1
|
Mosley OL, Villa JA, Kamalakkannan A, James E, Hoffman JM, Lyu Y. Stochasticity in dietary restriction-mediated lifespan outcomes in Drosophila. GeroScience 2025:10.1007/s11357-025-01537-5. [PMID: 39888582 DOI: 10.1007/s11357-025-01537-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/17/2025] [Indexed: 02/01/2025] Open
Abstract
Dietary restriction (DR) is widely considered to be one of the most potent approaches to extend healthy lifespan across various species, yet it has become increasingly apparent that DR-mediated longevity is influenced by biological and non-biological factors. We propose that current priorities in the field should include understanding the relative contributions of these factors to elucidate the mechanisms underlying the beneficial effects of DR. Our work conducted in two laboratories represents an attempt to unify DR protocols in Drosophila and to investigate the stochastic effects of DR. Across 64 pairs of survival data (DR/ad libitum, or AL), we find that DR does not universally extend lifespan. Specifically, we observed that DR conferred a significant lifespan extension in only 26.7% (17/64) of pairs. Our pooled data show that the overall lifespan difference between DR and AL groups is statistically significant, but the median lifespan increase under DR (7.1%) is small. The effects of DR were overshadowed by stochastic factors and genotype. Future research efforts directed toward gaining a comprehensive understanding of DR-dependent mechanisms should focus on unraveling the interactions between genetic and environmental factors. This is essential for developing personalized healthspan-extending interventions and optimizing dietary recommendations for individual genetic profiles.
Collapse
Affiliation(s)
- Olivia L Mosley
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Joel A Villa
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Advaitha Kamalakkannan
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Eliyashaib James
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Jessica M Hoffman
- Department of Biological Sciences, Augusta University, Augusta, GA, USA.
| | - Yang Lyu
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
2
|
Okada D. The opposite aging effect to single cell transcriptome profile among cell subsets. Biogerontology 2024; 25:1253-1262. [PMID: 39261411 DOI: 10.1007/s10522-024-10138-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Comparing transcriptome profiling between younger and older samples reveals genes related to aging and provides insight into the biological functions affected by aging. Recent research has identified sex, tissue, and cell type-specific age-related changes in gene expression. This study reports the overall picture of the opposite aging effect, in which aging increases gene expression in one cell subset and decreases it in another cell subset. Using the Tabula Muris Senis dataset, a large public single-cell RNA sequencing dataset from mice, we compared the effects of aging in different cell subsets. As a result, the opposite aging effect was observed widely in the genes, particularly enriched in genes related to ribosomal function and translation. The opposite aging effect was observed in the known aging-related genes. Furthermore, the opposite aging effect was observed in the transcriptome diversity quantified by the number of expressed genes and the Shannon entropy. This study highlights the importance of considering the cell subset when intervening with aging-related genes.
Collapse
Affiliation(s)
- Daigo Okada
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, 53 Syogoin-Kawaramachi, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
3
|
Mosley OL, Villa JA, Kamalakkannan A, James E, Hoffman JM, Lyu Y. Stochasticity in Dietary Restriction-Mediated Lifespan Outcomes in Drosophila. RESEARCH SQUARE 2024:rs.3.rs-4876799. [PMID: 39372939 PMCID: PMC11451724 DOI: 10.21203/rs.3.rs-4876799/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Dietary restriction (DR) is widely considered to be one of the most potent approaches to extend healthy lifespan across various species, yet it has become increasingly apparent that DR-mediated longevity is influenced by biological and non-biological factors. We propose that current priorities in the field should include understanding the relative contributions of these factors to elucidate the mechanisms underlying the beneficial effects of DR. Our work conducted in two laboratories, represents an attempt to unify DR protocols in Drosophila and to investigate the stochastic effects of DR. Across 64 pairs of survival data (DR/ad libitum, or AL), we find that DR does not universally extend lifespan. Specifically, we observed that DR conferred a significant lifespan extension in only 26.7% (17/64) of pairs. Our pooled data show that the overall lifespan difference between DR and AL groups is statistically significant, but the median lifespan increase under DR (7.1%) is small. The effects of DR were overshadowed by stochastic factors and genotype. Future research efforts directed toward gaining a comprehensive understanding of DR-dependent mechanisms should focus on unraveling the interactions between genetic and environmental factors. This is essential for developing personalized healthspan-extending interventions and optimizing dietary recommendations for individual genetic profiles.
