1
|
Wang J, Li J, Yu W, Wang G, Cifuentes A, Ibañez E, Lu W. Microalgal proteins: Extraction, interfacial properties, bioactivities, and future perspectives - A review. Food Chem 2025; 486:144680. [PMID: 40373600 DOI: 10.1016/j.foodchem.2025.144680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/25/2025] [Accepted: 05/07/2025] [Indexed: 05/17/2025]
Abstract
The increasing global demand for protein, coupled with concerns over the environmental sustainability of animal-derived sources, has prompted the search for alternative protein sources. Microalgae have emerged as a promising solution due to their high productivity, protein content, and ability to grow in non-arable environments or photobioreactors. Their proteins, hydrolysates and peptides exhibit diverse bioactivities, including anti-obesity, anti-cancer, antioxidant, and anti-hypertensive effects, as well as functional properties such as emulsification, foaming and gelling. However, their practical utilization is hindered by challenges such as high production costs and environmental sensitivity, particularly in relation to pH, temperature, and light, which can affect their structural stability and functional performance. This review summarizes traditional and innovative extraction techniques, discusses the structure-function relationships of these microalgal components, and highlights their potential applications. Furthermore, it identifies key production and commercialization challenges, proposing strategies to enhance extraction efficiency and environmental stability during processing and storage, thereby facilitating broader industrial implementation.
Collapse
Affiliation(s)
- Junwen Wang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450003, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin 150001, China
| | - Jiangfei Li
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450003, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin 150001, China
| | - Wenchen Yu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ge Wang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Elena Ibañez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Weihong Lu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450003, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
2
|
Van Nerom S, Buyse K, Van Immerseel F, Robbens J, Delezie E. Exploring Feed Digestibility and Broiler Performance in Response to Dietary Supplementation of Chlorella vulgaris. Animals (Basel) 2024; 15:65. [PMID: 39795008 PMCID: PMC11718804 DOI: 10.3390/ani15010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
This study evaluated the feed digestibility of diets including autotrophic Chlorella (C.) vulgaris in 252 male broilers (Ross 308), comparing unprocessed biomass (trial 1) and pulsed electric field (PEF) processed biomass (trial 2) at inclusion levels up to 20%. In trial 2, performance and meat color were also evaluated. Each trial included seven treatments (0%, 1%, 2%, 5%, 10%, 15%, and 20% (%w/w on dry matter (DM)) C. vulgaris) with six replicates (three birds per replicate) per treatment. Data were analyzed using linear, quadratic, and broken-line models. Control feeds without microalgae inclusion achieved a crude protein digestibility of 82.04 ± 1.42% (trial 1) and 81.63 ± 1.90% (trial 2), while feed with 20% non-processed microalgae inclusion only had a protein digestibility of 66.96 ± 1.16% (trial 1) and feed with PEF processed microalgae at 20% had a protein digestibility of 72.75 ± 0.34% (trial 2). In general, increasing inclusion levels of C. vulgaris impaired nutrient digestibility, significantly reducing crude protein, crude fat, gross energy, and crude ash digestibility (p < 0.001). Broken-line models identified critical inclusion thresholds beyond which digestibility declined significantly, i.e., at 10% for crude protein, 12.53% for crude fat, and 9.26% for gross energy in unprocessed microalgae feeds (trial 1). For PEF-processed microalgae, only a broken line fit was obtained for gross energy, with a breakpoint at 5% (trial 2). Furthermore, a significant linear decrease in body weight (BW) (p < 0.001), average daily gain (ADG) (p < 0.001), average daily feed intake (ADFI) (p = 0.006), and relative and absolute breast filet weight was observed as microalgae inclusion level increased (trial 2). Color parameters also changed significantly with increasing microalgae inclusion level: L* showed a significant linear decrease (p = 0.029), b* and a* showed a significant linear increase (p < 0.001) (trial 2). This research advances the exploration of sustainable protein alternatives, highlighting the potential of microalgae in broiler feed and the benefits of processing methods such as PEF to enhance nutrient utilization.
