1
|
Chen Z, Fu M, Chen J, Zhang G, Geng Q, Hu X, Wang Y, Li T, Liang R, Dai T. Characterization of pea protein-different types of glycoside flavonoid complex interactions and functional properties. Food Res Int 2025; 203:115788. [PMID: 40022322 DOI: 10.1016/j.foodres.2025.115788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 03/03/2025]
Abstract
Flavonoids offer various health benefits due to their chemical properties and non-covalent interactions with food nutrients. Despite extensive research on flavonoid-protein interactions, the effects of flavonoid glycosides on pea protein (PP) remained unclear. This study explored the non-covalent interactions of luteolin (Lu), isoorientin (Iso), and cynaroside (Cyn) with PP using molecular docking and multi-spectral techniques. Results showed that Lu interacted with PP mainly through hydrophobic forces, while Iso and Cyn interacted predominantly via hydrogen bonding. At 298 K, the binding affinity of flavonoids to PP was ranked as Lu (16.98 × 104 M-1) > Iso (7.41 × 104 M-1) > Cyn (6.31 × 104 M-1). Circular dichroism analysis showed that flavonoid glycosides loosened the protein structure by inducing a change in the secondary structure of PP from an α-helix to a random coil. This resulted in improved foaming, emulsification, and antioxidant properties of PP. This study provided insights into flavonoid-protein interactions and their potential applications in functional protein foods.
Collapse
Affiliation(s)
- Zihao Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Min Fu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; Jiangxi Environmental Engineering Vocational College, Ganzhou, Jiangxi Nanchang 341000, China
| | - Jun Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Jiangxi Nanchang 330200, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Jiangxi Nanchang 330200, China
| | - Qin Geng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xing Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yihui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Ti Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Jiangxi Nanchang 330200, China.
| | - Ruihong Liang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Taotao Dai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Jiangxi Nanchang 330200, China.
| |
Collapse
|
2
|
Feng ZJ, Xu QD, Chen N, Zeng WC. Regulation of catechins with different structure characteristics on the physicochemical properties of casein and the structure-activity relationship. Food Chem 2024; 467:142515. [PMID: 39705745 DOI: 10.1016/j.foodchem.2024.142515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/08/2024] [Accepted: 12/14/2024] [Indexed: 12/22/2024]
Abstract
Regulation of catechins with different structure characteristics on the physicochemical properties of casein were investigated, and the structure-activity relationship was further explored. All testing catechins effectively modulated the physicochemical properties of casein, and esterified catechins showed the stronger binding affinity to casein than non-esterified catechins. Catechins significantly altered the secondary and tertiary structures of casein. Fluorescence spectroscopy and thermodynamic analyses indicated that the fluorescence quenching mechanism of casein by the four catechins was static. The Gibbs free energies (ΔG) for the interactions between EC, ECG, EGC, and EGCG with α-casein were - 14.16, -25.41, -22.23, and - 24.48 kJ/mol, respectively. For β-casein, ΔG were - 17.91, -29.85, -17.34, and - 19.33 kJ/mol, respectively. All negative ΔG values suggested that the interactions between catechins and casein occurred spontaneously. At 297 K, the binding constants for catechins with α-casein followed the order: ECG (29.51 × 103 L/mol) > EGCG (20.23 × 103 L/mol) > EGC (8.13 × 103 L/mol) > EC (0.31 × 103 L/mol). For β-casein, the order was: ECG (177.83 × 103 L/mol) > EGCG (2.51 × 103 L/mol) > EC (1.41 × 103 L/mol) > EGC (1.12 × 103 L/mol). Molecular docking combined with multispectral analysis further demonstrated that hydrogen bonds, van der Waals forces, and hydrophobic interactions governed the interactions between catechins and casein, and hydrogen bonds were the predominant force. All results indicate that the amount of hydroxyl groups and the presence of galloyl group significantly affect the capability of catechins to interact with casein.
