1
|
Pei Y, Zheng Y, Yuen M, Yuen T, Yuen H, Peng Q. Preparation, Quality Analysis and Antioxidant Activity of Sea Buckthorn ( Hippophae rhamnoides L.) Kombucha Beverage at Different Fermentation Temperatures. Foods 2025; 14:1325. [PMID: 40282725 PMCID: PMC12027415 DOI: 10.3390/foods14081325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/29/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Sea buckthorn is a unique resource with high nutritional value. The objective of this study was to develop a novel kombucha beverage from sea buckthorn juice by means of inoculation with kombucha (Symbiotic Culture of Bacteria and Yeast, SCOBY). The study investigated and compared the differences in physicochemical properties, antioxidant activity, and sensory evaluation during fermentation at different temperatures with those of traditional cultured green tea kombucha. The findings demonstrated that there were significant variations in physicochemical properties, antioxidant activity, and sensory evaluation among the sea buckthorn kombuchas produced at different temperatures. Among these, the sea buckthorn kombucha produced by fermentation at 28 °C exhibited the strongest antioxidant properties and the most favorable sensory evaluation. Furthermore, changes in the active substances were observed at different temperatures, and correlation analysis revealed that the antioxidant activity of Kombucha tea was correlated with the content of total phenols and total flavonoids. Consequently, the utilization of sea buckthorn juice in the production of kombucha beverages holds considerable promise.
Collapse
Affiliation(s)
- Yichao Pei
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (Y.P.); (Y.Z.)
| | - Yuanju Zheng
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (Y.P.); (Y.Z.)
| | - Michael Yuen
- Puredia Limited, Xining 810003, China; (M.Y.); (T.Y.); (H.Y.)
| | - Tina Yuen
- Puredia Limited, Xining 810003, China; (M.Y.); (T.Y.); (H.Y.)
| | - Hywel Yuen
- Puredia Limited, Xining 810003, China; (M.Y.); (T.Y.); (H.Y.)
| | - Qiang Peng
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (Y.P.); (Y.Z.)
| |
Collapse
|
2
|
Kilic G, Sengun IY. As next-generation probiotics: acetic acid bacteria isolated from Kombucha beverages produced with Anatolian hawthorn leaves. Int Microbiol 2025; 28:643-665. [PMID: 39134829 DOI: 10.1007/s10123-024-00568-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/14/2024] [Accepted: 07/31/2024] [Indexed: 04/12/2025]
Abstract
This research examined acetic acid bacteria (AAB) isolated from Kombucha beverages produced with Anatolian hawthorn (Crataegus orientalis) as next-generation probiotics. Eighty-six AAB were isolated from the samples and investigated in terms of biosafety, viability in vitro gastrointestinal conditions, technological and bioactive properties, and also in vitro adhesion abilities. Seventy-six isolates demonstrating γ-hemolysis exhibited resistance to erythromycin and ampicillin. Besides, these isolates survived at low pH and in the presence of bile salts. However, the majority of AAB isolates showed tolerance to phenol, pepsin, and pancreatin. Also, twenty-one isolates showed protease enzyme activity, while eight isolates had amylase enzyme activity. Despite most of the isolates showed viability at 1.5% salt, only 19 isolates survived at 10% salt. Most AAB isolates exhibited inhibition zones ranging from 8 to 26 mm against test bacteria, their antioxidant activities were above 80%. Additionally, some isolates exhibited auto-aggregation ability ranging from 0.66 to 23.62% and co-aggregation ability ranging from 1.18 to 71.32%, while hydrophobicity ranged from 1.32 to 69.87% toward xylene. Finally, the indigenous 76 AAB isolates that had remarkable probiotic properties were characterized based on 16S rRNA gene sequencing, and the isolates belonged to Komagateibacter sp. (64.47%), Komagateibacter saccharivorans (15.79%), K. rhaeticus (11.84%), and Gluconobacter sp. (7.90%). As a result, the isolates identified as Gluconobacter sp. A21, Komagataeibacter sp. A139, Gluconobacter sp. A141, and Komagataeibacter sp. A146, which showed high viability under gastrointestinal conditions, safe and acceptable in terms of technological, bioactive, and adhesion properties and could be evaluated as next-generation probiotics.