Collapse
Affiliation(s)
- Sofie Van Nerom
- Animal Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Merelbeke-Melle, Belgium; (K.B.); (J.R.)
- Livestock Gut Health Team (LiGHT), Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke-Melle, Belgium;
| | - Kobe Buyse
- Animal Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Merelbeke-Melle, Belgium; (K.B.); (J.R.)
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke-Melle, Belgium
| | - Filip Van Immerseel
- Livestock Gut Health Team (LiGHT), Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke-Melle, Belgium;
| | - Johan Robbens
- Animal Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Merelbeke-Melle, Belgium; (K.B.); (J.R.)
| | - Evelyne Delezie
- Animal Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Merelbeke-Melle, Belgium; (K.B.); (J.R.)
| |
Collapse
|
3
|
Wang CA, Onyeaka H, Miri T, Soltani F. Chlorella vulgaris as a food substitute: Applications and benefits in the food industry. J Food Sci 2024; 89:8231-8247. [PMID: 39556490 DOI: 10.1111/1750-3841.17529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/07/2024] [Accepted: 10/23/2024] [Indexed: 11/20/2024]
Abstract
Chlorella vulgaris, a freshwater microalga, is gaining attention for its potential as a nutritious food source and dietary supplement. This review aims to provide a comprehensive discussion on C. vulgaris, evaluating its viability as a food substitute in the industry by exploring the nutritional value and application of C. vulgaris in the food industry. Rich in protein, lipids, carbohydrates, vitamins, and minerals, Chlorella offers substantial nutritional benefits, positioning it as a valuable food substitute. Its applications in the food industry include incorporation into smoothies, snacks, and supplements, enhancing the nutritional profile of various food products. The health benefits of Chlorella encompass antioxidant activity, immune system support, and detoxification, contributing to overall well-being. Despite these advantages, the commercialization of Chlorella faces significant challenges. These include variability in antibacterial activity due to strain and growth conditions, high production costs, contamination risks, and sensory issues such as unpleasant taste and smell. Additionally, Chlorella can accumulate heavy metals from its environment, necessitating stringent quality control measures. Future prospects involve improving Chlorella strains through genetic manipulation to enhance nutrient content, developing cost-effective culture systems, and exploring advanced processing techniques like pulsed electric fields for better digestibility. Addressing sensory issues through flavor-masking strategies and employing environmental management practices will further support Chlorella's integration into the food industry. Although C. vulgaris shows great potential as a nutritious food ingredient, overcoming existing challenges and optimizing production methods would be crucial for its successful adoption and widespread use.
Collapse
Affiliation(s)
- Chiao-An Wang
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Taghi Miri
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Fakhteh Soltani
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| |
Collapse
|
4
|
Perez B, Zermatten C, Haberkorn I, Mathys A. Enhancing protein extraction from heterotrophic Auxenochlorella protothecoides microalgae through emerging cell disruption technologies combined with incubation. BIORESOURCE TECHNOLOGY 2024; 407:131099. [PMID: 38986878 DOI: 10.1016/j.biortech.2024.131099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/29/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
This study evaluated pulsed electric fields (PEF) and ultrasonication (US) combined with incubation to enhance cell disruption and protein extraction from Auxenochlorella protothecoides, comparing them to conventional high-pressure homogenization (HPH). A 5 h incubation enhanced protein yield by 79.4 % for PEF- and 27.2 % for US-treated samples. Extending the incubation to 24 h resulted in a total yield increase of 122 % for PEF (0.25 ± 0.03 kgEP kgTP-1) and 51.9 % for US (0.20 ± 0.02 kgEP-1 kgTP-1). Autofermentation in untreated cells after 24 h resulted in protein release with lower yields than all other treated and incubated samples. While HPH had the highest protein yield (0.58 ± 0.04 kgEP kgTP-1), PEF-incubation after 5 h (56.6 ± 5.3 MJ kgEP-1) and 24 h (49.5 ± 3.7 MJ kgEP-1) were 1.5 and 1.7-times more energy-efficient than HPH (82.9 ± 7.8 MJ kgEP-1). PEF combined incubation is an energy-efficient and targeted protein extraction method in heterotrophic A. protothecoides biorefinery.
