1
|
Xu B, Li Z, Guo Q, Zha L, Li C, Yu P, Chen M, Zhao Y. The Purification and Characterization of a Novel Neutral Protease from Volvariella volvacea Fruiting Bodies and the Enzymatic Digestion of Soybean Isolates. J Fungi (Basel) 2025; 11:190. [PMID: 40137228 PMCID: PMC11942766 DOI: 10.3390/jof11030190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
A novel protease was isolated from the fruiting bodies of the straw mushroom Volvariella volvacea. The protease was purified 13.48-fold using a series of techniques, including ammonium sulfate precipitation, ultrafiltration, diethylaminoethyl fast-flow (DEAE FF) ion-exchange chromatography, and Superdex 75 gel filtration chromatography, resulting in a specific enzyme activity of 286.82 U/mg toward casein as a substrate. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed that the purified protease had a molecular weight of 24 kDa. The enzyme exhibited optimal activity at pH 7 and 50 °C, showing sensitivity to alkaline conditions and instability at elevated temperatures. The presence of Ca2+ significantly enhanced enzyme activity, whereas Ni2+ and Cu2+ exerted strong inhibitory effects, with other metal ions showing weak inhibition. β-mercaptoethanol, Tween-80, and Triton X-100 had more pronounced inhibitory effects, whereas PMSF, EDTA, and CTAB had weaker inhibitory effects. The Michaelis constant (Km) and maximum velocity (Vm) of the protease were determined to be 1.34 g/L and 3.45 μg/(mL·min), respectively. The protease exhibited a greater degree of enzymatic degradation of soybean-isolate protein (7.58%) compared to trypsin (5.24%), with the enzyme product containing a high percentage of medicinal amino acids (73.54%), particularly phenylalanine (Phe) and arginine (Arg), suggesting their presence at the enzyme's active site. These findings suggest that the protease from V. volvacea holds promising potential for applications in the food industry, particularly in protein hydrolysate production and flavor enhancement.
Collapse
Affiliation(s)
- Baoting Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (B.X.); (P.Y.)
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.L.); (Q.G.); (L.Z.); (C.L.)
| | - Zhiping Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.L.); (Q.G.); (L.Z.); (C.L.)
| | - Qian Guo
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.L.); (Q.G.); (L.Z.); (C.L.)
| | - Lei Zha
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.L.); (Q.G.); (L.Z.); (C.L.)
| | - Chuanhua Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.L.); (Q.G.); (L.Z.); (C.L.)
| | - Panling Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (B.X.); (P.Y.)
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.L.); (Q.G.); (L.Z.); (C.L.)
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.L.); (Q.G.); (L.Z.); (C.L.)
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.L.); (Q.G.); (L.Z.); (C.L.)
| |
Collapse
|
2
|
Zhao C, Wang Y, Ashaolu TJ. Antioxidative and mineral-binding food-derived peptides: Production, functions, metal complexation conditions, and digestive fate. Food Res Int 2025; 200:115471. [PMID: 39779082 DOI: 10.1016/j.foodres.2024.115471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
The discovery of food-derived biopeptides is becoming increasingly prevalent in the scientific community. Some peptides possess multiple biological functions that can confer health benefits through various mechanisms following ingestion. The present review targets food-derived antioxidant and mineral-binding peptides (AMBPs) including their production procedure i.e., enzymolysis, separation, and purification (through membrane separation, gel filtration, ion exchange chromatography, and high-performance liquid chromatography), followed by mass spectrometry for identification. The most effective AMBPs exhibit radical scavenging activity, detoxification of excess metals, and reduction of lipid peroxidation to facilitate mineral bioavailability. The metal complexation of AMBPs necessitates an optimal metal-to-peptide ratio, specific ligands, precursors, and complexation reactions. The bioavailability and absorbability mechanisms of AMBPs are also elucidated, encompassing gastrointestinal stability, binding mode, and cell absorption machinery. Ultimately, further considerations regarding additional research on AMBPs are provided, which will assist researchers in conducting more comprehensive studies to promote the effective and safe use of AMBPs.
