation degree processed from the same batch of fresh tea (Camelilia Sinensis. L.) leaves. Food Chem 2023; 404:134608. [DOI: 10.1016/j.foodchem.2022.134608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/22/2022]
|
25
|
Farag MA, Elmetwally F, Elghanam R, Kamal N, Hellal K, Hamezah HS, Zhao C, Mediani A. Metabolomics in tea products; a compile of applications for enhancing agricultural traits and quality control analysis of Camellia sinensis. Food Chem 2023; 404:134628. [DOI: 10.1016/j.foodchem.2022.134628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
|
26
|
Ye F, Guo X, Li B, Chen H, Qiao X. Characterization of Effects of Different Tea Harvesting Seasons on Quality Components, Color and Sensory Quality of "Yinghong 9" and "Huangyu" Large-Leaf-Variety Black Tea. Molecules 2022; 27:8720. [PMID: 36557856 PMCID: PMC9782827 DOI: 10.3390/molecules27248720] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Harvesting seasons are crucial for the physicochemical qualities of large-leaf-variety black tea. To investigate the effect of harvesting seasons on physicochemical qualities, the color and sensory characteristics of black tea produced from "Yinghong 9" (Yh) and its mutant "Huangyu" (Hy) leaves were analyzed. The results demonstrated that Hy had better chemical qualities and sensory characteristics, on average, such as a higher content of tea polyphenols, free amino acids, caffeine, galloylated catechins (GaCs) and non-galloylated catechins (NGaCs), while the hue of the tea brew (ΔE*ab and Δb*) increased, which meant that the tea brew was yellower and redder. Moreover, the data showed that the physicochemical qualities of SpHy (Hy processed in spring) were superior to those of SuHy (Hy processed in summer) and AuHy (Hy processed in autumn), and 92.6% of the total variance in PCA score plots effectively explained the separation of the physicochemical qualities of Yh and Hy processed in different harvesting seasons. In summary, Hy processed in spring was superior in its physicochemical qualities. The current results will provide scientific guidance for the production of high-quality large-leaf-variety black tea in South China.
Collapse
Affiliation(s)
- Fei Ye
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xinbo Guo
- Tuguanya Agricultural Technology Extension Center, Danjiangkou 442700, China
| | - Bo Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| | - Haiqiang Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| | - Xiaoyan Qiao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China
| |
Collapse
|
27
|
Evaluation of the effects of solar withering on nonvolatile compounds in white tea through metabolomics and transcriptomics. Food Res Int 2022; 162:112088. [DOI: 10.1016/j.foodres.2022.112088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 11/22/2022]
|
28
|
Gharibzahedi SMT, Barba FJ, Zhou J, Wang M, Altintas Z. Electronic Sensor Technologies in Monitoring Quality of Tea: A Review. BIOSENSORS 2022; 12:bios12050356. [PMID: 35624658 PMCID: PMC9138728 DOI: 10.3390/bios12050356] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 05/27/2023]
Abstract
Tea, after water, is the most frequently consumed beverage in the world. The fermentation of tea leaves has a pivotal role in its quality and is usually monitored using the laboratory analytical instruments and olfactory perception of tea tasters. Developing electronic sensing platforms (ESPs), in terms of an electronic nose (e-nose), electronic tongue (e-tongue), and electronic eye (e-eye) equipped with progressive data processing algorithms, not only can accurately accelerate the consumer-based sensory quality assessment of tea, but also can define new standards for this bioactive product, to meet worldwide market demand. Using the complex data sets from electronic signals integrated with multivariate statistics can, thus, contribute to quality prediction and discrimination. The latest achievements and available solutions, to solve future problems and for easy and accurate real-time analysis of the sensory-chemical properties of tea and its products, are reviewed using bio-mimicking ESPs. These advanced sensing technologies, which measure the aroma, taste, and color profiles and input the data into mathematical classification algorithms, can discriminate different teas based on their price, geographical origins, harvest, fermentation, storage times, quality grades, and adulteration ratio. Although voltammetric and fluorescent sensor arrays are emerging for designing e-tongue systems, potentiometric electrodes are more often employed to monitor the taste profiles of tea. The use of a feature-level fusion strategy can significantly improve the efficiency and accuracy of prediction models, accompanied by the pattern recognition associations between the sensory properties and biochemical profiles of tea.