Collapse
Affiliation(s)
- Byron Perez
- Laboratory of Sustainable Food Processing, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland; Singapore-ETH Centre, 1 Create Way #06-01, 138602 Singapore, Singapore.
| | - Carole Zermatten
- Laboratory of Sustainable Food Processing, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland; Singapore-ETH Centre, 1 Create Way #06-01, 138602 Singapore, Singapore.
| | - Iris Haberkorn
- Singapore-ETH Centre, 1 Create Way #06-01, 138602 Singapore, Singapore.
| | - Alexander Mathys
- Laboratory of Sustainable Food Processing, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland; Singapore-ETH Centre, 1 Create Way #06-01, 138602 Singapore, Singapore.
| |
Collapse
|
5
|
Costa MM, Spínola MP, Prates JAM. Microalgae as an Alternative Mineral Source in Poultry Nutrition. Vet Sci 2024; 11:44. [PMID: 38275926 PMCID: PMC10819150 DOI: 10.3390/vetsci11010044] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
This review explores the potential of microalgae as a sustainable and nutritionally rich alternative for mineral supplementation in poultry diets, addressing both the opportunities and challenges in this emerging field. Poultry nutrition, pivotal to the health and productivity of birds, traditionally relies on inorganic and organic mineral sources which, while effective, raise environmental and economic concerns. Microalgae offer a promising solution with their high contents of essential minerals, proteins, vitamins, and bioactive compounds. This review delves into the nutritional profiles of various microalgae, highlighting their rich contents of minerals which are crucial for physiological processes in poultry. It examines the bioavailability of these minerals and their impact on poultry health and productivity. Furthermore, it evaluates the environmental sustainability of microalgae cultivation and acknowledges the challenges in using microalgae in poultry diets, particularly in terms of the economic viability of large-scale production and the consistency of nutrient composition. It discusses the importance of rigorous safety assessments and regulatory compliance, given the potential risks of toxins and heavy metals. Overall, this analysis aims to provide a clear understanding of the role microalgae could play in poultry nutrition and address sustainability challenges in animal agriculture while also considering future perspectives and advancements needed in this field.
Collapse
Affiliation(s)
- Mónica M. Costa
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.M.C.); (M.P.S.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Maria P. Spínola
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.M.C.); (M.P.S.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - José A. M. Prates
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.M.C.); (M.P.S.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
6
|
Enhancing Digestibility of Chlorella vulgaris Biomass in Monogastric Diets: Strategies and Insights. Animals (Basel) 2023; 13:ani13061017. [PMID: 36978557 PMCID: PMC10044532 DOI: 10.3390/ani13061017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Microalgae, such as Chlorella vulgaris (CV), have been identified as promising animal feed sources due to their high content of essential nutrients, including proteins, total lipids, n-3 polyunsaturated fatty acids, and pigments. This study aimed to review the digestibility, bioaccessibility, and bioavailability of nutrients from CV biomass, and to analyse strategies to enhance their digestibility in monogastric animal diets. The study conducted a systematic review of the literature from databases such as PubMed, Scopus, Google Scholar, and Web of Science, up until the end of January 2023. The results of adding CV to poultry and swine diets were diverse and depended on a number of variables. However, pre-treatments applied to CV biomass improved nutrient digestibility and accessibility. CV biomass, produced in a cost-effective manner, has the potential to serve as a supplement or substitute for expensive feed ingredients and improve animal health, physiology, and immune status. Variations in results may be due to differences in microalgal strain, cultivation conditions, and dietary inclusion levels, among other factors. This study provides new insights and perspectives into the utilization of CV biomass in animal diets, highlighting its potential as a valuable ingredient to improve nutrient utilization.