Collapse
Affiliation(s)
- Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yanli Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Medicine, Duy Tan University, Da Nang 550000, Viet Nam.
| |
Collapse
|
3
|
Xin S, Zhang H, Sun J, Mao X. Characterization and Hydrolysis Mechanism Analysis of a Cold-Adapted Trypsin-Like Protease from Antarctic Krill. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9955-9966. [PMID: 38628059 DOI: 10.1021/acs.jafc.4c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Cold-adapted proteases are capable of efficient protein hydrolysis at reduced temperatures, which offer significant potential applications in the area of low temperature food processing. In this paper, we attempted to characterize cold-adapted proteases from Antarctic krill. Antarctic krill possesses an extremely active autolytic enzyme system in their bodies, and the production of peptides and free amino acids accompanies the rapid breakdown of muscle proteins following the death. The crucial role of trypsin in this process is recognized. A cold-adapted trypsin named OUC-Pp-20 from Antarctic krill genome was cloned and expressed in Pichia pastoris. Recombinant trypsin is a monomeric protein of 26.8 ± 1.0 kDa with optimum reaction temperature at 25 °C. In addition, the catalytic specificity of OUC-Pp-20 was assessed by identifying its hydrolysis sites through LC-MS/MS. OUC-Pp-20 appeared to prefer Gln and Asn at the P1 position, which is an amino acid with an amide group in its side chain. Hydrolysis reactions on milk and shrimp meat revealed that it can effectively degrade allergenic components in milk and arginine kinase in shrimp meat. These findings update the current knowledge of cold-adapted trypsin and demonstrate the potential application of OUC-Pp-20 in low temperature food processing.
Collapse
Affiliation(s)
- Shanglin Xin
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Haiyang Zhang
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Jianan Sun
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Xiangzhao Mao
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| |
Collapse
|
4
|
Kuddus M, Roohi, Bano N, Sheik GB, Joseph B, Hamid B, Sindhu R, Madhavan A. Cold-active microbial enzymes and their biotechnological applications. Microb Biotechnol 2024; 17:e14467. [PMID: 38656876 PMCID: PMC11042537 DOI: 10.1111/1751-7915.14467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
Microorganisms known as psychrophiles/psychrotrophs, which survive in cold climates, constitute majority of the biosphere on Earth. Their capability to produce cold-active enzymes along with other distinguishing characteristics allows them to survive in the cold environments. Due to the relative ease of large-scale production compared to enzymes from plants and animals, commercial uses of microbial enzyme are alluring. The ocean depths, polar, and alpine regions, which make up over 85% of the planet, are inhabited to cold ecosystems. Microbes living in these regions are important for their metabolic contribution to the ecosphere as well as for their enzymes, which may have potential industrial applications. Cold-adapted microorganisms are a possible source of cold-active enzymes that have high catalytic efficacy at low and moderate temperatures at which homologous mesophilic enzymes are not active. Cold-active enzymes can be used in a variety of biotechnological processes, including food processing, additives in the detergent and food industries, textile industry, waste-water treatment, biopulping, environmental bioremediation in cold climates, biotransformation, and molecular biology applications with great potential for energy savings. Genetically manipulated strains that are suitable for producing a particular cold-active enzyme would be crucial in a variety of industrial and biotechnological applications. The potential advantage of cold-adapted enzymes will probably lead to a greater annual market than for thermo-stable enzymes in the near future. This review includes latest updates on various microbial source of cold-active enzymes and their biotechnological applications.
Collapse
Affiliation(s)
- Mohammed Kuddus
- Department of Biochemistry, College of MedicineUniversity of HailHailSaudi Arabia
| | - Roohi
- Protein Research Laboratory, Department of BioengineeringIntegral UniversityLucknowIndia
| | - Naushin Bano
- Protein Research Laboratory, Department of BioengineeringIntegral UniversityLucknowIndia
| | | | - Babu Joseph
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesShaqra UniversityShaqraSaudi Arabia
| | - Burhan Hamid
- Center of Research for DevelopmentUniversity of KashmirSrinagarIndia
| | - Raveendran Sindhu
- Department of Food TechnologyTKM Institute of TechnologyKollamKeralaIndia
| | - Aravind Madhavan
- School of BiotechnologyAmrita Vishwa Vidyapeetham, AmritapuriKollamKeralaIndia
| |
Collapse
|
5
|
Xu Y, Xuan X, Gao R, Xie G. Increased Expression Levels of Thermophilic Serine Protease TTHA0724 through Signal Peptide Screening in Bacillus subtilis and Applications of the Enzyme. Int J Mol Sci 2023; 24:15950. [PMID: 37958933 PMCID: PMC10648325 DOI: 10.3390/ijms242115950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
The thermostable protease TTHA0724 derived from Thermus thermophilus HB8 is an ideal industrial washing enzyme due to its thermophilic characteristics; although it can be expressed in Escherichia coli via pET-22b, high yields are difficult to achieve, leading to frequent autolysis of the host. This paper details the development of a signal peptide library in the expression system of B. subtilis and the optimization of signal peptides for enhanced extracellular expression of TTHA0724. When B. subtilis was used as the host and the optimized signal peptide was used, the expression level of TTHA0724 was 16.7 times higher compared with E. coli. B. subtilis as an expression host does not change the characteristics of TTHA0724. The potential application fields of TTHA0724 are studied. TTHA0724 can be used as a detergent additive at 60 °C, which can sterilize and eliminate mites while thoroughly cleaning protein stains. Soybean meal enzymatic hydrolysis with TTHA0724 at a high temperature produced a higher content of antioxidant peptides. These results indicate that TTHA0724 has great potential for industrial applications.
