1
|
Lu Q, Ye Z, Yang C. Optimization of Ultrasonic-Enzyme Synergistic Extraction of Proanthocyanidins from Jujube: Purification, Characterization, and Bioactivity Study. Molecules 2025; 30:619. [PMID: 39942723 PMCID: PMC11820555 DOI: 10.3390/molecules30030619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Proanthocyanidins have received extensive attention due to their high functional value, but their sources are limited. Therefore, this experiment studied the preparation, biological activities, and characterization of proanthocyanidins from Chinese jujube (Ziziphus jujuba Mill. cv. Muzao) at different periods, aiming to explore a new source of proanthocyanidins and enhance their utilization value. Through ultrasonic-assisted enzymatic extraction, the optimal extraction conditions for PC from Muzao were determined, yielding a proanthocyanidin content of 2.01%. Purification using AB-8 macroporous resin increased the proanthocyanidin content by 11 times. The bioactivity results indicated that proanthocyanidins demonstrated significant in vitro antioxidant activity (scavenging rate ≥ 83.4%) and blood glucose-lowering activity (inhibition rate ≥ 84.7%). Both activities decreased with maturity, while the degree of polymerization also exhibited a positive effect. Mass spectrometry identified a total of 102 compounds, with cyanidin-based compounds being the most abundant, comprising 28 species. The comprehensive research results indicate that the oligomeric proanthocyanidins extracted, purified, and isolated from Muzao during the young fruit stage exhibit diverse biological activities and are abundant in content. They can be utilized for the extraction and purification of proanthocyanidins, offering a reference for the expansion of natural sources of proanthocyanidins and the development of functional foods.
Collapse
Affiliation(s)
- Qiaoshuang Lu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Zheng Ye
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan 030001, China
| | - Chun Yang
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan 030001, China
| |
Collapse
|
2
|
Hasan M, Tripathi K, Harun M, Krishnan V, Kaushik R, Chawla G, Shakil NA, Verma M, Dahuja A, Sachdev A, Lorezo JM, Kumar M. Unravelling the effect of extraction on anthocyanin functionality and prebiotic potential. Heliyon 2024; 10:e31780. [PMID: 38867956 PMCID: PMC11167309 DOI: 10.1016/j.heliyon.2024.e31780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 05/01/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
Anthocyanins, considered as prebiotic ingredients for functional foods, were extracted from black soybean (BS), black grape (BG), black carrot (BCPm), and black rice (BR) using conventional solvent extraction (CSE) and microwave-assisted extraction (MAE). The study employed a split-plot design with CSE and MAE as main plot factors and anthocyanin extracts (AEs) as subplot factors. Anthocyanins were evaluated for stability (polymeric color, degradation index) and functionality (antioxidant capacity). Prebiotic potential on Lactobacillus rhamnosus, Lactobacillus acidophilus, Weissella confusa was assessed in fermented soymilk. MAE showed higher extraction yield than CSE in BG (3-fold), BS (2-fold), BCPm (1.2-fold), and BR (1.6-fold). Black grape (1255.76 mg/L) and black soybean (976.5 mg/L) had highest anthocyanin with better stability, functionality, and prebiotic potential. The SCFA concentration (propionic acid and butyric acid) increased significantly in BG fortified-fermented soymilk. Overall, anthocyanin-enriched soymilk exhibited higher prebiotic potential, with MAE as the superior extraction method for anthocyanin functionality and stability.