Collapse
Affiliation(s)
- Olivia L. Mosley
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Joel A. Villa
- Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Advaitha Kamalakkannan
- Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Eliyashaib James
- Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | | | - Yang Lyu
- Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
4
|
Mosley OL, Villa JA, Kamalakkannan A, James E, Hoffman JM, Lyu Y. Stochasticity in Dietary Restriction-Mediated Lifespan Outcomes in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611756. [PMID: 39314308 PMCID: PMC11418940 DOI: 10.1101/2024.09.06.611756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Dietary restriction (DR) is widely considered to be one of the most potent approaches to extend healthy lifespan across various species, yet it has become increasingly apparent that DR-mediated longevity is influenced by biological and non-biological factors. We propose that current priorities in the field should include understanding the relative contributions of these factors to elucidate the mechanisms underlying the beneficial effects of DR. Our work conducted in two laboratories, represents an attempt to unify DR protocols in Drosophila and to investigate the stochastic effects of DR. Across 64 pairs of survival data (DR/ad libitum, or AL), we find that DR does not universally extend lifespan. Specifically, we observed that DR conferred a significant lifespan extension in only 26.7% (17/64) of pairs. Our pooled data show that the overall lifespan difference between DR and AL groups is statistically significant, but the median lifespan increase under DR (7.1%) is small. The effects of DR were overshadowed by stochastic factors and genotype. Future research efforts directed toward gaining a comprehensive understanding of DR-dependent mechanisms should focus on unraveling the interactions between genetic and environmental factors. This is essential for developing personalized healthspan-extending interventions and optimizing dietary recommendations for individual genetic profiles.
Collapse
Affiliation(s)
- Olivia L Mosley
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Joel A Villa
- Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Advaitha Kamalakkannan
- Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Eliyashaib James
- Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Jessica M Hoffman
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Yang Lyu
- Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
5
|
Stöger R, Choi M, Begum K, Leeman G, Emes RD, Melamed P, Bentley GR. Childhood environment influences epigenetic age and methylation concordance of a CpG clock locus in British-Bangladeshi migrants. Epigenetics 2023; 18:2153511. [PMID: 36495138 PMCID: PMC9980690 DOI: 10.1080/15592294.2022.2153511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Migration from one location to another often comes with a change in environmental conditions. Here, we analysed features of DNA methylation in young, adult British-Bangladeshi women who experienced different environments during their childhoods: a) migrants, who grew up in Bangladesh with exposure to comparatively higher pathogen loads and poorer health care, and b) second-generation British-Bangladeshis, born to Bangladeshi parents, who grew up in the UK. We used buccal DNA to estimate DNA methylation-based age (DNAm age) from 14 migrants and 11 second-generation migrants, aged 18-35 years. 'AgeAccel,' a measure of DNAm age, independent of chronological age, showed that the group of women who spent their childhood in Bangladesh had higher AgeAccel (P = 0.028), compared to their UK peers. Since epigenetic clocks have been proposed to be associated with maintenance processes of epigenetic systems, we evaluated the preference for concordant DNA methylation at the luteinizing hormone/choriogonadotropin receptor (LHCGR/LHR) locus, which harbours one of the CpGs contributing to Horvath's epigenetic clock. Measurements on both strands of individual, double-stranded DNA molecules indicate higher stability of DNA methylation states at this LHCGR/LHR locus in samples of women who grew up in Bangladesh. Together, our two independent analytical approaches imply that childhood environments may induce subtle changes that are detectable long after exposure occurred, which might reflect altered activity of the epigenetic maintenance system or a difference in the proportion of cell types in buccal tissue. This exploratory work supports our earlier findings that adverse childhood environments lead to phenotypic life history trade-offs.