Collapse
Affiliation(s)
- Yiwen Xu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China;
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China; (X.X.); (R.G.)
| | - Xiaoran Xuan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China; (X.X.); (R.G.)
| | - Renjun Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China; (X.X.); (R.G.)
| | - Guiqiu Xie
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China;
| |
Collapse
|
6
|
Song P, Zhang X, Wang S, Xu W, Wang F, Fu R, Wei F. Microbial proteases and their applications. Front Microbiol 2023; 14:1236368. [PMID: 37779686 PMCID: PMC10537240 DOI: 10.3389/fmicb.2023.1236368] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Proteases (proteinases or peptidases) are a class of hydrolases that cleave peptide chains in proteins. Endopeptidases are a type of protease that hydrolyze the internal peptide bonds of proteins, forming shorter peptides; exopeptidases hydrolyze the terminal peptide bonds from the C-terminal or N-terminal, forming free amino acids. Microbial proteases are a popular instrument in many industrial applications. In this review, the classification, detection, identification, and sources of microbial proteases are systematically introduced, as well as their applications in food, detergents, waste treatment, and biotechnology processes in the industry fields. In addition, recent studies on techniques used to express heterologous microbial proteases are summarized to describe the process of studying proteases. Finally, future developmental trends for microbial proteases are discussed.
Collapse
Affiliation(s)
- Peng Song
- College of Life Sciences, Liaocheng University, Liaocheng, China
- Shandong Aobo Biotech Co. Ltd., Liaocheng, China
- Jiangxi Zymerck Biotech Co. Ltd., Nanchang, China
| | - Xue Zhang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Shuhua Wang
- Shandong Aobo Biotech Co. Ltd., Liaocheng, China
| | - Wei Xu
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Fei Wang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Rongzhao Fu
- Jiangxi Zymerck Biotech Co. Ltd., Nanchang, China
| | - Feng Wei
- College of Life Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|
7
|
Mukhia S, Kumar A, Kumar R. Antioxidant prodigiosin-producing cold-adapted Janthinobacterium sp. ERMR3:09 from a glacier moraine: Genomic elucidation of cold adaptation and pigment biosynthesis. Gene X 2023; 857:147178. [PMID: 36627092 DOI: 10.1016/j.gene.2023.147178] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/17/2022] [Accepted: 01/04/2023] [Indexed: 01/08/2023] Open
Abstract
Janthinobacterium from cold niches has been studied broadly for bioactive violacein production. However, reports on the atypical red-pigmented Janthinobacterium strains are shallow. The bioactive red prodigiosin pigment has immense pharmacological significance, including antioxidant, antimicrobial and anticancer potential. Here, we report the first complete genome of a prodigiosin-producing Janthinobacterium sp. ERMR3:09 from Sikkim Himalaya in an attempt to elucidate its cold adaptation and prodigiosin biosynthesis. Nanopore sequencing and Flye assembly of the ERMR3:09 genome resulted in a single contig of 6,262,330 bp size and 62.26% GC content. Phylogenomic analysis and genome indices indicate that ERMR3:09 is a potentially novel species of the genus Janthinobacterium. The multicopy cold-responsive genes and gene upregulation under cold stress denoted its cold adaptation mechanisms. Genome analysis identified the unique genes, gene cluster and pathway for prodigiosin biosynthesis in ERMR3:09. Considering the notable antioxidant activity, it can be the next powerhouse of bioactive prodigiosin production.