Collapse
Affiliation(s)
- Muzaffar Hasan
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi-110012, India
- Centre of Excellence for Soybean Processing and Utilisation, ICAR-Central Institute of Agricultural Engineering, Bhopal-462038, India
| | - Kailashpati Tripathi
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi-110012, India
| | - Mohd Harun
- Division of Design of Experiments, ICAR-Indian Agricultural Statistics Research Institute, New Delhi-110012, India
| | - Veda Krishnan
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi-110012, India
| | - Rajeev Kaushik
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi-110012, India
| | - Gautam Chawla
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi-110012, India
| | - Najam A. Shakil
- Division of Design of Experiments, ICAR-Indian Agricultural Statistics Research Institute, New Delhi-110012, India
| | - M.K. Verma
- Division of Fruits and Horticulture Technology, ICAR-Indian Agricultural Research Institute, New Delhi-110012, India
| | - Anil Dahuja
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi-110012, India
| | - Archana Sachdev
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi-110012, India
| | - Jose M. Lorezo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Avd. Galicia n° 4, San Cibrao das Viñas, 32900, Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ouren-se, Spain
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR—Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| |
Collapse
|
3
|
Martínez-Zamora L, Hashemi S, Cano-Lamadrid M, Bueso MC, Aguayo E, Kessler M, Artés-Hernández F. Ultrasound-Assisted Extraction of Bioactive Compounds from Broccoli By-Products. Foods 2024; 13:1441. [PMID: 38790742 PMCID: PMC11120188 DOI: 10.3390/foods13101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
The objective of this work was to gain insight into the operating conditions that affect the efficiency of ultrasound-assisted extraction (UAE) parameters to achieve the best recovery of bioactive compounds from broccoli leaf and floret byproducts. Therefore, total phenolic content (TPC) and the main sulfur bioactive compounds (sulforaphane (SFN) and glucosinolates (GLSs)) were assayed. Distilled water was used as solvent. For each byproduct type, solid/liquid ratio (1:25 and 2:25 g/mL), temperature (25, 40, and 55 °C), and extraction time (2.5, 5, 7.5, 10, 15, and 20 min) were the studied variables to optimize the UAE process by using a kinetic and a cubic regression model. TPC was 12.5-fold higher in broccoli leaves than in florets, while SFN was from 2.5- to 4.5-fold higher in florets regarding the leaf's extracts obtained from the same plants, their precursors (GLS) being in similar amounts for both plant tissues. The most efficient extraction conditions were at 25 °C, ratio 2:25, and during 15 or 20 min according to the target phytochemical to extract. In conclusion, the type of plant tissue and used ratio significantly influenced the extraction of bioactive compounds, the most efficient UAE parameters being those with lower energy consumption.
Collapse
Affiliation(s)
- Lorena Martínez-Zamora
- Postharvest and Refrigeration Group, Department of Agricultural Engineering & Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain; (L.M.-Z.); (S.H.); (M.C.-L.); (E.A.)
- Department of Food Technology, Nutrition, and Food Science, Faculty of Veterinary Sciences, University of Murcia, 30071 Espinardo, Murcia, Spain
| | - Seyedehzeinab Hashemi
- Postharvest and Refrigeration Group, Department of Agricultural Engineering & Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain; (L.M.-Z.); (S.H.); (M.C.-L.); (E.A.)
| | - Marina Cano-Lamadrid
- Postharvest and Refrigeration Group, Department of Agricultural Engineering & Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain; (L.M.-Z.); (S.H.); (M.C.-L.); (E.A.)
| | - María Carmen Bueso
- Department of Applied Mathematics and Statistics, Universidad Politécnica de Cartagena, 30202 Cartagena, Murcia, Spain; (M.C.B.); (M.K.)
| | - Encarna Aguayo
- Postharvest and Refrigeration Group, Department of Agricultural Engineering & Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain; (L.M.-Z.); (S.H.); (M.C.-L.); (E.A.)
| | - Mathieu Kessler
- Department of Applied Mathematics and Statistics, Universidad Politécnica de Cartagena, 30202 Cartagena, Murcia, Spain; (M.C.B.); (M.K.)
| | - Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Department of Agricultural Engineering & Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain; (L.M.-Z.); (S.H.); (M.C.-L.); (E.A.)
