1
|
Pravallika K, Pradhan S, Prabha A, Chakraborty S. Ultraviolet and pulsed light treatment of spices and herbs and their products: Microbial safety, enzyme inactivation, bioactive retention, and shelf-life extension. Compr Rev Food Sci Food Saf 2025; 24:e70107. [PMID: 39902957 DOI: 10.1111/1541-4337.70107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/01/2024] [Accepted: 12/23/2024] [Indexed: 02/06/2025]
Abstract
Spices and herbs are a crucial component of the global food industry, valued for their unique flavors, aromas, and bioactive properties. However, microbial contamination and quality degradation during production, storage, and distribution pose significant challenges. Ultraviolet (UV) and pulsed light (PL) processing have emerged as nonthermal technologies offering effective, eco-friendly solutions for microbial decontamination and quality retention in spices. This review explores recent advancements and applications of UV and PL treatments in the spice industry, highlighting their impact on pathogenic and spoilage microbial safety, physicochemical properties, and bioactive compound retention. UV processing, primarily involving UV-C radiation, inactivates microorganisms by disrupting DNA, offering effective surface decontamination without compromising quality of spices and herbs. PL, which utilizes high-intensity, broad-spectrum light pulses, extends this capability to irregularly shaped surfaces, further enhancing microbial inactivation. Both methods preserve key quality attributes such as phenolics, flavonoids, antioxidant activity, ascorbic acids, and color while mitigating sensory losses, making them attractive alternatives to conventional thermal and chemical treatments. The review also examines critical factors influencing the efficacy of these technologies, including processing parameters, spice morphology, and microbial load. Despite promising results, challenges related to regulatory approval, equipment design, and consumer acceptance remain. This comprehensive analysis underscores the potential of UV and PL technologies to revolutionize spices and herbs processing, ensuring safety and quality while aligning with sustainable and consumer-driven demands in the food industry.
Collapse
Affiliation(s)
- Kosana Pravallika
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Swadhin Pradhan
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Abhirami Prabha
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Snehasis Chakraborty
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
2
|
Arcos-Limiñana V, Maestre-Pérez S, Prats-Moya MS. A comprehensive review on ultraviolet disinfection of spices and culinary seeds and its effect on quality. Compr Rev Food Sci Food Saf 2025; 24:e70076. [PMID: 39674832 DOI: 10.1111/1541-4337.70076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 12/16/2024]
Abstract
Spices and culinary seeds, valued for their flavor and aroma, pose unique challenges for disinfection, as heat treatments are often unsuitable. Their raw consumption increases the risk of contamination, particularly with Salmonella spp. Thermal treatments are widely used for food disinfection due to their effectiveness in inactivating bacteria. However, these methods often degrade the nutritional and sensory qualities of food. Ultraviolet (UV) light, however, is a promising nonthermal technique that balances microbial inactivation and food quality preservation. This review employed a systematic approach to evaluate the effects of UV treatments, both alone and in combination with other techniques, on the microbiological safety and chemical composition of spices and culinary seeds. UV treatments have been shown to effectively inactivate bacteria, molds, and mycotoxins without triggering the same chemical reactions that reduce the quality of plant-based foods. Some studies have even suggested improvements in nutritional parameters following UV exposure, such as the increase of antioxidant activity or total phenolic content. However, inconsistencies in study quality limit the strength of current conclusions, and further research is needed. Critical areas for future investigation include scaling UV reactors, combining treatments, exploring UV-LED technology, conducting sensory analyses, and studying the inactivation of bacterial spores and mycotoxins.