Collapse
Affiliation(s)
- Srijana Mukhia
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur-176061, Himachal Pradesh, India; Department of Microbiology, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| | - Anil Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur-176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur-176061, Himachal Pradesh, India.
| |
Collapse
|
8
|
Two-Step Purification and Partial Characterization of Keratinolytic Proteases from Feather Meal Bioconversion by Bacillus sp. P45. Processes (Basel) 2023. [DOI: 10.3390/pr11030803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
This study aimed to purify and partially characterize a keratinolytic protease produced by Bacillus sp. P45 through bioconversion of feather meal. Crude protease extract was purified using a sequence of an aqueous two-phase system (ATPS) in large volume systems (10, 50, and 500 g) to increase obtaining purified enzyme, followed by a diafiltration (DF) step. Purified protease was characterized in terms of protein profile analysis by SDS-PAGE, optimum temperature and pH, thermal deactivation kinetics at different temperatures and pH, and performance in the presence of several salts (NaCl, CaCl2, MnCl2, CaO, C8H5KO4, MgSO4, CuSO4, ZnSO4, and FeCl3) and organic solvents (acetone, ethanol, methanol, acetic acid, diethyl ether, and formaldehyde). ATPS with high capacities resulted in purer protease extract without compromising purity and yields, reaching a purification factor up to 2.6-fold and 6.7-fold in first and second ATPS, respectively, and 4.0-fold in the DF process. Recoveries were up to 79% in both ATPS and reached 84.3% after the DF step. The electrophoretic analysis demonstrated a 25–28 kDa band related to keratinolytic protease. The purified protease’s optimum temperature and pH were 55 °C and 7.5, respectively. The deactivation energy (Ed) value was 118.0 kJ/mol, while D (decimal reduction time) and z (temperature interval required to reduce the D value in one log cycle) values ranged from 6.7 to 237.3 min and from 13.6 to 18.8 °C, respectively. Salts such as CaCl2, CaO, C8H5KO4, and MgSO4 increased the protease activity, while all organic solvents caused its decrease. The results are useful for future studies about ATPS scale-up for enzyme purification and protease application in different industrial processes.
Collapse
|
9
|
Expression of a Salt-Tolerant Pseudolysin in Yeast for Efficient Protein Hydrolysis under High-Salt Conditions. Biomolecules 2022; 13:biom13010083. [PMID: 36671468 PMCID: PMC9855795 DOI: 10.3390/biom13010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/30/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Protease biocatalysis in a high-salt environment is very attractive for applications in the detergent industry, the production of diagnostic kits, and traditional food fermentation. However, high-salt conditions can reduce protease activity or even inactivate enzymes. Herein, in order to explore new protease sources, we expressed a salt-tolerant pseudolysin of Pseudomonas aeruginosa SWJSS3 isolated from deep-sea mud in Saccharomyces cerevisiae. After optimizing the concentration of ion cofactors in yeast peptone dextrose (YPD) medium, the proteolytic activity in the supernatant was 2.41 times more than that in the control group when supplemented with 5 mM CaCl2 and 0.4 mM ZnCl2. The extracellular proteolytic activity of pseudolysin reached 258.95 U/mL with optimized expression cassettes. In addition, the S. cerevisiae expression system increased the salt tolerance of pseudolysin to sodium chloride (NaCl)and sodium dodecyl sulfate (SDS) and the recombinant pseudolysin retained 15.19% activity when stored in 3 M NaCl for 7 days. The recombinant pseudolysin was able to efficiently degrade the β-conglycinin from low-denatured soy protein isolates and glycinin from high-denatured soy protein isolates under high temperatures (60 °C) and high-salt (3 M NaCl) conditions. Our study provides a salt-tolerant recombinant protease with promising applications in protein hydrolysis under high-salt conditions.