| |
Collapse
|
4
|
Türkol M, Yıkmış S, Ganimet Ş, Gezer GE, Abdi G, Hussain S, Aadil RM. Optimization of sensory properties of ultrasound-treated strawberry vinegar. ULTRASONICS SONOCHEMISTRY 2024; 105:106874. [PMID: 38615436 PMCID: PMC11026840 DOI: 10.1016/j.ultsonch.2024.106874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Vinegar is renowned for its benefits to human health due to the presence of antioxidants and bioactive components. Firstly, this study optimized the production conditions of ultrasound-treated strawberry vinegar (UT-SV), known for its high consumer appeal. The sensory properties of UT-SV were optimized by response surface methodology (RSM) to create the most appreciated strawberry vinegar. Secondly, various quality parameters of conventional strawberry vinegar (C-SV), UT-SV, and thermally pasteurized strawberry vinegar (P-SV) samples were compared. RSM was employed to craft the best strawberry vinegar based on consumers ratings of UT-SV. Sensory characteristics, bioactive values, phenolic contents, and organic acid contents of C-SV, UT-SV, and P-SV samples were assessed. Through optimization, the ultrasound parameters of the independent variables were determined as 5.3 min and 65.5 % amplitude. The RSM modeling levels exhibited high agreement with pungent sensation at 98.06 %, aromatic intensity at 98.98 %, gustatory impression at 99.17 %, and general appreciation at 99.26 %, respectively. Bioactive components in UT-SV samples increased after ultrasound treatment compared to C-SV and P-SV samples. Additionally, the amount of malic acid, lactic acid, and oxalic acid increased after ultrasound treatment compared to C-SV samples. Ultimately, UT-SV with high organoleptic properties was achieved. The ultrasound treatment positively impacted the bioactive values, phenolic and organic acid content, leading to the development of a new and healthy product.
Collapse
Affiliation(s)
- Melikenur Türkol
- Nutrition and Dietetics, Faculty of Health Sciences, Halic University, 34060 Istanbul, Türkiye
| | - Seydi Yıkmış
- Department of Food Technology, Tekirdag Namık Kemal University, 59830 Tekirdag, Türkiye.
| | - Şennur Ganimet
- Nutrition and Dietetics, Faculty of Health Sciences, Tekirdag Namık Kemal University, 59030 Tekirdag, Türkiye
| | - Göktuğ Egemen Gezer
- Nutrition and Dietetics, Faculty of Health Sciences, Tekirdag Namık Kemal University, 59030 Tekirdag, Türkiye
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran.
| | - Shahzad Hussain
- Department of Food Science and Nutrition, College of Food and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan.
| |
Collapse
|
5
|
Yue Q, Tian J, Dong L, Zhou L. Comparison of an Ultrasound-Assisted Aqueous Two-Phase System Extraction of Anthocyanins from Pomegranate Pomaces by Utilizing the Artificial Neural Network-Genetic Algorithm and Response Surface Methodology Models. Foods 2024; 13:199. [PMID: 38254500 PMCID: PMC11154380 DOI: 10.3390/foods13020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
As a by-product of pomegranate processing, the recycling and reuse of pomegranate pomaces (PPs) were crucial to environmentally sustainable development. Ultrasound-assisted aqueous two-phase extraction (UA-ATPE) was applied to extract the anthocyanins (ACNs) from PPs in this study, and the central composite design response surface methodology (CCD-RSM) and artificial neural network-genetic algorithm (ANN-GA) models were utilized to optimize the extraction parameters and achieve the best yield. The results indicated that the ANN-GA model built for the ACN yield had a greater degree of fit and accuracy than the RSM model. The ideal model process parameters were optimized to have a liquid-solid ratio of 49.0 mL/g, an ethanol concentration of 28 g/100 g, an ultrasonic time of 27 min, and an ultrasonic power of 330 W, with a maximum value of 86.98% for the anticipated ACN yield. The experimental maximum value was 87.82%, which was within the 95% confidence interval. A total of six ACNs from PPs were identified by utilizing UHPLC-ESI-HRMS/MS, with the maximum content of cyanidin-3-O-glucoside being 57.01 ± 1.36 mg/g DW. Therefore, this study has positive significance for exploring the potential value of more by-products and obtaining good ecological and economic benefits in the future.