Collapse
Affiliation(s)
- Seyed Mohammad Taghi Gharibzahedi
- Institute of Chemistry, Faculty of Natural Sciences and Maths, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain; (F.J.B.); (J.Z.); (M.W.)
| | - Jianjun Zhou
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain; (F.J.B.); (J.Z.); (M.W.)
| | - Min Wang
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain; (F.J.B.); (J.Z.); (M.W.)
| | - Zeynep Altintas
- Institute of Chemistry, Faculty of Natural Sciences and Maths, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
| |
Collapse
|
29
|
Cai H, Zhong Z, Li Z, Zhang X, Fu H, Yang B, Zhang L. Metabolomics in quality formation and characterisation of tea products: a review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongli Cai
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Zhuoheng Zhong
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Zhanming Li
- School of Grain Science and Technology Jiangsu University of Science and Technology Zhenjiang 212004 China
| | - Xiaojing Zhang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Hongwei Fu
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Bingxian Yang
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Lin Zhang
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| |
Collapse
|
30
|
Wei Y, Yin X, Wu H, Zhao M, Huang J, Zhang J, Li T, Ning J. Improving the flavor of summer green tea (Camellia sinensis L.) using the yellowing process. Food Chem 2022; 388:132982. [PMID: 35447593 DOI: 10.1016/j.foodchem.2022.132982] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/13/2022] [Accepted: 04/12/2022] [Indexed: 11/04/2022]
Abstract
Summer green tea (SGT) has poor flavor due to its high levels of bitterness and astringency. The present study aimed to improve the flavor of SGT using the yellowing process. The results showed that after the yellowing process, the sweetness and overall acceptability increased, and the content of gallated catechins and flavonol glycosides decreased by 30.2% and 27.4%, respectively, as did the bitterness and astringency of SGT. Yellowing caused a decrease in the concentration of some aroma compounds, such as (z)-3-hexen-1-ol, 1-hexanol, pentanal, heptanal and 1-octanol, which caused grassy, floral and fruity aromas. In contrast, the concentrations of 1-octen-3-ol, benzene acetaldehyde and β-ionone increased, which have mushroom and sweet aromas. Meanwhile, the sweetness and umami of SGT were enhanced by the addition of selected aroma compounds (1-octen-3-ol, benzene acetaldehyde and β-ionone), demonstrating that the yellowing process improves the flavor of SGT through odor-taste interactions.
Collapse
Affiliation(s)
- Yuming Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Xuchao Yin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Huiting Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Mengjie Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Junlan Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Tiehan Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.
| |
Collapse
|
31
|
Chen Y, Luo L, Hu S, Gan R, Zeng L. The chemistry, processing, and preclinical anti-hyperuricemia potential of tea: a comprehensive review. Crit Rev Food Sci Nutr 2022; 63:7065-7090. [PMID: 35236179 DOI: 10.1080/10408398.2022.2040417] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hyperuricemia is an abnormal purine metabolic disease that occurs when there is an excess of uric acid in the blood, associated with cardiovascular diseases, hypertension, gout, and renal disease. Dietary intervention is one of the most promising strategies for preventing hyperuricemia and controlling uric acid concentrations. Tea (Camellia sinensis) is known as one of the most common beverages and the source of dietary polyphenols. However, the effect of tea on hyperuricemia is unclear. Recent evidence shows that a lower risk of hyperuricemia is associated with tea intake. To better understand the anti-hyperuricemia effect of tea, this review first briefly describes the pathogenesis of hyperuricemia and the processing techniques of different types of tea. Next, the epidemiological and experimental studies of tea and its bioactive compounds on hyperuricemia in recent years were reviewed. Particular attention was paid to the anti-hyperuricemia mechanisms targeting the hepatic uric acid synthase, renal uric acid transporters, and intestinal microbiota. Additionally, the desirable intake of tea for preventing hyperuricemia is provided. Understanding the anti-hyperuricemia effect and mechanisms of tea can better utilize it as a preventive dietary strategy.HighlightsHigh purine diet, excessive alcohol/fructose consumption, and less exercise/sleep are the induction factors of hyperuricemia.Tea and tea compounds showed alleviated effects for hyperuricemia, especially polyphenols.Tea (containing caffeine or not) is not associated with a higher risk of hyperuricemia.Xanthine oxidase inhibition (reduce uric acid production), Nrf2 activation, and urate transporters regulation (increase uric acid excretion) are the potential molecular targets of anti-hyperuricemic effect of tea.About 5 g tea intake per day may be beneficial for hyperuricemia prevention.