Collapse
Affiliation(s)
- Zi-Jian Feng
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu 610065, PR China
| | - Qian-Da Xu
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu 610065, PR China
| | - Nan Chen
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu 610065, PR China
| | - Wei-Cai Zeng
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu 610065, PR China; The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
3
|
Chen X, Fan R, Wang Y, Munir M, Li C, Wang C, Hou Z, Zhang G, Liu L, He J. Bovine milk β-casein: Structure, properties, isolation, and targeted application of isolated products. Compr Rev Food Sci Food Saf 2024; 23:e13311. [PMID: 38445543 DOI: 10.1111/1541-4337.13311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 03/07/2024]
Abstract
β-Casein, an important protein found in bovine milk, has significant potential for application in the food, pharmaceutical, and other related industries. This review first introduces the composition, structure, and functional properties of β-casein. It then reviews the techniques for isolating β-casein. Chemical and enzymatic isolation methods result in inactivity of β-casein and other components in the milk, and it is difficult to control the production conditions, limiting the utilization range of products. Physical technology not only achieves high product purity and activity but also effectively preserves the biological activity of the components. The isolated β-casein needs to be utilized effectively and efficiently for various purity products in order to achieve optimal targeted application. Bovine β-casein, which has a purity higher than or close to that of breast β-casein, can be used in infant formulas. This is achieved by modifying its structure through dephosphorylation, resulting in a formula that closely mimics the composition of breast milk. Bovine β-casein, which is lower in purity than breast β-casein, can be maximized for the preparation of functional peptides and for use as natural carriers. The remaining byproducts can be utilized as food ingredients, emulsifiers, and carriers for encapsulating and delivering active substances. Thus, realizing the intensive processing and utilization of bovine β-casein isolation. This review can promote the industrial production process of β-casein, which is beneficial for the sustainable development of β-casein as a food and material. It also provides valuable insights for the development of other active substances in milk.
Collapse
Affiliation(s)
- Xiaoqian Chen
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Rui Fan
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Yuanbin Wang
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Maliha Munir
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Chun Li
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Caiyun Wang
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Zhanqun Hou
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Guofang Zhang
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Libo Liu
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Jian He
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| |
Collapse
|
4
|
Fei X, Yan Y, Wang L, Huang Z, Gong D, Zhang G. Protocatechuic acid and gallic acid improve the emulsion and thermal stability of whey protein by covalent binding. Food Res Int 2023; 170:113000. [PMID: 37316070 DOI: 10.1016/j.foodres.2023.113000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/15/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023]
Abstract
This study aimed to explore the impacts of gallic acid (GA)/protocatechuic acid (PA) on the structural and functional characteristics of whey proteins (WP) through covalent binding. To this purpose, the covalent complexes of WP-PA and WP-GA at different concentration gradients were prepared by the alkaline method. SDS-PAGE indicated that PA/GA was cross-linked by covalent bonds. The decreased contents of free amino and sulfhydryl groups suggested that WP formed covalent bonds with PA/GA by amino and sulfhydryl groups, and the structure of WP became slightly looser after covalent modification by PA/GA. When the concentration of GA was added up to 10 mM, the structure of WP was slightly loosened with a reduction of α-helix content by 2.3% and an increase in random coil content by 3.0%. The emulsion stability index of WP increased by 14.9 min after interaction with GA. Moreover, the binding of WP and 2-10 mM PA/GA increased the denaturation temperature by 1.95 to 19.87 °C, indicating the improved thermal stability of the PA/GA-WP covalent complex. Additionally, the antioxidant capacity of WP was increased with increasing GA/PA concentration. This work may offer worthful information for enhancing the functional properties of WP and the application of the PA/GA-WP covalent complexes in food emulsifiers.
Collapse
Affiliation(s)
- Xiaoyun Fei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yuzhong Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Langhong Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; School of Food Science and Engineering, Foshan University, Foshan 528225, China.
| | - Zhaohua Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
5
|
Zhu M, Fei X, Gong D, Zhang G. Effects of Processing Conditions and Simulated Digestion In Vitro on the Antioxidant Activity, Inhibition of Xanthine Oxidase and Bioaccessibility of Epicatechin Gallate. Foods 2023; 12:2807. [PMID: 37509901 PMCID: PMC10378779 DOI: 10.3390/foods12142807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/18/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023] Open
Abstract
The bioactivity and gastrointestinal stability of epicatechin gallate (ECG) may be affected by processing conditions. Results showed that the antioxidant ability and inhibitory activity on xanthine oxidase (XO) of ECG were higher at low pH values. Appropriate microwave and heating treatments improved the antioxidant (the scavenging rate increased from 71.75% to 92.71% and 80.88% under the microwave and heating treatments) and XO inhibitory activity (the inhibitory rate increased from 47.11% to 56.89% and 51.85% at the microwave and heating treatments) of ECG. The treated ECG led to a more compact structure of XO. Moreover, there may be synergistic antioxidant and inhibitory effects between ECG and its degradation products. The bioaccessibility of ECG after simulated digestion was untreated > microwave > heating, and the microwave-treated ECG still had good XO inhibitory activity after digestion. These findings may provide some significant information for the development of functional foods enriched in catechins.
