1
|
Betchem G, Dabbour M, Akter Tuly J, Flavorta Billong L, Ma H. Experimental investigation into the implications of low-intensity magnetic field treatment on the structural and functional properties of rapeseed meal during biofermentation. Food Chem 2024; 446:138858. [PMID: 38430766 DOI: 10.1016/j.foodchem.2024.138858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/08/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
The functionality of rapeseed meal is limited, to acquire more utilization, the functional attributes were improved by altering its structural features using magnetic field-assisted solid fermentation. The magnetic treatment was performed every 24 h (specifically at 24, and 48 h), each treatment having a duration of 4 h. The magnetic intensity was set at 120 Gs, and the fermentation temperature 37 °C. Magnetic field-assisted solid fermentation resulted in higher surface hydrophobicity, fluorescence intensity, UV absorption, and sulfhydryl groups of rapeseed meal. Magnetic field treatment considerably enhanced solubility, antioxidant activity, emulsifying activity, and stability by 8.8, 19.5, 20.7, and 12.3 %, respectively. Magnetic field-assisted solid fermentation also altered rapeseed meal structure, as shown by scanning electron microscopy, atomic force microscopy, and Raman spectroscopy outcomes. Correlation analysis displayed positive interrelationships between functional characteristics, and surface hydrophobicity, β-sheets, and polydispersity index.
Collapse
Affiliation(s)
- Garba Betchem
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| | - Mokhtar Dabbour
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, P.O. Box 13736, Moshtohor, Qaluobia, Egypt
| | - Jamila Akter Tuly
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | | | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
2
|
Wu Q, Kan J, Cui Z, Ma Y, Liu X, Dong R, Huang D, Chen L, Du J, Fu C. Understanding the nutritional benefits through plant proteins-probiotics interactions: mechanisms, challenges, and perspectives. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 38922612 DOI: 10.1080/10408398.2024.2369694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The nutritional benefits of combining probiotics with plant proteins have sparked increasing research interest and drawn significant attention. The interactions between plant proteins and probiotics demonstrate substantial potential for enhancing the functionality of plant proteins. Fermented plant protein foods offer a unique blend of bioactive components and beneficial microorganisms that can enhance gut health and combat chronic diseases. Utilizing various probiotic strains and plant protein sources opens doors to develop innovative probiotic products with enhanced functionalities. Nonetheless, the mechanisms and synergistic effects of these interactions remain not fully understood. This review aims to delve into the roles of promoting health through the intricate interplay of plant proteins and probiotics. The regulatory mechanisms have been elucidated to showcase the synergistic effects, accompanied by a discussion on the challenges and future research prospects. It is essential to recognize that the interactions between plant proteins and probiotics encompass multiple mechanisms, highlighting the need for further research to address challenges in achieving a comprehensive understanding of these mechanisms and their associated health benefits.
Collapse
Affiliation(s)
- Qiming Wu
- Nutrilite Health Institute, Shanghai, China
| | - Juntao Kan
- Nutrilite Health Institute, Shanghai, China
| | - Zhengying Cui
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou, China
| | - Yuchen Ma
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou, China
| | - Xin Liu
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou, China
| | - Ruifang Dong
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou, China
- Department of Food Science and Technology, National University of Singapore, Singapore
| | - Lin Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore
| | - Jun Du
- Nutrilite Health Institute, Shanghai, China
| | - Caili Fu
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou, China
| |
Collapse
|
3
|
Jeong S, Jung JH, Jung KW, Ryu S, Lim S. From microbes to molecules: a review of microbial-driven antioxidant peptide generation. World J Microbiol Biotechnol 2023; 40:29. [PMID: 38057638 DOI: 10.1007/s11274-023-03826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/01/2023] [Indexed: 12/08/2023]
Abstract
Oxidative stress, arising from excess reactive oxygen species (ROS) or insufficient antioxidant defenses, can damage cellular components, such as lipids, proteins, and nucleic acids, resulting in cellular dysfunction. The relationship between oxidative stress and various health disorders has prompted investigations into potent antioxidants that counteract ROS's detrimental impacts. In this context, antioxidant peptides, composed of two to twenty amino acids, have emerged as a unique group of antioxidants and have found applications in food, nutraceuticals, and pharmaceuticals. Antioxidant peptides are sourced from natural ingredients, mainly proteins derived from foods like milk, eggs, meat, fish, and plants. These peptides can be freed from their precursor proteins through enzymatic hydrolysis, fermentation, or gastrointestinal digestion. Previously published studies focused on the origin and production methods of antioxidant peptides, describing their structure-activity relationship and the mechanisms of food-derived antioxidant peptides. Yet, the role of microorganisms hasn't been sufficiently explored, even though the production of antioxidant peptides frequently employs a variety of microorganisms, such as bacteria, fungi, and yeasts, which are recognized for producing specific proteases. This review aims to provide a comprehensive overview of microorganisms and their proteases participating in enzymatic hydrolysis and microbial fermentation to produce antioxidant peptides. This review also covers endogenous peptides originating from microorganisms. The information obtained from this review might guide the discovery of novel organisms adept at generating antioxidant peptides.