Collapse
|
7
|
Brückner K, Griehl C. Permeabilization of the cell wall of Chlorella sorokiniana by the chitosan-degrading protease papain. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
8
|
New insights into the effects of growth phase and enzymatic treatment on the cell-wall properties of Chlorella vulgaris microalgae. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Muñoz-Tebar N, Ong L, Gamlath CJ, Yatipanthalawa BS, Ashokkumar M, Gras SL, Berruga MI, Martin GJ. Nutrient enrichment of dairy curd by incorporation of whole and ruptured microalgal cells (Nannochloropsis salina). INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Cai Y, Zhai L, Fang X, Wu K, Liu Y, Cui X, Wang Y, Yu Z, Ruan R, Liu T, Zhang Q. Effects of C/N ratio on the growth and protein accumulation of heterotrophic Chlorella in broken rice hydrolysate. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:102. [PMID: 36209252 PMCID: PMC9547431 DOI: 10.1186/s13068-022-02204-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Microalgae protein is considered as a sustainable alternative to animal protein in the future. Using waste for microalgal culture can upgrade low-value raw materials into high-value products, helping to offset the cost of microalgal protein production. In this study we explored the feasibility of using microalgae heterotrophic fermentation to convert broken rice hydrolysate (BRH) into protein. RESULTS The results showed that the increase of BRH supplemental ratio was beneficial to the increase of biomass production but not beneficial to the increase of intracellular protein content. To further improve protein production, the effect of C/N ratio on intracellular protein accumulation was studied. It was found that low C/N ratio was beneficial to the synthesis of glutamate in microalgae cells, which in turn promoted the anabolism of other amino acids and further the protein. When the C/N ratio was 12:1, the biomass productivity and protein content could reach a higher level, which were 0.90 g/L/day and 61.56%, respectively. The obtained Chlorella vulgaris biomass was rich in essential amino acids (41.80%), the essential amino acid index was as high as 89.07, and the lysine content could reach up to 4.05 g/100 g. CONCLUSIONS This study provides a theoretical basis and guidance for using Chlorella vulgaris as an industrial fermentation platform to convert broken rice into products with high nutritional value.
Collapse
Affiliation(s)
- Yihui Cai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
- College of Food Engineering, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Ligong Zhai
- College of Food Engineering, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Xiaoman Fang
- China Coal Zhejiang Testing Technology Co, Ltd., Hangzhou, 310000, China
| | - Kangping Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China.
| | - Xian Cui
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Yunpu Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Zhigang Yu
- Australian Centre for Water and Environmental Biotechnology (Formerly AWMC), The University of Queensland, St. Lucia, Brisbane, QLD4072, Australia
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul MN, 55108, USA
| | - Tongying Liu
- Jiangxi Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Qi Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China.
| |
Collapse
|
11
|
Testimony on a successful lab protocol to disrupt Chlorella vulgaris microalga cell wall. PLoS One 2022; 17:e0268565. [PMID: 35587491 PMCID: PMC9119475 DOI: 10.1371/journal.pone.0268565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