Collapse
Affiliation(s)
- Gulden Kilic
- Gastronomy and Culinary Arts Department, Art and Design Faculty, Alanya University, Alanya, Antalya, Turkey
- Food Engineering Department, Engineering Faculty, Ege University, Izmir, Turkey
| | - Ilkin Yucel Sengun
- Food Engineering Department, Engineering Faculty, Ege University, Izmir, Turkey.
| |
Collapse
|
3
|
Mouguech N, Taillandier P, Bouajila J, Romdhane M, Etteyeb N. Enhanced Biological Potential and Phytochemical Profiling of Phoenix Dactylifera Leaves (Deglet Nour and Alig) by Kombucha Fermentation: Focus on Polyphenols, Antioxidant, Antidiabetic, and Cytotoxic Activities. Chem Biodivers 2025; 22:e202401592. [PMID: 39400937 DOI: 10.1002/cbdv.202401592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
The date palm, scientifically known as Phoenix dactylifera, is an important cultural and economic source of wealth in southern Tunisia. It produces considerable agricultural waste, including palm leaves, the disposal of which is often a challenge. Our study addresses the sustainable conversion of date palm leaves into a valuable product through kombucha fermentation, focusing on two widely used varieties in Tunisia: Deglet Nour and Alig. HPLC-RI analysis showed a significant difference in the fermentation process between the treated samples, which is reflected in the highest sugar consumption and metabolite production in Alig palm. Unfermented and fermented date palm leaves were sequentially extracted with solvents of increasing polarity (ethyl acetate and butanol) to evaluate their chemical composition and bioactivity. The results showed that kombucha fermentation significantly increased the total phenolic content, with the highest amounts in the ethyl acetate fraction. In terms of antioxidant activity, the ethyl acetate extracts showed a high percentage inhibitory activity (82.76 %) against the DPPH radical found in fermented Palm Alig, which also exhibited the most important antidiabetic capacity (resulting in an IC50 value of 20 μg/mL). The chemical analyses resulted in the detection of 19 compounds by HPLC-DAD and 50 volatiles by GC-MS, which are mainly found in kombucha extracts.
Collapse
Affiliation(s)
- Najet Mouguech
- Laboratoire de Recherche, Biodiversité, Molécule et Application, Institut Supérieur de Biologie Appliquée de Médenine, Université de Gabès, Gabès, 6072, Tunisie
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, F-31062, Toulouse, France
- Laboratoire de Recherche: Matériaux, Electrochimie et Environnement (LR24ES18), Faculté des Sciences de Gabès, Université de Gabès, Gabes, 6072, Tunisie
| | - Patricia Taillandier
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, F-31062, Toulouse, France
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, F-31062, Toulouse, France
| | - Mehrez Romdhane
- Laboratoire: Energie, Eau, Environnement et Procédés (LR18ES35), Ecole Nationale d'Ingénieurs de Gabès, Université de Gabès, Gabes, 6072, Tunisie
| | - Naceur Etteyeb
- Laboratoire de Recherche, Biodiversité, Molécule et Application, Institut Supérieur de Biologie Appliquée de Médenine, Université de Gabès, Gabès, 6072, Tunisie
- Laboratoire de Recherche: Matériaux, Electrochimie et Environnement (LR24ES18), Faculté des Sciences de Gabès, Université de Gabès, Gabes, 6072, Tunisie
| |
Collapse
|
4
|
Bressani APP, Casimiro LKS, Martinez SJ, Dias DR, Schwan RF. Kombucha with yam: Comprehensive biochemical, microbiological, and sensory characteristics. Food Res Int 2024; 192:114762. [PMID: 39147483 DOI: 10.1016/j.foodres.2024.114762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/09/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024]
Abstract
Consumer demand for functional foods has increased, helping to popularize and increase the consumption of Kombucha. Other substrates have been used together with tea to improve the functional and sensory properties of the beverage. Thus, this study evaluated the comprehensive biochemical, microbiological, and sensory characteristics of kombuchas fermented with green tea (Camellia sinensis) and different concentrations of yam (0, 10, and 20 % w/v). Based on pre-tests to detect the best concentration of yam in the beverage (10, 20, 30, and 40 %) and fermentation time (5, 7, and 14 days),the concentrations of 10 and 20 % of yam and five days of fermentation were selected through pH, °Brix, and sensory analysis. During the kombucha fermentation, there was a decrease in °Brix and pH. Sucrose, glucose, fructose, citric, and succinic acids were related to the beginning of fermentation, and lactic and acetic acids were more related to the end of fermentation in the treatment containing 20 % yam. The fermentation time did not change the color of the kombucha. Fatty acids, phenols, terpenoids, and alcohols were the volatile groups with the most compounds identified. Only two yeast genera were identified (Brettanomyces bruxellensis and Pichia membranifaciens), and bacteria of the genera Acetobacter, Lactobacillus, Pantoea, Pseudomonas, Azospirillum, and Enterobacter. The beverage control showed less turbidity and more clear. The fruity descriptor was more perceived in treatments with yam. However, the perception of the apple descriptor decreases as the yam concentration increases. The yam's concentration alters the kombucha's microbiota and sensory characteristics, mainly appearance and acidity. Kombucha fermentation using yam extract is viable, and the product is sensorially accepted. However, technological improvements, such as yam flour, could be made mainly for appearance and taste attributes.
