1
|
Wang L, Yuan T, Zhang Y. Application of laccase-inorganic nanoflowers based time-temperature integrator to real-time monitor the freshness of pasteurized milk. Food Chem X 2024; 24:101916. [PMID: 39525071 PMCID: PMC11550060 DOI: 10.1016/j.fochx.2024.101916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/22/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
A time-temperature integrator (TTI) based on laccase@Cu3(PO4)2 nanoflowers (laccase@NFs) was created to monitor the freshness of pasteurized milk during storage. To address the challenges of easy inactivation, poor stability, and high use-cost of laccase in the application of TTI, laccase@NFs were synthesized by ultrasonic-assisted biomineralization. The laccase@NFs-based TTI was created through the enzymatic reaction between laccase and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid ammonium salt), and the effects of laccase@NFs addition amount on the reaction rate, discoloration lifetime and activation energy (Ea) were discussed. Furthermore, the spoilage pattern and kinetic properties of pasteurized milk were explored based on titratable acidity. The measurement of the Ea was determined as 49.98 kJ/mol, and an investigation was conducted to assess the suitability of the TTI with pasteurized milk under both constant and variable temperature conditions. This research aims to contribute valuable insights into the application of enzymatic TTI in monitoring the shelf life of pasteurized milk.
Collapse
Affiliation(s)
- Lin Wang
- College of Packaging and Printing Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Tianxin Yuan
- College of Packaging and Printing Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yan Zhang
- College of Packaging and Printing Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| |
Collapse
|
2
|
Chen A, Peng C, Su C, Ma Y, Zhan X, Chen J, Liang W, Zhang W. Chitosan-Copper Hybrid Nanoflowers: A Novel Nanopesticide for Controlling Rhizoctonia solani Infection in Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39367837 DOI: 10.1021/acs.jafc.4c06345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Copper-based nanomaterials are effective alternatives to traditional pesticides due to their antibacterial properties. However, the high cost and low dispersity limit their application. In this study, we synthesized cost-effective, eco-friendly, and stable chitosan-copper hybrid nanoflowers (CS-Cu HNFs) through facile self-assembly to manage agricultural diseases caused by the fungal pathogen (Rhizoctonia solani). The results show that CS-Cu HNFs, which utilized chitosan and copper phosphate as primary scaffolds, were formed via a series of nucleation, aggregation, self-assembly, and anisotropic growth processes. 200 mg/L CS-Cu HNFs exhibited an excellent inhibitory effect on R. solani, which was 6.11 times that of CuO nanoparticles, despite CS-Cu HNFs containing only 45% of Cu as that in CuO nanoparticles. Additionally, CS-Cu HNFs significantly reduced R. solani infection in various crops and displayed broad-spectrum antibacterial activity. This research provides new insights into the preparation and application of organic-inorganic hybrid nanoflowers as nanopesticides.
Collapse
Affiliation(s)
- Anqi Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Chengpeng Su
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yixin Ma
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiuping Zhan
- Shanghai Agricultural Technology Extension and Service Center, Shanghai 201103, China
| | - Jun Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiyu Liang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Wang L, Li F, Wang S, Wu J, Zhang W, Zhang Y, Liu W. Time-temperature indicators based on Lipase@Cu3(PO4)2 hybrid nanoflowers. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Domingues O, Remonatto D, dos Santos LK, Galán JPM, Flumignan DL, de Paula AV. Evaluation of Candida rugosa Lipase Immobilized on Magnetic Nanoparticles in Enzymatic/Chemical Hydroesterification for Biodiesel Production. Appl Biochem Biotechnol 2022; 194:5419-5442. [DOI: 10.1007/s12010-022-04046-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 11/02/2022]
|