Collapse
Affiliation(s)
- Soyoung Jeong
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jong-Hyun Jung
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Kwang-Woo Jung
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangyong Lim
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
- Department of Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
4
|
Tian Y, Zhou Y, Kriisa M, Anderson M, Laaksonen O, Kütt ML, Föste M, Korzeniowska M, Yang B. Effects of fermentation and enzymatic treatment on phenolic compounds and soluble proteins in oil press cakes of canola (Brassica napus). Food Chem 2023; 409:135339. [PMID: 36599288 DOI: 10.1016/j.foodchem.2022.135339] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/21/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
To develop novel processes for valorizing agro-industry side-streams, canola (Brassica napus) oil press cakes (CPC) were treated with lactic acid bacteria, carbohydrase, and protease. Altogether 29 protein-rich liquid fractions were obtained, of which the composition was analyzed using chromatographic and mass spectrometric methods. A clear association was revealed between the treatments and phenolic profile. Applying certain lactic acid bacteria enhanced the release of sinapic acid, sinapine, glycosylated kaempferols, and other phenolic compounds from CPC. Co-treatment using protease and Lactiplantibacillus plantarum was effective in degrading these compounds. The fraction obtained after 16 h of hydrolysis (with Protamex® of 2% dosage) and 48 h of fermentation (using L. plantarum) contained the lowest phenolic content (0.2 g/100 g DM) and a medium level of soluble proteins (78 g/100 g) among all samples studied. The fractions rich in soluble proteins and low in phenolics are potential food ingredients with improved bioavailability and sensory properties.
Collapse
Affiliation(s)
- Ye Tian
- Food Sciences, Department of Life Technologies, Faculty of Technology, University of Turku, 20014 Turku, Finland
| | - Ying Zhou
- Food Sciences, Department of Life Technologies, Faculty of Technology, University of Turku, 20014 Turku, Finland
| | - Marie Kriisa
- Center of Food and Fermentation Technologies (TFTAK), 12618 Tallinn, Estonia
| | - Maret Anderson
- Center of Food and Fermentation Technologies (TFTAK), 12618 Tallinn, Estonia
| | - Oskar Laaksonen
- Food Sciences, Department of Life Technologies, Faculty of Technology, University of Turku, 20014 Turku, Finland
| | - Mary-Liis Kütt
- Center of Food and Fermentation Technologies (TFTAK), 12618 Tallinn, Estonia
| | - Maike Föste
- Fraunhofer Institute for Process Engineering and Packaging IVV, 85354 Freising, Germany
| | - Małgorzata Korzeniowska
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
| | - Baoru Yang
- Food Sciences, Department of Life Technologies, Faculty of Technology, University of Turku, 20014 Turku, Finland; Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China.
| |
Collapse
|
5
|
Evaluation of Plant Protein Hydrolysates as Natural Antioxidants in Fish Oil-In-Water Emulsions. Antioxidants (Basel) 2022; 11:antiox11081612. [PMID: 36009330 PMCID: PMC9404908 DOI: 10.3390/antiox11081612] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
In this work, we evaluated the physical and oxidative stabilities of 5% w/w fish oil-in-water emulsions stabilized with 1%wt Tween20 and containing 2 mg/mL of protein hydrolysates from olive seed (OSM–H), sunflower (SFSM–H), rapeseed (RSM–H) and lupin (LUM–H) meals. To this end, the plant-based substrates were hydrolyzed at a 20% degree of hydrolysis (DH) employing a mixture 1:1 of subtilisin: trypsin. The hydrolysates were characterized in terms of molecular weight profile and in vitro antioxidant activities (i.e., DPPH scavenging and ferrous ion chelation). After incorporation of the plant protein hydrolysates as water-soluble antioxidants in the emulsions, a 14-day storage study was conducted to evaluate both the physical (i.e., ζ-potential, droplet size and emulsion stability index) and oxidative (e.g., peroxide and anisidine value) stabilities. The highest in vitro DPPH scavenging and iron (II)-chelating activities were exhibited by SFSM–H (IC50 = 0.05 ± 0.01 mg/mL) and RSM–H (IC50 = 0.41 ± 0.06 mg/mL). All the emulsions were physically stable within the storage period, with ζ-potential values below −35 mV and an average mean diameter D[4,3] of 0.411 ± 0.010 μm. Although LUM–H did not prevent lipid oxidation in emulsions, OSM–H and SFSM–H exhibited a remarkable ability to retard the formation of primary and secondary lipid oxidation products during storage when compared with the control emulsion without antioxidants. Overall, our findings show that plant-based enzymatic hydrolysates are an interesting alternative to be employed as natural antioxidants to retard lipid oxidation in food emulsions.
Collapse
|
6
|
A Novel Fermented Rapeseed Meal, Inoculated with Selected Protease-Assisting Screened B. subtilis YY-4 and L. plantarum 6026, Showed High Availability and Strong Antioxidant and Immunomodulation Potential Capacity. Foods 2022; 11:foods11142118. [PMID: 35885361 PMCID: PMC9317248 DOI: 10.3390/foods11142118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023] Open
Abstract
A study was conducted to investigate the yield of small peptides from rapeseed meal (RSM) by solid-state fermentation (SSF) with acid-protease-assisting B. subtilis YY-4 and L. plantarum CICC6026 (FRSMP). This study explored the availability, antioxidant capacity and immunomodulation activity. The objective of this study was to develop a novel functional food ingredient to contribute to health improvement. The results showed that the concentrations of soluble peptides and free amino acids significantly increased after fermentation (p < 0.001), and the concentration of small molecular peptides (molecular weight < 1 KDa) significantly increased (p < 0.001). The dense surface microstructure of the RSM after fermentation was changed to be loose and porous. The FRSMP exhibited high availability and high antioxidant activity, and it displayed high immunomodulation activity. The novel fermentation was effective for improving the nutritional and biological properties, which provided a feasible method of enhancing the added value.
Collapse
|