Collapse
Affiliation(s)
| | | | | | - Disney Ribeiro Dias
- Food Science Department, Federal University of Lavras, CEP 37200-000, Lavras, MG, Brazil.
| | - Rosane Freitas Schwan
- Biology Department, Federal University of Lavras, CEP 37200-000, Lavras, MG, Brazil.
| |
Collapse
|
5
|
Barros VC, Botelho VA, Chisté RC. Alternative Substrates for the Development of Fermented Beverages Analogous to Kombucha: An Integrative Review. Foods 2024; 13:1768. [PMID: 38890996 PMCID: PMC11172354 DOI: 10.3390/foods13111768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
Kombucha is a fermented beverage that originated in China and is spread worldwide today. The infusion of Camellia sinensis leaves is mandatory as the substrate to produce kombucha but alternative plant infusions are expected to increase the opportunities to develop new fermented food products analogous to kombucha, with high technological potential and functional properties. This review gathers information regarding promising alternative substrates to produce kombucha-analogous beverages, focusing on plants available in the Amazonia biome. The data from the literature showed a wide range of alternative substrates in increasing expansion, with 37 new substrates being highlighted, of which ~29% are available in the Amazon region. Regarding the technological production of kombucha-analogous beverages, the following were the most frequent conditions: sucrose was the most used carbon/energy source; the infusions were mostly prepared at 90-100 °C, which allowed increased contents of phenolic compounds in the product; and 14 day-fermentation at 25-28 °C was typical. Furthermore, herbs with promising bioactive compound compositions and high antioxidant and antimicrobial properties are usually preferred. This review also brings up gaps in the literature, such as the lack of consistent information about chemical composition, sensory aspects, biological properties, and market strategies for fermented beverages analogous to kombucha produced with alternative substrates. Therefore, investigations aiming to overcome these gaps may stimulate the upscale of these beverages in reaching wide access to contribute to the modern consumers' quality of life.
Collapse
Affiliation(s)
- Vinicius Costa Barros
- Graduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil;
| | - Vanessa Albres Botelho
- Faculty of Food Engineering, Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
| | - Renan Campos Chisté
- Graduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil;
| |
Collapse
|
6
|
Li B, Wang X, Wang P. Microorganisms and bacterial cellulose stability of Kombucha under different manufacture and storage conditions. J Food Sci 2024; 89:2921-2932. [PMID: 38591324 DOI: 10.1111/1750-3841.16975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 04/10/2024]
Abstract
It is crucial to clarify the stability of Kombucha in the manufacture and storage stages due to the extensive study on the fermented products of Kombucha and the increase in the use of bacterial cellulose (BC). This study aimed to evaluate the stability of Kombucha in different manufacturing and storage temperatures within a certain time period. The stability of microorganisms and BC in Kombucha was investigated through regular replacement with the tea media at 28 and 25°C for manufacture, and the storage temperature of Kombucha was at 25, 4, and -20°C. Morphological observations of the BC in Kombucha ended at 28 and 25°C for manufacture and storage were performed using atomic force microscopy (AFM) before inoculation. The viable cell counts and AFM results showed that the stability of Kombucha during manufacture was better at 28°C than at 25°C, with higher microbial viability and BC productivity in the former at the time of manufacture, whereas 25°C was more favorable for the stability of Kombucha during storage. At the same temperature of 25°C, the manufacturing practice improved the microbial viability and BC stability compared with storage; the pH value of Kombucha was lower, and the dry weight of BC was higher during storage compared with manufacture. The maximum BC water holding capacity (97.16%) was maintained by storage at 4°C on day 63, and the maximum BC swelling rate (56.92%) was observed after storage at -20°C on day 7. The research was conducted to provide reference information for applying Kombucha and its BC in food and development in other industries.