Collapse
Affiliation(s)
- Qisheng Yue
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Q.Y.); (J.T.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Jun Tian
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Q.Y.); (J.T.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Ling Dong
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
| | - Linyan Zhou
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Q.Y.); (J.T.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| |
Collapse
|
6
|
Yi F, Hou F, Zhan S, Song L, Zhang R, Han X, Sun X, Liu Z. Preparation, characterization and application of pH-responsive smart film based on chitosan/zein and red radish anthocyanin. Int J Biol Macromol 2023; 253:127037. [PMID: 37742899 DOI: 10.1016/j.ijbiomac.2023.127037] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
This research was aimed at developing a novel pH-responsive smart film made of chitosan, zein and red radish anthocyanin (RRA). The morphology, interaction, crystallization, thermal stability, physiochemical properties and pH sensitivity of films were analyzed. The smart film was applied to monitor the freshness of mushroom (Agaricus bisporus). The results of morphology (SEM) and spectrum (FT-IR and XRD) indicated that the incorporation of RRA could enhance the interaction between polymer matrix. The addition of RRA had no significant effect on the thermal stability of films. The chitosan/zein/red radish anthocyanin (C/Z/R) films exhibited higher tensile strength, Young's modulus, hydrophobicity, antioxidant activity and lower elongation at break. The C/Z/R films had stronger water vapor and gas barrier capacity. The C/Z/R films showed a pH-sensitive color variation from red (pH 2) to green (pH 12) and good reversibility under alkaline and acidic environment. The prepared smart film could be successfully used for the quality monitoring of mushroom.
Collapse
Affiliation(s)
- Fangxuan Yi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, PR China
| | - Fanyun Hou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, PR China
| | - Shouqing Zhan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, PR China
| | - Lisha Song
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, PR China
| | - Rongfei Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, PR China
| | - Xiangbo Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, PR China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, PR China
| | - Zhanli Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, PR China.
| |
Collapse
|
7
|
Li W, Zhang W, Fan X, Xu H, Yuan H, Wang Y, Yang R, Tian H, Wu Y, Yang H. Fructo-oligosaccharide enhanced bioavailability of polyglycosylated anthocyanins from red radish via regulating gut microbiota in mice. Food Chem X 2023; 19:100765. [PMID: 37780282 PMCID: PMC10534114 DOI: 10.1016/j.fochx.2023.100765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 10/03/2023] Open
Abstract
The anthocyanins from red radish (ARR) rich in polyglycosylated pelargonidin glucosides were used as pigment. However, bioavailability of anthocyanins was considered at low level. This work examined the intensive effects of fructo-oligosaccharide (FOS) on ARR bioavailability. Pelargonidin, cyanidin and pelargonidin-3-glucoside showed higher level in serum of mice fed with FOS together with ARR for 8 weeks than that fed with only ARR. Co-ingestion of FOS and ARR more effectively elevated the hepatic antioxidant activity by increase in total antioxidant capacity and activities of superoxide dismutase and glutathione peroxidase when compared with intake of ARR. FOS also markedly increased pelargonidin level in cecum of mice. 16S RNA sequencing found that Bacteroides genus play an important role in FOS elevating bioavailability of ARR. Fecal bacteria transplantation verified the positive effects of FOS on ARR bioavailability. These results suggested that combined ingestion of FOS and ARR is effective strategy for bioactivity of ARR.