Collapse
|
10
|
Santamarina-García G, Amores G, Hernández I, Morán L, Barrón LJR, Virto M. Relationship between the dynamics of volatile aroma compounds and microbial succession during the ripening of raw ewe milk-derived Idiazabal cheese. Curr Res Food Sci 2022; 6:100425. [PMID: 36691591 PMCID: PMC9860272 DOI: 10.1016/j.crfs.2022.100425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/10/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Cheese microbiota contributes to various biochemical processes that lead to the formation of volatile compounds and the development of flavour during ripening. Nonetheless, the role of these microorganisms in volatile aroma compounds production is little understood. This work reports for the first time the dynamics and odour impact of volatile compounds, and their relationship to microbial shifts during the ripening of a raw ewe milk-derived cheese (Idiazabal). By means of SPME-GC-MS, 81 volatile compounds were identified, among which acids predominated, followed by esters, ketones and alcohols. The ripening time influenced the abundance of most volatile compounds, thus the moments of greatest abundance were determined (such as 30-60 days for acids). Through Odour Impact Ratio (OIR) values, esters and acids were reported as the predominant odour-active chemical families, while individually, ethyl hexanoate, ethyl 3-methyl butanoate, ethyl butanoate, butanoic acid or 3-methyl butanal were notable odorants, which would provide fruity, rancid, cheesy or malt odour notes. Using a bidirectional orthogonal partial least squares (O2PLS) approach with Spearman's correlations, 12 bacterial genera were reported as key bacteria for the volatile and aromatic composition of Idiazabal cheese, namely Psychrobacter, Enterococcus, Brevibacterium, Streptococcus, Leuconostoc, Chromohalobacter, Chryseobacterium, Carnobacterium, Lactococcus, Obesumbacterium, Stenotrophomonas and Flavobacterium. Non-starter lactic acid bacteria (NSLAB) were highly related to the formation of certain acids, esters and alcohols, such as 3-hexenoic acid, ethyl butanoate or 1-butanol. On the other hand, the starter LAB (SLAB) was related to particular ketones production, specifically 3-hydroxy-2-butanone; and environmental and/or non-desirable bacteria to certain ketones, hydrocarbons and sulphur compounds formation, such as 2-propanone, t-3-octene and dimethyl sulphone. Additionally, the SLAB Lactococcus and Psychrobacter, Brevibacterium and Chromohalobacter were described as having a negative effect on aroma development caused by NSLAB and vice versa. These results provide novel knowledge to help understand the aroma formation in a raw ewe milk-derived cheese.
Collapse
Affiliation(s)
- Gorka Santamarina-García
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain,Corresponding author.
| | - Gustavo Amores
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Igor Hernández
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Lara Morán
- Lactiker Research Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Luis Javier R. Barrón
- Lactiker Research Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Mailo Virto
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain,Corresponding author.
| |
Collapse
|
11
|
Brandelli A, Daroit DJ. Unconventional microbial proteases as promising tools for the production of bioactive protein hydrolysates. Crit Rev Food Sci Nutr 2022; 64:4714-4745. [PMID: 36377687 DOI: 10.1080/10408398.2022.2145262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Enzymatic hydrolysis is the most prominent strategy to release bioactive peptides from different food proteins and protein-rich by-products. Unconventional microbial proteases (UMPs) have gaining increased attention for such purposes, particularly from the 2010s. In this review, we present and discuss aspects related to UMPs production, and their use to obtain bioactive protein hydrolysates. Antioxidant and anti-hypertensive potentials, commonly evaluated through in vitro testing, are mainly reported. The in vivo bioactivities of protein hydrolysates and peptides produced through UMPs action are highlighted. In addition to bioactivities, enzymatic hydrolysis acts by modulating the functional properties of proteins for potential food uses. The compiled literature indicates that UMPs are promising biocatalysts to generate bioactive protein hydrolysates, adding up to commercially available enzymes. From the recent interest on this topic, continuous and in-depth research is needed to advance toward the applicability and commercial utility of both UMPs and obtained hydrolysates.
Collapse
Affiliation(s)
- Adriano Brandelli
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos (ICTA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Daniel Joner Daroit
- Programa de Pós-Graduação em Ambiente e Tecnologias Sustentáveis (PPGATS), Universidade Federal da Fronteira Sul (UFFS), Cerro Largo, Brazil
| |
Collapse
|
12
|
Food Protein-Derived Antioxidant Peptides: Molecular Mechanism, Stability and Bioavailability. Biomolecules 2022; 12:biom12111622. [PMID: 36358972 PMCID: PMC9687809 DOI: 10.3390/biom12111622] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/22/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
The antioxidant activity of protein-derived peptides was one of the first to be revealed among the more than 50 known peptide bioactivities to date. The exploitation value associated with food-derived antioxidant peptides is mainly attributed to their natural properties and effectiveness as food preservatives and in disease prevention, management, and treatment. An increasing number of antioxidant active peptides have been identified from a variety of renewable sources, including terrestrial and aquatic organisms and their processing by-products. This has important implications for alleviating population pressure, avoiding environmental problems, and promoting a sustainable shift in consumption. To identify such opportunities, we conducted a systematic literature review of recent research advances in food-derived antioxidant peptides, with particular reference to their biological effects, mechanisms, digestive stability, and bioaccessibility. In this review, 515 potentially relevant papers were identified from a preliminary search of the academic databases PubMed, Google Scholar, and Scopus. After removing non-thematic articles, articles without full text, and other quality-related factors, 52 review articles and 122 full research papers remained for analysis and reference. The findings highlighted chemical and biological evidence for a wide range of edible species as a source of precursor proteins for antioxidant-active peptides. Food-derived antioxidant peptides reduce the production of reactive oxygen species, besides activating endogenous antioxidant defense systems in cellular and animal models. The intestinal absorption and metabolism of such peptides were elucidated by using cellular models. Protein hydrolysates (peptides) are promising ingredients with enhanced nutritional, functional, and organoleptic properties of foods, not only as a natural alternative to synthetic antioxidants.