Collapse
Affiliation(s)
- Víctor Arcos-Limiñana
- Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, Alicante, Spain
| | - Salvador Maestre-Pérez
- Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, Alicante, Spain
| | - María Soledad Prats-Moya
- Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, Alicante, Spain
| |
Collapse
|
3
|
Kim YJ, Lee JI, Kang DH. Simultaneous vacuum ultra violet-amalgam lamp radiation and near-infrared radiation heating for a synergistic bactericidal effect against Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in black peppercorn. Food Res Int 2023; 169:112827. [PMID: 37254403 DOI: 10.1016/j.foodres.2023.112827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
This study evaluated the effect of simultaneous irradiation with vacuum ultraviolet (VUV)-amalgam lamp and near-infrared radiation (NIR) to inactivate foodborne pathogens in black peppercorn (Piper nigrum) while monitoring its piperine content and color. NIR treatment for 20 min caused an increase in black peppercorn temperature to 70 °C, and its bactericidal effect showed only 3.14 and 1.88 log reductions of Escherichia coli O157:H7 and Salmonella Typhimurium respectively. Single treatment with a VUV-amalgam lamp for 20 min achieved 2.26 and 1.55 log reductions of E. coli O157:H7 and S. Typhimurium, respectively. However, simultaneous treatment for 15 min produces a greater than 5-log reduction of both foodborne pathogens without changes of black peppercorn quality. The underlying bactericidal mechanism of the VUV-amalgam lamp is 254 nm irradiation with ozone generated by 185 nm irradiation. The ozone concentration was maintained with VUV-amalgam lamp single treatment but decreased during simultaneous treatment. In contrast, due to the drying effect of NIR irradiation, water vapor reacts with 185 nm irradiation or ozone to produce a variety of reactive oxygen species (ROS) such as hydrogen peroxide and hydroxyl radical during simultaneous treatment. The hydrogen peroxide concentration measured by Gastec increased during simultaneous treatment. We also investigated various generated types of ROS that can contribute to a synergistic bactericidal effect. We compared the bactericidal effect of sequential and simultaneous treatments with NIR and VUV-amalgam lamps to black peppercorn. Although sequential treatment showed additional inactivation efficacy, reductions of pathogens were significantly lower than with simultaneous treatment. These findings suggest that simultaneous VUV-amalgam lamp and NIR irradiation treatment via generation of ROS can increase bacterial inactivation efficacy of foodborne pathogens in black peppercorns without quality changes.
Collapse
Affiliation(s)
- Young-Ju Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institutes of Green BioScience & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 232-916, Republic of Korea
| | - Jae-Ik Lee
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institutes of Green BioScience & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 232-916, Republic of Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institutes of Green BioScience & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 232-916, Republic of Korea.
| |
Collapse
|
4
|
Sarfaraz D, Rahimmalek M, Sabzalian MR, Gharibi S, Matkowski A, Szumny A. Essential Oil Composition and Antioxidant Activity of Oregano and Marjoram as Affected by Different Light-Emitting Diodes. Molecules 2023; 28:molecules28093714. [PMID: 37175125 PMCID: PMC10180255 DOI: 10.3390/molecules28093714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/13/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Oregano and marjoram are important aromatic spices in the food industry, as well as medicinal plants with remarkable antioxidant properties. Despite their popularity, little is known about treatments that would influence the antioxidant capacity of essential oils. In this study, different spectra of LED light, namely blue, red, white, blue-red, and natural ambient light as a control, were applied to assess the essential oil content, composition, flavonoid, phenolic, and antioxidant capacity of oregano and marjoram. GC-MS analysis revealed thymol, terpinen-4-ol, sabinene, linalool, p-cymene, and γ-terpinene as the main compounds. In oregano, the thymol content ranged from 11.91% to 48.26%, while in marjoram it varied from 17.47% to 35.06% in different samples. In oregano and marjoram, the highest phenolic contents were in blue (61.26 mg of tannic acid E/g of DW) and in white (65.18 mg of TAE/g of DW) light, respectively, while blue-red illumination caused the highest increase in total flavonoids. The antioxidant activity of oregano and marjoram extract was evaluated using two food model systems, including DPPH and β-carotene bleaching. The highest antioxidant capacity was obtained in control light in oregano and blue-red light in marjoram. The results provide information on how to improve the desired essential oil profile and antioxidant capacity of extracts for industrial producers.