Collapse
Affiliation(s)
- Yu Chen
- College of Food Science, Southwest University, Chongqing, China
| | - Liyong Luo
- College of Food Science, Southwest University, Chongqing, China
- College of Food Science, Tea Research Institute, Southwest University, Chongqing, China
| | - Shanshan Hu
- College of Food Science, Southwest University, Chongqing, China
| | - Renyou Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center, Chengdu, China
| | - Liang Zeng
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
32
|
Fan FY, Zhou SJ, Qian H, Zong BZ, Huang CS, Zhu RL, Guo HW, Gong SY. Effect of Yellowing Duration on the Chemical Profile of Yellow Tea and the Associations with Sensory Traits. Molecules 2022; 27:molecules27030940. [PMID: 35164205 PMCID: PMC8839223 DOI: 10.3390/molecules27030940] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
The yellowing process is the crucial step to form the characteristic sensory and chemical properties of yellow tea. To investigate the chemical changes and the associations with sensory traits during yellowing, yellow teas with different yellowing times (0–13 h) were prepared for sensory evaluation and chemical analysis. The intensities of umami and green-tea aroma were reduced whereas sweet taste, mellow taste and sweet aroma were increased under long-term yellowing treatment. A total of 230 chemical constituents were determined, among which 25 non-volatiles and 42 volatiles were the key chemical contributors to sensory traits based on orthogonal partial least squares discrimination analysis (OPLS-DA), multiple factor analysis (MFA) and multidimensional alignment (MDA) analysis. The decrease in catechins, flavonol glycosides and caffeine and the increase in certain amino acids contributed to the elevated sweet taste and mellow taste. The sweet, woody and herbal odorants and the fermented and fatty odorants were the key contributors to the characteristic sensory feature of yellow tea with sweet aroma and over-oxidation aroma, including 7 ketones, 5 alcohols, 1 aldehyde, 5 acids, 4 esters, 5 hydrocarbons, 1 phenolic compound and 1 sulfocompound. This study reveals the sensory trait-related chemical changes in the yellowing process of tea, which provides a theoretical basis for the optimization of the yellowing process and quality control of yellow tea.
Collapse
Affiliation(s)
- Fang-Yuan Fan
- Tea Research Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (F.-Y.F.); (S.-J.Z.); (B.-Z.Z.); (C.-S.H.); (R.-L.Z.); (H.-W.G.)
| | - Sen-Jie Zhou
- Tea Research Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (F.-Y.F.); (S.-J.Z.); (B.-Z.Z.); (C.-S.H.); (R.-L.Z.); (H.-W.G.)
| | - Hong Qian
- Deqing Agricultural Technology Extension Center, 883 Zhongxingbei Road, Huzhou 313200, China;
| | - Bang-Zheng Zong
- Tea Research Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (F.-Y.F.); (S.-J.Z.); (B.-Z.Z.); (C.-S.H.); (R.-L.Z.); (H.-W.G.)
| | - Chuang-Sheng Huang
- Tea Research Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (F.-Y.F.); (S.-J.Z.); (B.-Z.Z.); (C.-S.H.); (R.-L.Z.); (H.-W.G.)
| | - Ruo-Lan Zhu
- Tea Research Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (F.-Y.F.); (S.-J.Z.); (B.-Z.Z.); (C.-S.H.); (R.-L.Z.); (H.-W.G.)
| | - Hao-Wei Guo
- Tea Research Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (F.-Y.F.); (S.-J.Z.); (B.-Z.Z.); (C.-S.H.); (R.-L.Z.); (H.-W.G.)
| | - Shu-Ying Gong
- Tea Research Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (F.-Y.F.); (S.-J.Z.); (B.-Z.Z.); (C.-S.H.); (R.-L.Z.); (H.-W.G.)