Collapse
|
13
|
Screening and Characteristics of Marine Bacillus velezensis Z-1 Protease and Its Application of Enzymatic Hydrolysis of Mussels to Prepare Antioxidant Active Substances. Molecules 2022; 27:molecules27196570. [PMID: 36235106 PMCID: PMC9572009 DOI: 10.3390/molecules27196570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
Bacillus velezensis is a type of microorganism that is beneficial to humans and animals. In this work, a protease-producing B. velezensis strain Z-1 was screened from sludge in the sea area near Qingdao (deposit number CGMCC No. 25059). The response surface methodology was used to analyze protease production, and the optimal temperature was 37.09 °C and pH 7.73 with the addition of 0.42% NaCl, resulting in maximum protease production of 17.64 U/mL. The optimum reaction temperature and pH of the protease of strain Z-1 were 60 °C and 9.0, respectively. The protease had good temperature and pH stability, and good stability in solvents such as methanol, ethanol and Tween 80. Ammonium, NH4+,and Mn2+ significantly promoted enzyme activity, while Zn2+ significantly inhibited the enzyme activity. The protease produced by strain Z-1 was used for the enzymolysis of mussel meat. The mussel hydrolysate exhibited good antioxidant function, with a DPPH free radical removal rate of 75.3%, a hydroxyl free radical removal rate of 75.9%, and a superoxide anion removal rate of 84.4%. This study provides a reference for the application of B. velez protease and the diverse processing applications of mussel meat.
Collapse
|
14
|
Okagu IU, Udenigwe CC. Transepithelial transport and cellular mechanisms of food-derived antioxidant peptides. Heliyon 2022; 8:e10861. [PMID: 36217466 PMCID: PMC9547200 DOI: 10.1016/j.heliyon.2022.e10861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/23/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
Considering the involvement of oxidative stress in the etiology of many non-communicable diseases, food-derived antioxidant peptides (FDAPs) are strong candidates for nutraceutical development for disease prevention and management. This paper reviews current evidence on the transepithelial transport and cellular mechanisms of antioxidant activities of FDAPs. Several FDAPs have multiple health benefits such as anti-inflammatory and anti-photoaging activities, in addition to antioxidant properties through which they protect cellular components from oxidative damage. Some FDAPs have been shown to permeate the intestinal epithelium, which could facilitate their bioavailability and physiological bioactivities. Molecular mechanisms of FDAPs include suppression of oxidative stress as evidenced by reduction in intracellular reactive oxygen species production, lipid peroxidation and apoptotic protein activation as well as increase in antioxidant defense mechanisms (enzymatic and non-enzymatic). Since many FDAPs have demonstrated promising antioxidant activity, future investigation should focus on further elucidation of molecular mechanisms and human studies to explore their practical application for the prevention and management of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Innocent U. Okagu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| |
Collapse
|
15
|
Psychrotrophic plant beneficial bacteria from the glacial ecosystem of Sikkim Himalaya: Genomic evidence for the cold adaptation and plant growth promotion. Microbiol Res 2022; 260:127049. [DOI: 10.1016/j.micres.2022.127049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 02/19/2022] [Accepted: 04/19/2022] [Indexed: 12/26/2022]
|
16
|