Collapse
Affiliation(s)
- Danial Sarfaraz
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mehdi Rahimmalek
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Mohammad R Sabzalian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Shima Gharibi
- Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Adam Matkowski
- Department of Pharmaceutical Biology and Biotechnology, Botanical Garden of Medicinal Plants, Wroclaw Medical University, 50-367 Wrocław, Poland
| | - Antoni Szumny
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| |
Collapse
|
5
|
Vieira LV, M Juvenato ME, Krause M, Heringer OA, Ribeiro JS, Brandão GP, Kuster RM, Carneiro MTWD. The effects of drying methods and harvest season on piperine, essential oil composition, and multi-elemental composition of black pepper. Food Chem 2022; 390:133148. [PMID: 35551027 DOI: 10.1016/j.foodchem.2022.133148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/30/2022] [Accepted: 05/01/2022] [Indexed: 11/16/2022]
Abstract
This study aimed to evaluate the piperine content, essential oil composition, and multi-elemental composition of black pepper samples according to different drying methods and harvest season. Differences in essential oil composition and B, Ca, K, Mg, and S were noted according to sampling campaign, indicating secondary metabolism plant alterations. Mechanical drying resulted in essential oil composition changes due to high temperature exposure during processing. Increases in Fe and Cr contents when employing mechanical dryers with direct heating were also observed, due to direct contact with metallic structures and particulate material from the burning process. The As and Pb contents of several samples were higher than the maximum permissible limits, reaching 0.46 and 0.56 mg kg-1, respectively, thus surpassing legislation safety limitations for human consumption.
Collapse
Affiliation(s)
- Luiza V Vieira
- Department of Chemistry, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, Vitória, Espírito Santo, Brazil
| | - Maria Eduarda M Juvenato
- Department of Chemistry, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, Vitória, Espírito Santo, Brazil
| | - Maiara Krause
- Department of Chemistry, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, Vitória, Espírito Santo, Brazil
| | - Otávio A Heringer
- Department of Research and Development, Tommasi Ambiental, R. Arara Azul, 187, Novo Horizonte, Serra, Espírito Santo, Brazil
| | - Juliano S Ribeiro
- Department of Chemistry, Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo, Av. Ministro Salgado Filho, 1000, Soteco, Vila Velha, Espírito Santo, Brazil
| | - Geisamanda P Brandão
- Department of Chemistry, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, Vitória, Espírito Santo, Brazil
| | - Ricardo M Kuster
- Department of Chemistry, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, Vitória, Espírito Santo, Brazil
| | - Maria Tereza W D Carneiro
- Department of Chemistry, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, Vitória, Espírito Santo, Brazil.
| |
Collapse
|
6
|
Advances, Applications, and Comparison of Thermal (Pasteurization, Sterilization, and Aseptic Packaging) against Non-Thermal (Ultrasounds, UV Radiation, Ozonation, High Hydrostatic Pressure) Technologies in Food Processing. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042202] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nowadays, food treatment technologies are constantly evolving due to an increasing demand for healthier and tastier food with longer shelf lives. In this review, our aim is to highlight the advantages and disadvantages of some of the most exploited industrial techniques for food processing and microorganism deactivation, dividing them into those that exploit high temperatures (pasteurization, sterilization, aseptic packaging) and those that operate thanks to their inherent chemical–physical principles (ultrasound, ultraviolet radiation, ozonation, high hydrostatic pressure). The traditional thermal methods can reduce the number of pathogenic microorganisms to safe levels, but non-thermal technologies can also reduce or remove the adverse effects that occur using high temperatures. In the case of ultrasound, which inactivates pathogens, recent advances in food treatment are reported. Throughout the text, novel discoveries of the last decade are presented, and non-thermal methods have been demonstrated to be more attractive for processing a huge variety of foods. Preserving the quality and nutritional values of the product itself and at the same time reducing bacteria and extending shelf life are the primary targets of conscious producers, and with non-thermal technologies, they are increasingly possible.
Collapse
|