Collapse
Affiliation(s)
- Binbin Li
- School of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Xufeng Wang
- School of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Ping Wang
- School of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| |
Collapse
|
7
|
Dikbaş N, Orman YC, Alım Ş, Uçar S, Tülek A. Evaluating Enterococcus faecium9 N-2 as a probiotic candidate from traditional village white cheese. Food Sci Nutr 2024; 12:1847-1856. [PMID: 38455208 PMCID: PMC10916548 DOI: 10.1002/fsn3.3878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 03/09/2024] Open
Abstract
In this study, various functional and probiotic attributes of the Enterococcus faecium 9 N-2 strain isolated from village-style white cheese were characterized, while also assessing its safety. To achieve this, we conducted an in vitro analysis of several key probiotic properties exhibited by the 9 N-2 strain. Notably, this strain demonstrated robust resilience to low pH, high bile salt concentrations, lysozyme, pepsin, pancreatin, and phenol. Furthermore, this strain displayed exceptional auto-aggregation capabilities and moderate co-aggregation tendencies when interacting with Escherichia coli. The cell-free supernatant derived from strain 9 N-2 exhibited significant antimicrobial activity against the tested pathogens. The strain exhibited resistance to gentamicin, meropenem, and bacitracin, while remaining susceptible to vancomycin and various other antibiotics. Furthermore, it was found that E. faecium 9 N-2 possessed the capacity to produce the phytase enzyme. When all the results of this study are evaluated, it is thought that 9 N-2 strain has superior probiotic properties, and therefore it can be used as probiotic in food, medicine, and animal feed in the future. In addition, further in vivo tests should be performed to fully understand its effects and mechanisms of action and to confirm its safety and probiotic effects. Further research and clinical trials are also needed to identify new strains with potential probiotic properties.
Collapse
Affiliation(s)
- Neslihan Dikbaş
- Department of Agricultural Biotechnology, Agricultural FacultyAtaturk UniversityErzurumTurkey
| | - Yusuf Can Orman
- Department of Agricultural Biotechnology, Agricultural FacultyAtaturk UniversityErzurumTurkey
| | - Şeyma Alım
- Department of Agricultural Biotechnology, Agricultural FacultyAtaturk UniversityErzurumTurkey
| | - Sevda Uçar
- Department of Herbal Production and Technologies, Faculty of Agricultural Sciences and TechnologySivas Science and Technology UniversitySivasTurkey
| | - Ahmet Tülek
- Department of Bioengineering and SciencesIğdır UniversityIğdırTurkey
| |
Collapse
|
8
|
Batista P, Rodrigues Penas M, Vila-Real C, Pintado M, Oliveira-Silva P. Kombucha: Challenges for Health and Mental Health. Foods 2023; 12:3378. [PMID: 37761087 PMCID: PMC10530084 DOI: 10.3390/foods12183378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Increasing research into probiotics is showing potential benefits for health in general and mental health in particular. Kombucha is a recent beverage and can be considered a probiotic drink, but little is known about its effects on physical and mental health. This product is experiencing growth in the market; however, there are no scientific results to support its potential for physical and mental health. AIM This review article aims to draw attention to this issue and to highlight the lack of studies in this area. KEY FINDINGS AND CONCLUSIONS The lack of legislation for the correct marketing of this product may also constrain clinical studies. However, clinical studies are of utmost importance for an in-depth understanding of the effects of this product on the human body. More research is needed, not only to better understand the impact of Kombucha on the human body, but also to ensure the application of regulatory guidelines for its production and marketing and enable its safe and effective consumption.