Collapse
Affiliation(s)
- Wenfeng Li
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China
| | - Wanjie Zhang
- Faculty of Science, The University of Hong Kong, Hong Kong 999077, China
| | - Xin Fan
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, China
| | - Hai Xu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, China
| | - Hong Yuan
- Medical School, Xi’an Peihua University, Xi’an, Shaanxi 710125, China
| | - Yimeng Wang
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China
| | - Rui Yang
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China
| | - Hua Tian
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China
| | - Yinmei Wu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, China
| | - Hongyan Yang
- School of Aerospace Medicine, Air Force Medical University, Xi’an 710032, China
| |
Collapse
|
8
|
Yıkmış S, Tokatlı Demirok N, Levent O, Apaydın D. Impact of thermal pasteurization and thermosonication treatments on black grape juice ( Vitis vinifera L): ICP-OES, GC-MS/MS and HPLC analyses. Heliyon 2023; 9:e19314. [PMID: 37662818 PMCID: PMC10474434 DOI: 10.1016/j.heliyon.2023.e19314] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023] Open
Abstract
Grape juice is a widely consumed fruit due to its bioactive compounds, minerals, and aroma components. Our objective was to investigate ultrasound treatment of black grape juice affects its bioactive components due to using response surface methodology (RSM) and artificial neural network (ANN) optimization. At the same time, mineral components, sugar components, organic acids, and volatile aroma profiles were compared in black grape juice treated with thermal and ultrasound pasteurization. ANN showed superior predictive values (>99%) to RSM. Optimal combinations were obtained at 40 °C, 12 min, and 65% amplitude for thermosonication. Under these conditions, phenolic, flavonoid, antioxidant activity, and anthocyanin values were 822.80 mg GAE/L, 97.50 mg CE/L, 24.51 mmol Trolox/L, and 368, 81 mg of mv-3-glu/L, respectively. Thermosonicated grape juice (TT-BGJ) was tested against black grape juice (P-BGJ) produced with conventional thermal methods. This study investigated the effects of thermal pasteurization and thermosonication on black grape juice bioactive compounds and minerals, aroma profile, and sensory evaluation. Thermosonication affected the aroma profile less, 329.98 μg/kg (P-BGJ) and 495.31 μg/kg (TT-BGJ). TT-BGJ was detected to contain seven different mineral elements (Mn, K, Fe, Mg, Cu, Zn, and Na). Thermosonication caused an increase in Fe, Zn, Mn, and K minerals. Panelists generally liked the TT-BGJ sample. These results suggest that the thermosonication process may potentially replace the traditional black grape juice processing thermal process.
Collapse
Affiliation(s)
- Seydi Yıkmış
- Department of Food Technology, Tekirdag Namik Kemal University, Tekirdag, 59830, Turkey
| | - Nazan Tokatlı Demirok
- Department of Nutrition and Dietetics, Tekirdağ Namik Kemal University, Tekirdağ, 59030, Turkey
| | - Okan Levent
- Department of Food Engineering, Faculty of Engineering, Inonu University, Malatya, 44280, Turkey
| | - Demet Apaydın
- Department of Restaurant and Catering Services, Hitit University, Corum, 19000, Turkey
| |
Collapse
|
9
|
Li W, Zhang Y, Deng H, Yuan H, Fan X, Yang H, Tan S. In vitro and in vivo bioaccessibility, antioxidant activity, and color of red radish anthocyanins as influenced by different drying methods. Food Chem X 2023; 18:100633. [PMID: 36968311 PMCID: PMC10034266 DOI: 10.1016/j.fochx.2023.100633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/18/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
This study aims to examine the effects of various drying methods, namely vacuum freeze drying (VFD), vacuum drying (VD), hot air drying (HAD), sun drying (SD), and air-impingement jet drying (AIJD), on in vitro and in vivo bioaccessibility of red radish anthocyanins. By color parameters, VFD- and AIJD-dried red radish showed redder color to HAD-, SD-, and VD-dried red radish. SEM images of dried red radish showed multiple holes and loose interior structure. Forty-six anthocyanins were identified in red radish. Original, in vitro and in vivo digestive samples from VFD-dried red radish contained more anthocyanins and were more bioaccessibility than fresh and other dried red radishes. In vitro and in vivo research revealed that dried red radish showed weaker and stronger FRAP and ABTS·+ scavenging activities than fresh red radish. Colon content of mice had significantly higher FRAP and ABTS·+ scavenging activities than the stomach, small intestine, and cecum contents.