Collapse
Affiliation(s)
- Reinhard Stöger
- School of Biosciences, University of Nottingham, Nottingham, UK
| | - Minseung Choi
- School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Gregory Leeman
- School of Biosciences, University of Nottingham, Nottingham, UK
| | - Richard D Emes
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK.,Advanced Data Analysis Centre, University of Nottingham, Nottingham, UK
| | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gillian R Bentley
- Department of Anthropology, Durham University, Durham, UK.,Wolfson Research Institute for Health and Wellbeing, Durham University, Durham, UK
| |
Collapse
|
6
|
Metabolic Features of Brain Function with Relevance to Clinical Features of Alzheimer and Parkinson Diseases. Molecules 2022; 27:molecules27030951. [PMID: 35164216 PMCID: PMC8839962 DOI: 10.3390/molecules27030951] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Brain metabolism is comprised in Alzheimer’s disease (AD) and Parkinson’s disease (PD). Since the brain primarily relies on metabolism of glucose, ketone bodies, and amino acids, aspects of these metabolic processes in these disorders—and particularly how these altered metabolic processes are related to oxidative and/or nitrosative stress and the resulting damaged targets—are reviewed in this paper. Greater understanding of the decreased functions in brain metabolism in AD and PD is posited to lead to potentially important therapeutic strategies to address both of these disorders, which cause relatively long-lasting decreased quality of life in patients.
Collapse
|
7
|
Shadel GS, Adams PD, Berggren WT, Diedrich JK, Diffenderfer KE, Gage FH, Hah N, Hansen M, Hetzer MW, Molina AJA, Manor U, Marek K, O'Keefe DD, Pinto AFM, Sacco A, Sharpee TO, Shokriev MN, Zambetti S. The San Diego Nathan Shock Center: tackling the heterogeneity of aging. GeroScience 2021; 43:2139-2148. [PMID: 34370163 PMCID: PMC8599742 DOI: 10.1007/s11357-021-00426-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/26/2022] Open
Abstract
Understanding basic mechanisms of aging holds great promise for developing interventions that prevent or delay many age-related declines and diseases simultaneously to increase human healthspan. However, a major confounding factor in aging research is the heterogeneity of the aging process itself. At the organismal level, it is clear that chronological age does not always predict biological age or susceptibility to frailty or pathology. While genetics and environment are major factors driving variable rates of aging, additional complexity arises because different organs, tissues, and cell types are intrinsically heterogeneous and exhibit different aging trajectories normally or in response to the stresses of the aging process (e.g., damage accumulation). Tackling the heterogeneity of aging requires new and specialized tools (e.g., single-cell analyses, mass spectrometry-based approaches, and advanced imaging) to identify novel signatures of aging across scales. Cutting-edge computational approaches are then needed to integrate these disparate datasets and elucidate network interactions between known aging hallmarks. There is also a need for improved, human cell-based models of aging to ensure that basic research findings are relevant to human aging and healthspan interventions. The San Diego Nathan Shock Center (SD-NSC) provides access to cutting-edge scientific resources to facilitate the study of the heterogeneity of aging in general and to promote the use of novel human cell models of aging. The center also has a robust Research Development Core that funds pilot projects on the heterogeneity of aging and organizes innovative training activities, including workshops and a personalized mentoring program, to help investigators new to the aging field succeed. Finally, the SD-NSC participates in outreach activities to educate the general community about the importance of aging research and promote the need for basic biology of aging research in particular.