Collapse
Affiliation(s)
- Patrícia Batista
- Research Centre for Human Development, Human Neurobehavioural Laboratory, Universidade Católica Portuguesa, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; (M.R.P.); (P.O.-S.)
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; (C.V.-R.); (M.P.)
| | - Maria Rodrigues Penas
- Research Centre for Human Development, Human Neurobehavioural Laboratory, Universidade Católica Portuguesa, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; (M.R.P.); (P.O.-S.)
| | - Catarina Vila-Real
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; (C.V.-R.); (M.P.)
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; (C.V.-R.); (M.P.)
| | - Patrícia Oliveira-Silva
- Research Centre for Human Development, Human Neurobehavioural Laboratory, Universidade Católica Portuguesa, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; (M.R.P.); (P.O.-S.)
| |
Collapse
|
9
|
Berhanu M, Desalegn A, Birri DJ, Ashenafi M, Tigu F. Microbial, physicochemical and proximate analysis of Tej collected from Amhara regional state of Ethiopia. Heliyon 2023; 9:e16911. [PMID: 37332921 PMCID: PMC10275989 DOI: 10.1016/j.heliyon.2023.e16911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 05/18/2023] [Accepted: 06/01/2023] [Indexed: 06/20/2023] Open
Abstract
Tej is an Ethiopian traditional alcoholic beverage with significant social and economic importance. Due to the spontaneous fermentation process of Tej, several issues such as safety, quality, and physicochemical properties of the final products is rquired to be assessed. Thus, this study was aimed to assess the microbial quality, physicochemical, and proximate properties of Tej associated with different maturity time. The microbial, physicochemical and proximate analyses were carried out by standard protocol. Lactic acid bacteria (6.30 log CFU/mL) and yeast (6.22 log CFU/mL) were the dominat microorganisms of all Tej samples at different maturity time, with significant differences (p = 0.001) in mean microbial count among samples. The mean pH, titratable acidity and ethanol content of Tej samples were 3.51, 0.79 and 11.04% (v/v), respectively. There were significant differences (p = 0.001) among the mean pH and titratable acidity values. The mean proximate compositions (%) of Tej samples were as follows: moisture (91.88), ash (0.65), protein (1.38), fat (0.47) and carbohydrate (3.91). Statistically significant differences (p = 0.001) were observed in proximate compositions of Tej samples from different maturity time. Generally, Tej maturity time has a great impact on the improvement of nutrient composition and the increment of the acidic contents which in turn suppress the growth of unwanted microorganisms. Further evaluation of the biological, and chemical safety and development of yeast-LAB starter culture are strongly recommended to improve Tej fermentation in Ethiopia.
Collapse
Affiliation(s)
- Meseret Berhanu
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Science, Addis Ababa University, Ethiopia
| | - Asnake Desalegn
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Science, Addis Ababa University, Ethiopia
| | - Dagim Jirata Birri
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Science, Addis Ababa University, Ethiopia
| | - Mogessie Ashenafi
- Center for Food Security Studies, College of Development Studies, Addis Ababa University, Ethiopia
| | - Fitsum Tigu
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Science, Addis Ababa University, Ethiopia
| |
Collapse
|
10
|
Chong AQ, Lau SW, Chin NL, Talib RA, Basha RK. Fermented Beverage Benefits: A Comprehensive Review and Comparison of Kombucha and Kefir Microbiome. Microorganisms 2023; 11:1344. [PMID: 37317318 DOI: 10.3390/microorganisms11051344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023] Open
Abstract
Beverage fermentation is an ancient ritual that has been practised for millennia. It was slowly disappearing from households and communities due to the advancement of manufacturing technology and the marketing of soft drinks until the recent revival of the beverage fermentation culture due to an increase in the demand for health drinks amid the COVID-19 pandemic. Kombucha and kefir are two well-known fermented beverages that are renowned for their myriad of health benefits. The starter materials for making these beverages contain micro-organisms that act like microscopic factories producing beneficial nutrients that have antimicrobial and anticancer effects. The materials modulate the gut microbiota and promote positive effects on the gastrointestinal tract. Due to wide variations in the substrates and types of micro-organisms involved in the production of both kombucha and kefir, this paper compiles a compendium of the micro-organisms present and highlights their nutritional roles.