- Correspondence: ; Tel.: +86-(571)-88982519
| |
Collapse
|
33
|
Untargeted and targeted metabolomics reveals potential marker compounds of an tea during storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Gonçalves Bortolini D, Windson Isidoro Haminiuk C, Cristina Pedro A, de Andrade Arruda Fernandes I, Maria Maciel G. Processing, chemical signature and food industry applications of Camellia sinensis teas: An overview. Food Chem X 2021; 12:100160. [PMID: 34825170 PMCID: PMC8605308 DOI: 10.1016/j.fochx.2021.100160] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/27/2021] [Accepted: 11/11/2021] [Indexed: 01/06/2023] Open
Abstract
The plant Camellia sinensis is the source of different teas (white, green, yellow, oolong, black, and pu-ehr) consumed worldwide, which are classified by the oxidation degree of their bioactive compounds. The sensory (taste, aroma, and body of the drink) and functional properties of teas are affected by the amount of methylxanthines (caffeine and theobromine), amino acids (l-theanine) and reducing sugars in their composition. Additionally, flavan-3-ols, mainly characterized by epicatechins, catechins, and their derivatives, represent on average, 60% of the bioactive compounds in teas. These secondary metabolites from teas are widely recognized for their antioxidant, anti-cancer, and anti-inflammatory properties. Thus, Camellia sinensis extracts and their isolated compounds have been increasingly used by the food industry. However, bioactive compounds are very susceptible to the oxidation caused by processing and degradation under physiological conditions of gastrointestinal digestion. In this context, new approaches/technologies have been developed for the preservation of these compounds. This review presents the main stages involved in production of Camellia sinensis teas following a description of their main bioactive compounds, biological properties, stability and bioaccessibility. Besides, and updated view of Camellia sinensis teas in the field of food science and technology was provided by focusing on novel findings and innovations published in scientific literature over the last five years.
Collapse
Affiliation(s)
- Débora Gonçalves Bortolini
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), CEP (81531-980) Curitiba, Paraná, Brazil
| | | | - Alessandra Cristina Pedro
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), CEP (81531-980) Curitiba, Paraná, Brazil
| | - Isabela de Andrade Arruda Fernandes
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), CEP (81531-980) Curitiba, Paraná, Brazil
| | - Giselle Maria Maciel
- Laboratório de Biotecnologia, Universidade Tecnológica Federal do Paraná (UTFPR), CEP (81280-340) Curitiba, Paraná, Brazil
| |
Collapse
|
35
|
Li H, Guo H, Luo Q, Wu DT, Zou L, Liu Y, Li HB, Gan RY. Current extraction, purification, and identification techniques of tea polyphenols: An updated review. Crit Rev Food Sci Nutr 2021:1-19. [PMID: 34702110 DOI: 10.1080/10408398.2021.1995843] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tea, as a beverage, has been reputed for its health benefits and gained worldwide popularity. Tea polyphenols, especially catechins, as the main bioactive compounds in tea, exhibit diverse health benefits and have wide applications in the food industry. The development of tea polyphenol-incorporated products is dependent on the extraction, purification, and identification of tea polyphenols. Recent years, many green and novel extraction, purification, and identification techniques have been developed for the preparation of tea polyphenols. This review, therefore, introduces the classification of tea and summarizes the main conventional and novel techniques for the extraction of polyphenols from various tea products. The advantages and disadvantages of these techniques are also intensively discussed and compared. In addition, the purification and identification techniques are summarized. It is hoped that this updated review can provide a research basis for the green and efficient extraction, purification, and identification of tea polyphenols, which can facilitate their utilization in the production of various functional food products and nutraceuticals.