Collapse
Affiliation(s)
- Miao Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaoyun Fei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
6
|
Liang X, Kong Y, Sun H, Zhao R, Jiao L, Zhang W, Liu B. Study on the Interaction Mechanism of Methoxy Polyethylene Glycol Maleimide with Sweet Potato β-Amylase. Molecules 2023; 28:2188. [PMID: 36903434 PMCID: PMC10005407 DOI: 10.3390/molecules28052188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
In this study, sweet potato β-amylase (SPA) was modified by methoxy polyethylene glycol maleimide (molecular weight 5000, Mal-mPEG5000) to obtain the Mal-mPEG5000-SPA modified β-amylase and the interaction mechanism between SPA and Mal-mPEG5000 was investigated. the changes in the functional groups of different amide bands and modifications in the secondary structure of enzyme protein were analyzed using infrared spectroscopy and circular dichroism spectroscopy. The addition of Mal-mPEG5000 transformed the random curl in the SPA secondary structure into a helix structure, forming a folded structure. The Mal-mPEG5000 improved the thermal stability of SPA and protected the structure of the protein from breaking by the surrounding. The thermodynamic analysis further implied that the intermolecular forces between SPA and Mal-mPEG5000 were hydrophobic interactions and hydrogen bonds due to the positive values of ΔHθ and ΔSθ. Furthermore, the calorie titration data showed that the binding stoichiometry for the complexation of Mal-mPEG5000 to SPA was 1.26, and the binding constant was 1.256 × 107 mol/L. The binding reaction resulted from negative enthalpy, indicating that the interaction of SPA and Mal-mPEG5000 was induced by the van der Waals force and hydrogen bonding. The UV results showed the formation of non-luminescent material during the interaction, the Fluorescence results confirmed that the mechanism between SPA and Mal-mPEG5000 was static quenching. According to the fluorescence quenching measurement, the binding constant (KA) values were 4.65 × 104 L·mol-1 (298K), 5.56 × 104 L·mol-1 (308K), and 6.91 × 104 L·mol-1 (318K), respectively.
Collapse
Affiliation(s)
- Xinhong Liang
- Henan Institute of Science and Technology, School of Food Science, Xinxiang 453003, China
| | - Yaxin Kong
- Henan Institute of Science and Technology, School of Food Science, Xinxiang 453003, China
| | - Huadi Sun
- Xinxiang Institute of Engineering, School of Food Engineering, Xinxiang 453003, China
| | - Ruixiang Zhao
- Henan Institute of Science and Technology, School of Food Science, Xinxiang 453003, China
| | - Lingxia Jiao
- Henan Institute of Science and Technology, School of Food Science, Xinxiang 453003, China
| | - Wanli Zhang
- Henan Institute of Science and Technology, School of Food Science, Xinxiang 453003, China
| | - Bing Liu
- Xinxiang Institute of Engineering, School of Food Engineering, Xinxiang 453003, China
| |
Collapse
|
7
|
Fu M, Gao L, Geng Q, Li T, Dai T, Liu C, Chen J. Noncovalent interaction mechanism and functional properties of flavonoid glycoside-β-lactoglobulin complexes. Food Funct 2023; 14:1357-1368. [PMID: 36648058 DOI: 10.1039/d2fo02791g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The interaction of flavonoid glycosides with milk protein and effects on the functional properties of flavonoid glycoside-β-lactoglobulin complexes are still inexplicit. The noncovalent interactions between flavonoid glycosides including quercetin (QE), quercitrin (QI), and rutin (RU) with β-lactoglobulin (β-LG) were determined by computer molecular docking and multispectral technique analysis. The fluorescence quenching results indicated that the flavonoid glycosides formed stable complexes with β-LG by the static quenching mechanism. The computer molecular docking and thermodynamic parameters analysis conclude that the main interaction of β-LG-QE was via hydrogen bonding, while for β-LG-QI and β-LG-RU it is via hydrophobic forces. The order of binding affinity to β-LG was QE (37.76 × 104 L mol-1) > RU (16.80 × 104 L mol-1) > QI (11.17 × 104 L mol-1), which indicated that glycosylation adversely affected the colloidal complex binding capacity. In this study, the physicochemical properties of the protein-flavonoid colloidal complex were determined. The analysis by circular dichroism spectroscopy demonstrated that flavonoid glycosides made the protein structure looser by inducing the secondary structure of β-LG to transform from the α-helix and β-sheet to random coils. The hydrophobicity of β-LG decreased due to binding with flavonoid glycosides, while functional properties including foaming, emulsification, and antioxidant capacities of β-LG were improved due to the noncovalent interactions. This study presents a part of the insight and guidance on the interactive mechanism of flavonoid glycosides and proteins and is helpful for developing functional protein-based foods.