Collapse
Affiliation(s)
- Ann Qi Chong
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Siew Wen Lau
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Nyuk Ling Chin
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Rosnita A Talib
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Roseliza Kadir Basha
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| |
Collapse
|
11
|
Phung LT, Kitwetcharoen H, Chamnipa N, Boonchot N, Thanonkeo S, Tippayawat P, Klanrit P, Yamada M, Thanonkeo P. Changes in the chemical compositions and biological properties of kombucha beverages made from black teas and pineapple peels and cores. Sci Rep 2023; 13:7859. [PMID: 37188725 DOI: 10.1038/s41598-023-34954-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023] Open
Abstract
Several raw materials have been used as partial supplements or entire replacements for the main ingredients of kombucha to improve the biological properties of the resulting kombucha beverage. This study used pineapple peels and cores (PPC), byproducts of pineapple processing, as alternative raw materials instead of sugar for kombucha production. Kombuchas were produced from fusions of black tea and PPC at different ratios, and their chemical profiles and biological properties, including antioxidant and antimicrobial activities, were determined and compared with the control kombucha without PPC supplementation. The results showed that PPC contained high amounts of beneficial substances, including sugars, polyphenols, organic acids, vitamins, and minerals. An analysis of the microbial community in a kombucha SCOBY (Symbiotic Cultures of Bacteria and Yeasts) using next-generation sequencing revealed that Acetobacter and Komagataeibacter were the most predominant acetic acid bacteria. Furthermore, Dekkera and Bacillus were also the prominent yeast and bacteria in the kombucha SCOBY. A comparative analysis was performed for kombucha products fermented using black tea and a fusion of black tea and PPC, and the results revealed that the kombucha made from the black tea and PPC infusion exhibited a higher total phenolic content and antioxidant activity than the control kombucha. The antimicrobial properties of the kombucha products made from black tea and the PPC infusion were also greater than those of the control. Several volatile compounds that contributed to the flavor, aroma, and beneficial health properties, such as esters, carboxylic acids, phenols, alcohols, aldehydes, and ketones, were detected in kombucha products made from a fusion of black tea and PPC. This study shows that PPC exhibits high potential as a supplement to the raw material infusion used with black tea for functional kombucha production.
Collapse
Affiliation(s)
- Ly Tu Phung
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Haruthairat Kitwetcharoen
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nuttaporn Chamnipa
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nongluck Boonchot
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sudarat Thanonkeo
- Walai Rukhavej Botanical Research Institute, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | | | - Preekamol Klanrit
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
- Fermentation Research Center for Value Added Agricultural Products (FerVAAPs), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Mamoru Yamada
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8315, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, 753-8315, Japan
| | - Pornthap Thanonkeo
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Fermentation Research Center for Value Added Agricultural Products (FerVAAPs), Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
12
|
Liu Y, Zheng Y, Yang T, Mac Regenstein J, Zhou P. Functional properties and sensory characteristics of kombucha analogs prepared with alternative materials. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Jiao M, Liu C, Prieto M, Lu X, Wu W, Sun J, García-Oliveira P, Tang X, Xiao J, Simal-Gandara J, Hu D, Li N. Biological Functions and Utilization of Different Part of the Papaya: A Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2124415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Mingyue Jiao
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
- School of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - M.A. Prieto
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Ourense, Spain
| | - Xiaoming Lu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Wenfu Wu
- School of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Jinyue Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - P. García-Oliveira
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Ourense, Spain
| | - Xiaozhen Tang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Jianbo Xiao
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Ourense, Spain
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Ourense, Spain
| | - Dagang Hu
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Ningyang Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
14
|
Cantadori E, Brugnoli M, Centola M, Uffredi E, Colonello A, Gullo M. Date Fruits as Raw Material for Vinegar and Non-Alcoholic Fermented Beverages. Foods 2022; 11:foods11131972. [PMID: 35804787 PMCID: PMC9265875 DOI: 10.3390/foods11131972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 01/18/2023] Open
Abstract
Currently, foods and beverages with healthy and functional properties, especially those that claim to prevent chronic diseases, are receiving more and more interest. As a result, numerous foods and beverages have been launched onto the market. Among the products with enhanced properties, vinegar and fermented beverages have a high potential for growth. Date palm fruits are a versatile raw material rich in sugars, dietary fibers, minerals, vitamins, and phenolic compounds; thus, they are widely used for food production, including date juice, jelly, butter, and fermented beverages, such as wine and vinegar. Furthermore, their composition makes them suitable for the formulation of functional foods and beverages. Microbial transformations of date juice include alcoholic fermentation for producing wine as an end-product, or as a substrate for acetic fermentation. Lactic fermentation is also documented for transforming date juice and syrup. However, in terms of acetic acid bacteria, little evidence is available on the exploitation of date juice by acetic and gluconic fermentation for producing beverages. This review provides an overview of date fruit’s composition, the related health benefits for human health, vinegar and date-based fermented non-alcoholic beverages obtained by acetic acid bacteria fermentation.