Over the last decades, microalgae have gained popularity due to demand for novel environmental green solutions and development of innovative mass-production sources for multiple processes, including animal feed and human diet, turning microalgae into an exquisite candidate for several ecofriendly technologies. Notwithstanding, there is a catch. Most species of microalgae, as the case of common Chlorella vulgaris (C. vulgaris) display a recalcitrant cell wall, characterized by a complex matrix of polysaccharides and glycoproteins, which constitutes a major barrier for monogastric species digestibility and extraction of inner valuable nutritional compounds. To overcome this limitation, the development of feed enzymes, in particular Carbohydrate-Active enZymes (CAZymes) with capacity to disrupt C. vulgaris cell wall may contribute to improve the bioavailability of these microalgae compounds in monogastric diets, namely at high levels of incorporation. In order to disclosure novel combination of feed enzymes to disrupt C. vulgaris cell wall, a lab protocol was implemented by our research team containing the following key steps: after microalgae cultivation and having available a repertoire of two hundred pre-selected CAZymes produced by high-throughput technology, the step 1 is the individual screening of the most functional enzymes on disrupting C. vulgaris cell wall (versus a control, defined as the microalgae suspension incubated with PBS) and the determination of reducing sugars released by the 3,5-dinitrosalicylic acid (DNSA) method; step 2 concerns on finding the best CAZymes cocktail, testing the synergistic effect of enzymes, to disrupt C. vulgaris cell wall (in parallel with running the control) along with characterization of each enzyme thermostability and resistance to proteolytic attack, to which feed enzymes are subjected in the animal gastrointestinal tract; step 3 is the assessment of C. vulgaris cell wall degradation degree by measuring the amount of reducing sugars released by the DNSA method, fatty acid analysis by gas chromatography (GC) with flame ionization detector (FID), oligosaccharides quantification by high performance liquid chromatography (HPLC) equipped with an electrochemical detector (ECD), protein content by the Kjeldahl method, and various pigments (chlorophylls a and b, and total carotenoids) in the supernatant. In the correspondent residue, we also assessed cellular counting using a Neubauer chamber by direct observation on a bright-field microscope and fluorescence intensity, after staining with Calcofluor White for both control and CAZymes cocktail treatments, on a fluorescence microscope. Beyond animal feed industry with impact on human nutrition, our lab protocol may increase the yield in obtaining valued constituents from C. vulgaris microalga for other biotechnological industries.
Collapse
|
12
|
Konar N, Durmaz Y, Genc Polat D, Mert B. Optimization of Spray Drying for
Chlorella vulgaris
by Using
RSM
Methodology and Maltodextrin. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nevzat Konar
- Eskisehir Osmangazi University Agriculture Faculty Food Engineering Department, Eskisehir Turkey
| | - Yaşar Durmaz
- Ege University Faculty of Fisheries, Aquaculture Department Izmir Turkey
| | | | - Behic Mert
- Middle East Technical University Engineering Faculty, Food Engineering Department Ankara Turkey
| |
Collapse
|
13
|
Canelli G, Tevere S, Jaquenod L, Dionisi F, Rohfritsch Z, Bolten CJ, Neutsch L, Mathys A. A novel strategy to simultaneously enhance bioaccessible lipids and antioxidants in hetero/mixotrophic Chlorella vulgaris as functional ingredient. BIORESOURCE TECHNOLOGY 2022; 347:126744. [PMID: 35074464 DOI: 10.1016/j.biortech.2022.126744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Microalgae are a promising source of polyunsaturated fatty acids as well as bioactive antioxidant compounds such as carotenoids, phenolics and tocopherols. However, the accumulation of these biomolecules is often promoted by conflicting growth conditions. In this study, a phased bioprocessing strategy was developed to simultaneously enhance the lipid and antioxidant amounts by tailoring nitrogen content in the cultivation medium and applying light stress. This approach increased the overall contents of total fatty acids, carotenoids, phenolics, and α-tocopherol in Chlorella vulgaris by 2.2-, 2.2-, 1.5-, and 2.1-fold, respectively. Additionally, the bioaccessibility of the lipids and bioactives from the obtained biomasses improved after pulsed electric field (5 μs, 20 kV cm-1, 31.8 kJ kg-1sus) treatment (up to +12%) and high-pressure homogenization (100 MPa, 5-6 passes) (+41-76%). This work represents a step towards the generation of more efficient algae biorefineries, thus expanding the alternative resources available for essential nutrients.