Collapse
Affiliation(s)
- Gerald S Shadel
- The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - W Travis Berggren
- The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jolene K Diedrich
- The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Kenneth E Diffenderfer
- The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Fred H Gage
- The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Nasun Hah
- The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Malene Hansen
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Martin W Hetzer
- The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Anthony J A Molina
- Divison of Geriatrics, Gerontology and Palliative Care, Department of Medicine, University of California, San Diego, 9500 Gilman Dr, San Diego, CA, 92093, USA
| | - Uri Manor
- The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Kurt Marek
- The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - David D O'Keefe
- The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | | | - Alessandra Sacco
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Tatyana O Sharpee
- The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Maxim N Shokriev
- The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Stefania Zambetti
- The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
8
|
Vijg J. From DNA damage to mutations: All roads lead to aging. Ageing Res Rev 2021; 68:101316. [PMID: 33711511 PMCID: PMC10018438 DOI: 10.1016/j.arr.2021.101316] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/20/2022]
Abstract
Damage to the repository of genetic information in cells has plagued life since its very beginning 3-4 billion years ago. Initially, in the absence of an ozone layer, especially damage from solar UV radiation must have been frequent, with other sources, most notably endogenous sources related to cell metabolism, gaining in importance over time. To cope with this high frequency of damage to the increasingly long DNA molecules that came to encode the growing complexity of cellular functions in cells, DNA repair evolved as one of the earliest genetic traits. Then as now, errors during the repair of DNA damage generated mutations, which provide the substrate for evolution by natural selection. With the emergence of multicellular organisms also the soma became a target of DNA damage and mutations. In somatic cells selection against the adverse effects of DNA damage is greatly diminished, especially in postmitotic cells after the age of first reproduction. Based on an abundance of evidence, DNA damage is now considered as the single most important driver of the degenerative processes that collectively cause aging. Here I will first briefly review the evidence for DNA damage as a cause of aging since the beginning of life. Then, after discussing the possible direct adverse effects of DNA damage and its cellular responses, I will provide an overview of the considerable progress that has recently been made in analyzing a major consequence of DNA damage in humans and other complex organisms: somatic mutations and the resulting genome mosaicism. Recent advances in studying somatic mutagenesis and genome mosaicism in different human and animal tissues will be discussed with a focus on the possible mechanisms through which loss of DNA sequence integrity could cause age-related functional decline and disease.
Collapse
Affiliation(s)
- Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA; Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Zhang J, Burnaevskiy N, Annis J, Han W, Hou D, Ladd P, Lee L, Mendenhall AR, Oshima J, Martin GM. Cell-to-Cell Variation in Gene Expression for Cultured Human Cells Is Controlled in Trans by Diverse Genes: Implications for the Pathobiology of Aging. J Gerontol A Biol Sci Med Sci 2021; 75:2295-2298. [PMID: 31957802 DOI: 10.1093/gerona/glaa027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Indexed: 11/13/2022] Open
Abstract
Cell-to-cell variation in gene expression increases among homologous cells within multiple tissues during aging. We call this phenomenon variegated gene expression (VGE). Long, healthy life requires robust and coordinated gene expression. We posit that nature may have evolved VGE as a bet-hedging mechanism to protect reproductively active populations. The price we may pay is accelerated aging. That hypothesis will require the demonstration that genetic loci are capable of modulating degrees of VGE. While loci controlling VGE in yeast and genes controlling interindividual variation in gene expression in Caenorhabditis elegans have been identified, there has been no compelling evidence for the role of specific genetic loci in modulations of VGE of specific targets in humans. With the assistance of a core facility, we used a customized library of siRNA constructs to screen 1,195 human genes to identify loci contributing to the control of VGE of a gene with relevance to the biology of aging. We identified approximately 50 loci controlling VGE of the prolongevity gene, SIRT1. Because of its partial homology to FOXO3A, a variant of which is enriched in centenarians, our laboratory independently confirmed that the knockdown of FOXF2 greatly diminished VGE of SIRT1 but had little impact upon the VGE of WRN. While the role of these VGE-altering genes on aging in vivo remains to be determined, we hypothesize that some of these genes can be targeted to increase functionality during aging.