Collapse
Affiliation(s)
- Hang Li
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Huan Guo
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Qiong Luo
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Yi Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| |
Collapse
|
36
|
Kim J, Lee HE, Kim Y, Yang J, Lee SJ, Jung YH. Development of a post-processing method to reduce the unique off-flavor of Allomyrina dichotoma: Yeast fermentation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Indrawati R, Zubaidah E, Sutrisno A, Limantara L, Brotosudarmo THP. Remnant photosynthetic pigments in tea dregs: identification, composition, and potential use as antibacterial photosensitizer. POTRAVINARSTVO 2021. [DOI: 10.5219/1651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The production of tea dregs is continually increasing along with the growth of people's interest in ready-to-drink beverages. However, the recent development of research on the use of tea dregs is still very limited. The present study was aimed to identify the remnant photosynthetic pigments in tea dregs, determine their composition, and evaluate their potential use as natural antibacterial agents based on light-induced reaction (photosensitization). The tea dregs from six commercial teas, consisting of green and black teas, were analyzed using high-performance liquid chromatography (HPLC) with a photodiode array detector, and the spectroscopic data were analyzed from 350 to 700 nm. Pigment identification was performed based on spectral characteristics, and pigment composition in the extracts from the dregs was determined by a three-dimensional multi-chromatogram analysis method. The dominant pigment fractions in both tea types were pheophytin a and its isomers, as well as pheophytin b. Although the dregs of black teas generally contain fewer remnant pigments, they possess residual chlorophyll b, which is not found in the dregs of green teas. In thirty-minutes illumination under 50 W red light-emitting diode, the presence of pigments from tea dregs caused up to 0.87 and 0.35 log reduction of Staphylococcus aureus and Escherichia coli, respectively. The disparity of pigments composition among tea types does not strongly influence their photosensitization activity against both bacteria. Hence, upon further application, the amount of total remnant pigments in the dregs could be taken as substantial consideration instead of tea types.
Collapse
|
38
|
Shi Y, Wang M, Dong Z, Zhu Y, Shi J, Ma W, Lin Z, Lv H. Volatile components and key odorants of Chinese yellow tea (Camellia sinensis). Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
The Effect of Yellow Tea Leaves Camellia sinensis on the Quality of Stored Chocolate Confectionery. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chocolate and tea leaves are considered the most valuable sources of highly bioactive polyphenols due to their potential anti-cancer properties and beneficial effects on the cardiovascular and nervous systems. The objective of the present study was the development of a sensory profiling modality that is correlated with the taste of the chocolate enriched with yellow tea phytochemicals. The additive concentration was optimized in white chocolate and the designed product was evaluated using the sensory profiling method. It was shown that the yellow tea extract in chocolate had a significant effect on the taste and color of the product. Addition of 2.0% yellow tea powdered extract increased the value of color acceptance and caused an intensification of the aromas, particularly the leafy taste, compared to the control samples. The next step of the study was to determine the influence of tea addition in white, milk and dark chocolate subjected to 6 months of storage. The designed chocolates were tested for their activity as antioxidants (DPPH, ABTS and ORAC assay) and cholinesterase inhibitors (AChE, BChE assay). It was confirmed that the yellow tea addition affected the activity of prepared chocolates with respect to radical scavenging activity and was highest for dark chocolate with yellow tea where the values were as follows: 4373 mg Tx/100 g (DPPH), 386 mg Tx/100 g (ABTS) and 4363 µM Tx/100 g (ORAC). An increase in the anti-radical activity of chocolate with yellow tea was found after 3 months of storage, but the subsequent 3 months of storage resulted in its reduction. AChE values ranged from 0.118 to 0.730 [µM eserine/g dw] and from 0.095 to 0.480 [µM eserine/g dw] for BChE assay. Total capacity to inhibit AChE and BChE differed depending on the type of chocolate and was negatively influenced by the half-year storage. Summarizing tested values for individual samples were higher, with increasing content of cocoa liquor and yellow tea extract in the product. The results of the research show that the use of yellow tea in confectionery is promising and may appoint a new direction in functional foods.
Collapse
|