Collapse
Affiliation(s)
- Elsa Cantadori
- Department of Life Sciences, University of Modena and Reggio Emilia, 42123 Reggio Emilia, Italy; (E.C.); (M.B.); (M.C.)
- Ponti SpA, 28074 Ghemme, Italy; (E.U.); (A.C.)
| | - Marcello Brugnoli
- Department of Life Sciences, University of Modena and Reggio Emilia, 42123 Reggio Emilia, Italy; (E.C.); (M.B.); (M.C.)
| | - Marina Centola
- Department of Life Sciences, University of Modena and Reggio Emilia, 42123 Reggio Emilia, Italy; (E.C.); (M.B.); (M.C.)
| | | | | | - Maria Gullo
- Department of Life Sciences, University of Modena and Reggio Emilia, 42123 Reggio Emilia, Italy; (E.C.); (M.B.); (M.C.)
- Correspondence:
| |
Collapse
|
15
|
Barakat N, Beaufort S, Rizk Z, Bouajila J, Taillandier P, El Rayess Y. Kombucha analogues around the world: A review. Crit Rev Food Sci Nutr 2022; 63:10105-10129. [PMID: 35486588 DOI: 10.1080/10408398.2022.2069673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Kombucha is a traditional healthy beverage usually made by the fermentation of sweetened tea with a symbiotic culture of bacteria and yeast. The consumption of kombucha is associated with numerous health benefits and therefore the beverage has attracted the attention of consumers worldwide. Non-typical substrates (fruits, vegetables, plants, herbs, dairy, and by-products) are being inoculated with the kombucha consortium in an attempt to develop new products. This review paper reviews the fermentation parameters for different non-tea substrates used to make kombucha, in addition to the findings obtained in terms of physico-chemical analysis, biological activities and sensory evaluation.
Collapse
Affiliation(s)
- Nathalie Barakat
- INPT, UPS, CNRS, Laboratoire de Génie Chimique, Université de Toulouse, Toulouse, France
| | - Sandra Beaufort
- INPT, UPS, CNRS, Laboratoire de Génie Chimique, Université de Toulouse, Toulouse, France
| | - Ziad Rizk
- Wine Department, Lebanese Agricultural Research Institute, Jdeideh, Lebanon
| | - Jalloul Bouajila
- INPT, UPS, CNRS, Laboratoire de Génie Chimique, Université de Toulouse, Toulouse, France
| | - Patricia Taillandier
- INPT, UPS, CNRS, Laboratoire de Génie Chimique, Université de Toulouse, Toulouse, France
| | - Youssef El Rayess
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| |
Collapse
|
16
|
Zhou DD, Saimaiti A, Luo M, Huang SY, Xiong RG, Shang A, Gan RY, Li HB. Fermentation with Tea Residues Enhances Antioxidant Activities and Polyphenol Contents in Kombucha Beverages. Antioxidants (Basel) 2022; 11:155. [PMID: 35052659 PMCID: PMC8772747 DOI: 10.3390/antiox11010155] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 12/27/2022] Open
Abstract
Kombucha is a popular beverage with various bioactivities (such as antioxidant activity), which can be attributed to its abundant bioactive compounds, especially polyphenols. Kombucha is conventionally prepared by fermentation of a sugared black tea infusion without tea residue. In this study, the effects of black tea residue and green tea residue on kombucha were studied, and its antioxidant activities, total phenolic contents, as well as concentrations of polyphenols at different fermentation stages were evaluated using ferric-reducing antioxidant power, Trolox equivalent antioxidant capacity, Folin-Ciocalteu method and high-performance liquid chromatography with a photodiode array detector. The results showed that fermentation with tea residue could markedly increase antioxidant activities (maximum 3.25 times) as well as polyphenolic concentrations (5.68 times) of kombucha. In addition, green tea residue showed a stronger effect than black tea residue. Overall, it is interesting to find that fermentation with tea residues could be a better strategy to produce polyphenol-rich kombucha beverages.