Collapse
Affiliation(s)
- Min Fu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Lizhi Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China. .,West Yunnan University of Applied Sciences, Dali, Yunnan, 671000, China
| | - Qin Geng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Ti Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Taotao Dai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, China.
| |
Collapse
|
8
|
Yan X, Gong X, Zeng Z, Ma M, Zhao J, Xia J, Li M, Yang Y, Yu P, Gong D, Wan D. Dextran Conjugation Improves the Structural and Functional Properties of Heat-Treated Protein Isolate from Cinnamomum camphora Seed Kernel. Foods 2022; 11:3066. [PMID: 36230141 PMCID: PMC9564210 DOI: 10.3390/foods11193066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/21/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
The Cinnamomum camphora seed kernel (CCSK), with high contents of medium-chain oil (~59%) and protein (~19%), is an excellent source for a plant-based food ingredient. To broaden the application of the protein isolate (PI) from CCSK in the food industry, the Maillard reaction products (MRPs) were prepared by PI and dextran (DX) under mild wet-heating conditions (60 °C, 5 h), and the structural and functional properties of the PI-DX conjugates were investigated. The covalent bond between PI and DX was confirmed by the degree of grafting and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Compared with the heated PI, the PI-DX conjugates had more ordered structure, with the decreased random coil content. The changes in tertiary structure of PI-DX conjugates were reflected by the results of intrinsic fluorescence and surface hydrophobicity. Moreover, PI-DX conjugates showed better solubility, emulsifying properties, thermal stability and antioxidant activities. These results provided a theoretical basis for the development of PI-based MRPs with desirable characteristics.
Collapse
Affiliation(s)
- Xianghui Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
- School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Xiaofeng Gong
- School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Zheling Zeng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Maomao Ma
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Junxin Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Jiaheng Xia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Meina Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
- School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Yujing Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ping Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
- New Zealand Institute of Natural Medicine Research, 8 Ha Crescent, Auckland 2104, New Zealand
| | - Dongman Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| |
Collapse
|
9
|
Chen J, Gao Q, Zhou G, Xu X. Interactions between the protein-epigallocatechin gallate complex and nanocrystalline cellulose: A systematic study. Food Chem 2022; 387:132791. [DOI: 10.1016/j.foodchem.2022.132791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 12/13/2022]
|
10
|
Wang L, Wang X, Luo F, Li Y. Effect of ultrasound on
cyanidin‐3‐O
‐glucoside and β‐lactoglobulin binding interaction and functional properties. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lijie Wang
- College of Food and Health, Jinzhou Medical University No. 5 Renmin Street Jinzhou 121001 China
| | - Xiaohan Wang
- College of Food and Health, Jinzhou Medical University No. 5 Renmin Street Jinzhou 121001 China
| | - Feng Luo
- College of Food and Health, Jinzhou Medical University No. 5 Renmin Street Jinzhou 121001 China
| | - Yuefei Li
- College of Food and Health, Jinzhou Medical University No. 5 Renmin Street Jinzhou 121001 China
| |
Collapse
|
11
|
Yu ZY, Xu K, Wang X, Wen YT, Wang LJ, Huang DQ, Chen XX, Chai WM. Punicalagin as a novel tyrosinase and melanin inhibitor: Inhibitory activity and mechanism. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Daniloskia D, McCarthy NA, O’Callaghan TF, Vasiljevic T. Authentication of β-casein milk phenotypes using FTIR spectroscopy. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Effects of Baicalein and Chrysin on the Structure and Functional Properties of β-Lactoglobulin. Foods 2022; 11:foods11020165. [PMID: 35053897 PMCID: PMC8774648 DOI: 10.3390/foods11020165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/01/2022] [Accepted: 01/06/2022] [Indexed: 12/16/2022] Open
Abstract
Two flavonoids with similar structures, baicalein (Bai) and chrysin (Chr), were selected to investigate the interactions with β-lactoglobulin (BLG) and the influences on the structure and functional properties of BLG by multispectral methods combined with molecular docking and dynamic (MD) simulation techniques. The results of fluorescence quenching suggested that both Bai and Chr interacted with BLG to form complexes with the binding constant of the magnitude of 105 L·mol−1. The binding affinity between BLG and Bai was stronger than that of Chr due to more hydrogen bond formation in Bai–BLG binding. The existence of Bai or Chr induced a looser conformation of BLG, but Chr had a greater effect on the secondary structure of BLG. The surface hydrophobicity and free sulfhydryl group content of BLG lessened due to the presence of the two flavonoids. Molecular docking was performed at the binding site of Bai or Chr located in the surface of BLG, and hydrophobic interaction and hydrogen bond actuated the formation of the Bai/Chr–BLG complex. Molecular dynamics simulation verified that the combination of Chr and BLG decreased the stability of BLG, while Bai had little effect on it. Moreover, the foaming properties of BLG got better in the presence of the two flavonoids compounds and Bai improved its emulsification stability of the protein, but Chr had the opposite effect. This work provides a new idea for the development of novel dietary supplements using functional proteins as flavonoid delivery vectors.