Collapse
Affiliation(s)
- Greta Canelli
- ETH Zürich, Laboratory of Sustainable Food Processing, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Sabrina Tevere
- Institute of Chemistry and Biotechnology, ZHAW, Campus Grüental, 8820, Wädenswil, Switzerland
| | - Luc Jaquenod
- ETH Zürich, Laboratory of Sustainable Food Processing, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Fabiola Dionisi
- Nestlé Research, Route du Jorat 57, 1000 Lausanne, Switzerland
| | - Zhen Rohfritsch
- Nestlé Research, Route du Jorat 57, 1000 Lausanne, Switzerland
| | | | - Lukas Neutsch
- Institute of Chemistry and Biotechnology, ZHAW, Campus Grüental, 8820, Wädenswil, Switzerland
| | - Alexander Mathys
- ETH Zürich, Laboratory of Sustainable Food Processing, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| |
Collapse
|
14
|
Application of Pulsed Electric Fields and High-Pressure Homogenization in Biorefinery Cascade of C. vulgaris Microalgae. Foods 2022; 11:foods11030471. [PMID: 35159621 PMCID: PMC8834027 DOI: 10.3390/foods11030471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, a cascaded cell disintegration process, based on pulsed electric fields (PEF - 20 kV/cm, 100 kJ/kgSUSP.) and high-pressure homogenization (HPH - 150 MPa, 5 passes) was designed for the efficient and selective release of intracellular compounds (water-soluble proteins, carbohydrates, and lipids) from C. vulgaris suspensions during extraction in water (25 °C, 1 h) and ethyl acetate (25 °C, 3 h). Recovery yields of target compounds from cascaded treatments (PEF + HPH) were compared with those observed when applying PEF and HPH treatments individually. Particle size distribution and scanning electron microscopy analyses showed that PEF treatment alone did not induce any measurable effect on cell shape/structure, whereas HPH caused complete cell fragmentation and debris formation, with an undifferentiated release of intracellular matter. Spectra measurements demonstrated that, in comparison with HPH alone, cascaded treatments increased the selectivity of extraction and improved the yields of carbohydrates and lipids, while higher yields of water-soluble proteins were measured for HPH alone. This work, therefore, demonstrates the feasibility of sequentially applying PEF and HPH treatments in the biorefinery of microalgae, projecting a beneficial impact in terms of process economics due to the potential reduction of the energy requirements for separation/purification stages.
Collapse
|
15
|
Insights into cell wall disintegration of Chlorella vulgaris. PLoS One 2022; 17:e0262500. [PMID: 35030225 PMCID: PMC8759652 DOI: 10.1371/journal.pone.0262500] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/26/2021] [Indexed: 01/22/2023] Open
Abstract
With their ability of CO2 fixation using sunlight as an energy source, algae and especially microalgae are moving into the focus for the production of proteins and other valuable compounds. However, the valorization of algal biomass depends on the effective disruption of the recalcitrant microalgal cell wall. Especially cell walls of Chlorella species proved to be very robust. The wall structures that are responsible for this robustness have been studied less so far. Here, we evaluate different common methods to break up the algal cell wall effectively and measure the success by protein and carbohydrate release. Subsequently, we investigate algal cell wall features playing a role in the wall's recalcitrance towards disruption. Using different mechanical and chemical technologies, alkali catalyzed hydrolysis of the Chlorella vulgaris cells proved to be especially effective in solubilizing up to 56 wt% protein and 14 wt% carbohydrates of the total biomass. The stepwise degradation of C. vulgaris cell walls using a series of chemicals with increasingly strong conditions revealed that each fraction released different ratios of proteins and carbohydrates. A detailed analysis of the monosaccharide composition of the cell wall extracted in each step identified possible factors for the robustness of the cell wall. In particular, the presence of chitin or chitin-like polymers was indicated by glucosamine found in strong alkali extracts. The presence of highly ordered starch or cellulose was indicated by glucose detected in strong acidic extracts. Our results might help to tailor more specific efforts to disrupt Chlorella cell walls and help to valorize microalgae biomass.