Xia Y, Kuda T, Nakamura S, Yamamoto M, Takahashi H, Kimura B. Effects of soy protein and β-conglycinin on microbiota and in vitro antioxidant and immunomodulatory capacities of human faecal cultures. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
da Silva Crozatti TT, Miyoshi JH, Tonin APP, Tomazini LF, Oliveira MAS, Maluf JU, Meurer EC, Matioli G. Obtaining of bioactive di and tripeptides from enzymatic hydrolysis of Soybean meal and its protein isolate using Alcalase® and Neutrase®. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | | | | | | | | | - Jose Uebi Maluf
- BRFoods, Av. Senador Atílio Fontana, 4040, 85902‐160 Toledo PR Brazil
| | - Eduardo Cesar Meurer
- Federal University of Paraná (UFPR) Advanced Campus Jandaia do Sul 86900‐000 Jandaia do Sul PR Brazil
| | - Graciette Matioli
- State University of Maringá (UEM) Av. Colombo, 5790 ‐ 87020‐900 Maringá PR Brazil
| |
Collapse
|
18
|
Lee G, Harada M, Midorikawa Y, Yamamoto M, Nakamura A, Takahashi H, Kuda T. Effects of alginate and laminaran on the microbiome and antioxidant properties of human faecal cultures. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Li J, Lu J, Asakiya C, Huang K, Zhou X, Liu Q, He X. Extraction and Identification of Three New Urechis unicinctus Visceral Peptides and Their Antioxidant Activity. Mar Drugs 2022; 20:293. [PMID: 35621944 PMCID: PMC9145011 DOI: 10.3390/md20050293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 02/05/2023] Open
Abstract
The viscera of Urechis unicinctus with polypeptides, fatty acids, and amino acids are usually discarded during processing to food. In order to improve the utilization value of the viscera of Urechis unicinctus and avoid resource waste, antioxidant polypeptides were isolated from the viscera of Urechis unicinctus. First, a protein hydrolysate of Urechis unicinctus (UUPH) was prepared by ultrasonic-assisted enzymatic hydrolysis, and the degree of hydrolysis was as high as 79.32%. Subsequently, three new antioxidant peptides (P1, P2, and P3) were purified from UUPH using ultrafiltration and chromatography, and their amino acid sequences were identified as VTSALVGPR, IGLGDEGLRR, TKIRNEISDLNER, respectively. Then, the antioxidant activity of the polypeptide was predicted by the structure-activity relationship and finally verified by experiments on eukaryotic cells. The P1 peptide exhibited the strongest antioxidant activity among these three antioxidant peptides. Furthermore, P1, P2, and P3 have no toxic effect on RAW264.7 cells at the concentration of 0.01~2 mg/mL and can protect RAW264.7 cells from H2O2-induced oxidative damage in a concentration-dependent manner. These results suggested that these three new antioxidant peptides were isolated from the viscera of Urechis unicinctus, especially the P1 peptide, which might serve as potential antioxidants applied in health-derived food or beverages. This study further developed a new use of the by-product of Urechis unicinctus, which improved the comprehensive utilization of marine biological resources.
Collapse
Affiliation(s)
- Jingjing Li
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (J.L.); (C.A.); (K.H.)
| | - Jiajun Lu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (J.L.); (C.A.); (K.H.)
| | - Charles Asakiya
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (J.L.); (C.A.); (K.H.)
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (J.L.); (C.A.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
| | - Xiuzhi Zhou
- Shandong Baier Testing Corp., Ltd., Weifang 261061, China; (X.Z.); (Q.L.)
| | - Qingliang Liu
- Shandong Baier Testing Corp., Ltd., Weifang 261061, China; (X.Z.); (Q.L.)