Collapse
|
14
|
Structural Changes of β-Casein Induced by Temperature and pH Analysed by Nuclear Magnetic Resonance, Fourier-Transform Infrared Spectroscopy, and Chemometrics. Molecules 2021; 26:molecules26247650. [PMID: 34946731 PMCID: PMC8706189 DOI: 10.3390/molecules26247650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
This study investigated structural changes in β-casein as a function of temperature (4 and 20 °C) and pH (5.9 and 7.0). For this purpose, nuclear magnetic resonance (NMR) and Fourier-transform infrared (FTIR) spectroscopy were used, in conjunction with chemometric analysis. Both temperature and pH had strongly affected the secondary structure of β-casein, with most affected regions involving random coils and α-helical structures. The α-helical structures showed great pH sensitivity by decreasing at 20 °C and diminishing completely at 4 °C when pH was increased from 5.9 to 7.0. The decrease in α-helix was likely related to the greater presence of random coils at pH 7.0, which was not observed at pH 5.9 at either temperature. The changes in secondary structure components were linked to decreased hydrophobic interactions at lower temperature and increasing pH. The most prominent change of the α-helix took place when the pH was adjusted to 7.0 and the temperature set at 4 °C, which confirms the disruption of the hydrogen bonds and weakening of hydrophobic interactions in the system. The findings can assist in establishing the structural behaviour of the β-casein under conditions that apply as important for solubility and production of β-casein.
Collapse
|
15
|
Hu D, Zhang Z, Yuan L, Li W, Guo Y, Zhang R, Yang X, Peng H. Load phycocyanin to achieve in vivo imaging of casein-porous starch microgels induced by ultra-high-pressure homogenization. Int J Biol Macromol 2021; 193:127-136. [PMID: 34699889 DOI: 10.1016/j.ijbiomac.2021.10.127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 01/13/2023]
Abstract
Traditional bioactive substances are often limited in practical application due to their poor stability and low solubility. Therefore, it is imperative to develop biocompatible high loading microgel carriers. In this study, a novel type of casein-porous starch microgel was prepared under ultra-high-pressure homogenization, by using porous starch with the honeycomb three-dimensional network porous structure. Molecular interaction force analysis and thermodynamic analysis showed that electrostatic interaction played a major role in the formation of microgels. Circular dichroism and Fourier transform infrared spectroscopy showed that homogenization and pH were the main factors, which affected the formation and structural stability of microgels. Compared with casein-glutinous rice starch microgels, the encapsulation efficiency and loading capacity of phycocyanin in casein-porous starch microgels were increased by 77.27% and 135.10%, respectively. Thus, casein-porous starch microgels could not only achieve a sustained release effect, but also effectively transport phycocyanin to the gastrointestinal tract of zebrafish, while achieving good fluorescence imaging in vivo. Ultimately, the prepared casein-porous starch microgels could enrich the nanocarriers material, and contribute to the research of safe and effective fluorescent imaging materials.
Collapse
Affiliation(s)
- Dan Hu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Engineering Research Center of High Value Utilization of Western Fruit Resources, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| | - Zhong Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Engineering Research Center of High Value Utilization of Western Fruit Resources, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China.
| | - Li Yuan
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Engineering Research Center of High Value Utilization of Western Fruit Resources, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| | - Wenjun Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China
| | - Yurong Guo
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Engineering Research Center of High Value Utilization of Western Fruit Resources, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| | - Runguang Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Engineering Research Center of High Value Utilization of Western Fruit Resources, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Engineering Research Center of High Value Utilization of Western Fruit Resources, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| | - Hailong Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China.
| |
Collapse
|