Collapse
Affiliation(s)
- Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (D.-D.Z.); (A.S.); (M.L.); (S.-Y.H.); (R.-G.X.); (A.S.)
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (D.-D.Z.); (A.S.); (M.L.); (S.-Y.H.); (R.-G.X.); (A.S.)
| | - Min Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (D.-D.Z.); (A.S.); (M.L.); (S.-Y.H.); (R.-G.X.); (A.S.)
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (D.-D.Z.); (A.S.); (M.L.); (S.-Y.H.); (R.-G.X.); (A.S.)
| | - Ruo-Gu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (D.-D.Z.); (A.S.); (M.L.); (S.-Y.H.); (R.-G.X.); (A.S.)
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (D.-D.Z.); (A.S.); (M.L.); (S.-Y.H.); (R.-G.X.); (A.S.)
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (D.-D.Z.); (A.S.); (M.L.); (S.-Y.H.); (R.-G.X.); (A.S.)
| |
Collapse
|
17
|
Keșa AL, Pop CR, Mudura E, Salanță LC, Pasqualone A, Dărab C, Burja-Udrea C, Zhao H, Coldea TE. Strategies to Improve the Potential Functionality of Fruit-Based Fermented Beverages. PLANTS (BASEL, SWITZERLAND) 2021; 10:2263. [PMID: 34834623 PMCID: PMC8623731 DOI: 10.3390/plants10112263] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 06/01/2023]
Abstract
It is only recently that fermentation has been facing a dynamic revival in the food industry. Fermented fruit-based beverages are among the most ancient products consumed worldwide, while in recent years special research attention has been granted to assess their functionality. This review highlights the functional potential of alcoholic and non-alcoholic fermented fruit beverages in terms of chemical and nutritional profiles that impact on human health, considering the natural occurrence and enrichment of fermented fruit-based beverages in phenolic compounds, vitamins and minerals, and pro/prebiotics. The health benefits of fruit-based beverages that resulted from lactic, acetic, alcoholic, or symbiotic fermentation and specific daily recommended doses of each claimed bioactive compound were also highlighted. The latest trends on pre-fermentative methods used to optimize the extraction of bioactive compounds (maceration, decoction, and extraction assisted by supercritical fluids, microwave, ultrasound, pulsed electric fields, high pressure homogenization, or enzymes) are critically assessed. As such, optimized fermentation processes and post-fermentative operations, reviewed in an industrial scale-up, can prolong the shelf life and the quality of fermented fruit beverages.
Collapse
Affiliation(s)
- Ancuța-Liliana Keșa
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-L.K.); (E.M.)
| | - Carmen Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (C.R.P.); (L.C.S.)
| | - Elena Mudura
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-L.K.); (E.M.)
| | - Liana Claudia Salanță
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (C.R.P.); (L.C.S.)
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Sciences, University of Bari ‘Aldo Moro’, Via Amendola, 165/A, 70126 Bari, Italy;
| | - Cosmin Dărab
- Department of Electric Power Systems, Faculty of Electrical Engineering, Technical University of Cluj-Napoca, 400027 Cluj-Napoca, Romania;
| | - Cristina Burja-Udrea
- Industrial Engineering and Management Department, Faculty of Engineering, Lucian Blaga University of Sibiu, 10 Victoriei Blv., 550024 Sibiu, Romania;
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China;
- Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China
| | - Teodora Emilia Coldea
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-L.K.); (E.M.)
| |
Collapse
|