Collapse
Affiliation(s)
- Wenfeng Li
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China
| | - Yaxi Zhang
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China
| | - Hanlu Deng
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China
| | - Hong Yuan
- Medical School, Xi'an Peihua University, Xi'an, Shaanxi 710125, China
| | - Xin Fan
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, China
| | - Hongyan Yang
- School of Aerospace Medicine, Air Force Medical University, Xi’an 710032, China
| | - Si Tan
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China
| |
Collapse
|
10
|
Lan T, Qian S, Song T, Zhang H, Liu J. The chromogenic mechanism of natural pigments and the methods and techniques to improve their stability: A systematic review. Food Chem 2023; 407:134875. [PMID: 36502728 DOI: 10.1016/j.foodchem.2022.134875] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022]
Abstract
Pigments have become a very important part of food research, not only adding sensory properties to food, but also providing functional properties to the food system. In this paper, we review the source, structure, modification, encapsulation and current status of the three main types of natural pigments that have been studied in recent years: polyphenolic flavonoids, tetraterpenoids and betaines. By examining the modification of pigment, the improvement of their stability and the impact of new food processing methods on the pigments, a deeper understanding of the properties and applications of the three pigments is gained, the paper reviews the research status of pigments in order to promote their further research and provide new innovations and ideas for future research in this field.
Collapse
Affiliation(s)
- Tiantong Lan
- National Engineering Laboratory for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Sheng Qian
- National Engineering Laboratory for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Tingyu Song
- National Engineering Laboratory for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Hao Zhang
- National Engineering Laboratory for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| | - Jingsheng Liu
- National Engineering Laboratory for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
11
|
Artés-Hernández F, Martínez-Zamora L, Cano-Lamadrid M, Hashemi S, Castillejo N. Genus Brassica By-Products Revalorization with Green Technologies to Fortify Innovative Foods: A Scoping Review. Foods 2023; 12:561. [PMID: 36766089 PMCID: PMC9914545 DOI: 10.3390/foods12030561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 02/01/2023] Open
Abstract
Food losses and waste reduction are a worldwide challenge involving governments, researchers, and food industries. Therefore, by-product revalorization and the use of key extracted biocompounds to fortify innovative foods seems an interesting challenge to afford. The aim of this review is to evaluate and elucidate the scientific evidence on the use of green technologies to extract bioactive compounds from Brassica by-products with potential application in developing new foods. Scopus was used to search for indexed studies in JCR-ISI journals, while books, reviews, and non-indexed JCR journals were excluded. Broccoli, kale, cauliflower, cabbage, mustard, and radish, among others, have been deeply reviewed. Ultrasound and microwave-assisted extraction have been mostly used, but there are relevant studies using enzymes, supercritical fluids, ultrafiltration, or pressurized liquids that report a great extraction effectiveness and efficiency. However, predictive models must be developed to optimize the extraction procedures. Extracted biocompounds can be used, free or encapsulated, to develop, reformulate, and/or fortify new foods as a good tool to enhance healthiness while preserving their quality (nutritional, functional, and sensory) and safety. In the age of recycling and energy saving, more studies must evaluate the efficiency of the processes, the cost, and the environmental impact leading to the production of new foods and the sustainable extraction of phytochemicals.
Collapse
Affiliation(s)
- Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain
| | - Lorena Martínez-Zamora
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain
- Department of Food Technology, Nutrition, and Food Science, Faculty of Veterinary Sciences, University of Murcia, 30071 Espinardo, Murcia, Spain
| | - Marina Cano-Lamadrid
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain
| | - Seyedehzeinab Hashemi
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain
| | - Noelia Castillejo
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain
| |
Collapse
|