Collapse
|
16
|
Canelli G, Kuster I, Jaquenod L, Buchmann L, Murciano Martínez P, Rohfritsch Z, Dionisi F, Bolten CJ, Nanni P, Mathys A. Pulsed electric field treatment enhances lipid bioaccessibility while preserving oxidative stability in Chlorella vulgaris. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102897] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
Editorial overview: "emerging processing technologies to improve the safety and quality of foods". Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Peydayesh M, Suta T, Usuelli M, Handschin S, Canelli G, Bagnani M, Mezzenga R. Sustainable Removal of Microplastics and Natural Organic Matter from Water by Coagulation-Flocculation with Protein Amyloid Fibrils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8848-8858. [PMID: 34170128 DOI: 10.1021/acs.est.1c01918] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Water contamination is a global threat due to its damaging effects on the environment and human health. Water pollution by microplastics (MPs), dissolved natural organic matter (NOM), and other turbid particles is ubiquitous in water treatment. Here, we introduce lysozyme amyloid fibrils as a novel natural bio-flocculant and explore their ability to flocculate and precipitate the abovementioned undesired colloidal objects. Thanks to their positively charged surface in a very broad range of pH, lysozyme amyloid fibrils show an excellent turbidity removal efficiency of 98.2 and 97.9% for dispersed polystyrene MPs and humic acid (HA), respectively. Additionally, total organic carbon measurements confirm these results by exhibiting removal efficiencies of 93.4 and 61.9% for purifying water from dispersed MPs and dissolved HA, respectively. The comparison among amyloid fibrils, commercial flocculants (FeCl3 and polyaluminumchloride), and native lysozyme monomers points to the superiority of amyloid fibrils at the same dosage and sedimentation time. Furthermore, the turbidity of pristine and MP-spiked wastewater and lake water decreased after the treatment by amyloid fibrils, validating their coagulation-flocculation performance under natural conditions. All these results demonstrate lysozyme amyloid fibrils as an appropriate natural bio-flocculant for removing dispersed MPs, NOM, and turbid particles from water.
Collapse
Affiliation(s)
- Mohammad Peydayesh
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Toni Suta
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Mattia Usuelli
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Stephan Handschin
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Greta Canelli
- Department of Health Sciences and Technology, Sustainable Food Processing Laboratory, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Massimo Bagnani
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
19
|
Nutritional Profiling and Preliminary Bioactivity Screening of Five Micro-Algae Strains Cultivated in Northwest Europe. Foods 2021; 10:foods10071516. [PMID: 34359386 PMCID: PMC8307025 DOI: 10.3390/foods10071516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/31/2022] Open
Abstract
This study aimed to map the nutritional profile and bioactivities of five microalgae that can be grown in Northwest Europe or areas with similar cultivation conditions. Next to the biochemical composition, the in vitro digestibility of carbohydrates, proteins, and lipids was studied for Chlamydomonas nivalis, Porphyridium purpureum, Chlorella vulgaris, Nannochloropsis gaditana, and Scenedesmus species biomass. These microalgae were also assessed for their ability to inhibit the angiotensin-1-converting enzyme (ACE-1, EC 3.4.15.1), which is known to play a role in the control of blood pressure in mammals. Large differences in organic matter solubility after digestion suggested that a cell disruption step is needed to unlock the majority of the nutrients from N. gaditana and Scenedesmus species biomass. Significant amounts of free glucose (16.4–25.5 g glucose/100 g dry algae) were detected after the digestion of C. nivalis, P. purpureum, and disrupted Scenedesmus. The fatty acid profiles showed major variations, with particularly high Ω-3 fatty acid levels found in N. gaditana (5.5 ± 0.5 g/100 g dry algae), while lipid digestibility ranged from 33.3 ± 6.5% (disrupted N. gaditana) to 67.1 ± 11.2% (P. purpureum). C. vulgaris and disrupted N. gaditana had the highest protein content (45–46% of dry matter), a nitrogen solubility after digestion of 65–71%, and the degree of protein hydrolysis was determined as 31% and 26%, respectively. Microalgae inhibited ACE-1 by 73.4–87.1% at physiologically relevant concentrations compared to a commercial control. These data can assist algae growers and processors in selecting the most suitable algae species for food or feed applications.
Collapse
|