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (J.L.); (C.A.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
| |
Collapse
|
20
|
Kumar A, Mukhia S, Kumar R. Production, characterisation, and application of exopolysaccharide extracted from a glacier bacterium Mucilaginibacter sp. ERMR7:07. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.12.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
21
|
Mukhia S, Kumar A, Kumari P, Kumar R, Kumar S. Multilocus sequence based identification and adaptational strategies of Pseudomonas sp. from the supraglacial site of Sikkim Himalaya. PLoS One 2022; 17:e0261178. [PMID: 35073328 PMCID: PMC8786180 DOI: 10.1371/journal.pone.0261178] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 11/26/2021] [Indexed: 11/18/2022] Open
Abstract
Microorganisms inhabiting the supraglacial ice are biotechnologically significant as they are equipped with unique adaptive features in response to extreme environmental conditions of high ultraviolet radiations and frequent freeze-thaw. In the current study, we obtained eleven strains of Pseudomonas from the East Rathong supraglacial site in Sikkim Himalaya that showed taxonomic ambiguity in terms of species affiliation. Being one of the most complex and diverse genera, deciphering the correct taxonomy of Pseudomonas species has always been challenging. So, we conducted multilocus sequence analysis (MLSA) using five housekeeping genes, which concluded the taxonomic assignment of these strains to Pseudomonas antarctica. This was further supported by the lesser mean genetic distances with P. antarctica (0.73%) compared to P. fluorescens (3.65%), and highest ANI value of ~99 and dDDH value of 91.2 of the representative strains with P. antarctica PAMC 27494. We examined the multi-tolerance abilities of these eleven Pseudomonas strains. Indeed the studied strains displayed significant tolerance to freezing for 96 hours compared to the mesophilic control strain, while except for four strains, seven strains exhibited noteworthy tolerance to UV-C radiations. The genome-based findings revealed many cold and radiation resistance-associated genes that supported the physiological findings. Further, the bacterial strains produced two or more cold-active enzymes in plate-based assays. Owing to the polyadaptational attributes, the strains ERGC3:01 and ERGC3:05 could be most promising for bioprospection.
Collapse
Affiliation(s)
- Srijana Mukhia
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anil Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Poonam Kumari
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| |
Collapse
|
22
|
Kumari M, Padhi S, Sharma S, Phukon LC, Singh SP, Rai AK. Biotechnological potential of psychrophilic microorganisms as the source of cold-active enzymes in food processing applications. 3 Biotech 2021; 11:479. [PMID: 34790503 DOI: 10.1007/s13205-021-03008-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
Microorganisms striving in extreme environments and exhibiting optimal growth and reproduction at low temperatures, otherwise known as psychrophilic microorganisms, are potential sources of cold-active enzymes. Owing to higher stability and cold activity, these enzymes are gaining enormous attention in numerous industrial bioprocesses. Applications of several cold-active enzymes have been established in the food industry, e.g., β-galactosidase, pectinase, proteases, amylases, xylanases, pullulanases, lipases, and β-mannanases. The enzyme engineering approaches and the accumulating knowledge of protein structure and function have made it possible to improve the catalytic properties of interest and express the candidate enzyme in a heterologous host for a higher level of enzyme production. This review compiles the relevant and recent information on the potential uses of different cold-active enzymes in the food industry.
Collapse
Affiliation(s)
- Megha Kumari
- Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India
| | - Srichandan Padhi
- Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India
| | - Swati Sharma
- Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India
| | - Loreni Chiring Phukon
- Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India
| | - Sudhir P Singh
- Centre of Innovative and Applied Bioprocessing, Mohali, India
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India
| |
Collapse
|
23
|
Kumar A, Mukhia S, Kumar R. Industrial applications of cold-adapted enzymes: challenges, innovations and future perspective. 3 Biotech 2021; 11:426. [PMID: 34567931 DOI: 10.1007/s13205-021-02929-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Extreme cold environments are potential reservoirs of microorganisms producing unique and novel enzymes in response to environmental stress conditions. Such cold-adapted enzymes prove to be valuable tools in industrial biotechnology to meet the increasing demand for efficient biocatalysts. The inherent properties like high catalytic activity at low temperature, high specific activity and low activation energy make the cold-adapted enzymes well suited for application in various industries. The interest in this group of enzymes is expanding as they are the preferred alternatives to harsh chemical synthesis owing to their biodegradable and non-toxic nature. Irrespective of the multitude of applications, the use of cold-adapted enzymes at the industrial level is still limited. The current review presents the unique adaptive features and the role of cold-adapted enzymes in major industries like food, detergents, molecular biology and bioremediation. The review highlights the significance of omics technology i.e., metagenomics, metatranscriptomics and metaproteomics in enzyme bioprospection from extreme environments. It further points out the challenges in using cold-adapted enzymes at the industrial level and the innovations associated with novel enzyme prospection strategies. Documentations on cold-adapted enzymes and their applications are abundant; however, reports on the role of omics tools in exploring cold-adapted enzymes are still scarce. So, the review covers the aspect concerning the novel techniques for enzyme discovery from nature.
Collapse
Affiliation(s)
- Anil Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, Himachal Pradesh 176 061 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002 India
| | - Srijana Mukhia
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, Himachal Pradesh 176 061 India
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, Himachal Pradesh 176 061 India
| |
Collapse
|