Collapse
Affiliation(s)
- Jiaming Zhang
- Department of Pathology, University of Washington, Seattle
| | | | - James Annis
- Quellos High-throughput Screening Core, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle
| | - Wenyan Han
- Department of Pathology, University of Washington, Seattle
| | - Deyin Hou
- Department of Pathology, University of Washington, Seattle
| | - Paula Ladd
- Department of Pathology, University of Washington, Seattle
| | - Lin Lee
- Department of Pathology, University of Washington, Seattle
| | | | - Junko Oshima
- Department of Pathology, University of Washington, Seattle
| | | |
Collapse
|
10
|
Mendenhall AR, Martin GM, Kaeberlein M, Anderson RM. Cell-to-cell variation in gene expression and the aging process. GeroScience 2021; 43:181-196. [PMID: 33595768 PMCID: PMC8050212 DOI: 10.1007/s11357-021-00339-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
There is tremendous variation in biological traits, and much of it is not accounted for by variation in DNA sequence, including human diseases and lifespan. Emerging evidence points to differences in the execution of the genetic program as a key source of variation, be it stochastic variation or programmed variation. Here we discuss variation in gene expression as an intrinsic property and how it could contribute to variation in traits, including the rate of aging. The review is divided into sections describing the historical context and evidence to date for nongenetic variation, the different approaches that may be used to detect nongenetic variation, and recent findings showing that the amount of variation in gene expression can be both genetically programmed and epigenetically controlled. Finally, we present evidence that changes in cell-to-cell variation in gene expression emerge as part of the aging process and may be linked to disease vulnerability as a function of age. These emerging concepts are likely to be important across the spectrum of biomedical research and may well underpin what we understand as biological aging.
Collapse
Affiliation(s)
- Alexander R Mendenhall
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, USA.
- Nathan Shock Center for Excellence in the Basic Biology of Aging, School of Medicine, University of Washington, Seattle, WA, USA.
| | - George M Martin
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, USA
- Nathan Shock Center for Excellence in the Basic Biology of Aging, School of Medicine, University of Washington, Seattle, WA, USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, USA
- Nathan Shock Center for Excellence in the Basic Biology of Aging, School of Medicine, University of Washington, Seattle, WA, USA
| | - Rozalyn M Anderson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin and Geriatric Research Education and Clinical Center, William S Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
11
|
Vijg J. Loss of gene coordination as a stochastic cause of ageing. Nat Metab 2020; 2:1188-1189. [PMID: 33139958 DOI: 10.1038/s42255-020-00295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Capp JP, Thomas F. Tissue-disruption-induced cellular stochasticity and epigenetic drift: Common origins of aging and cancer? Bioessays 2020; 43:e2000140. [PMID: 33118188 DOI: 10.1002/bies.202000140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 01/10/2023]
Abstract
Age-related and cancer-related epigenomic modifications have been associated with enhanced cell-to-cell gene expression variability that characterizes increased cellular stochasticity. Since gene expression variability appears to be highly reduced by-and epigenetic and phenotypic stability acquired through-direct or long-range cellular interactions during cell differentiation, we propose a common origin for aging and cancer in the failure to control cellular stochasticity by cell-cell interactions. Tissue-disruption-induced cellular stochasticity associated with epigenetic drift would be at the origin of organ dysfunction because of an increase in phenotypic variation among cells, ultimately leading to cell death and organ failure through a loss of coordination in cellular functions, and eventually to cancerization. We propose mechanistic research perspectives to corroborate this hypothesis and explore its evolutionary consequences, highlighting a positive correlation between the median age of mass loss onset (a proxy for the onset of organ aging) and the median age at cancer diagnosis.
Collapse
Affiliation(s)
- Jean-Pascal Capp
- Toulouse Biotechnology Institute, University of Toulouse, INSA, CNRS, INRAE, Toulouse, France
| | - Frédéric Thomas
- CREEC (CREES), UMR IRD 224-CNRS 5290-University of Montpellier, Montpellier, France
| |
Collapse
|
13
|
Mitnitski A, Howlett SE, Rockwood K. Heterogeneity of Human Aging and Its Assessment. J Gerontol A Biol Sci Med Sci 2017; 72:877-884. [PMID: 27216811 DOI: 10.1093/gerona/glw089] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/27/2016] [Indexed: 01/15/2023] Open
Abstract
Understanding the heterogeneity in health of older adults is a compelling question in the biology of aging. We analyzed the performance of five measures of health heterogeneity, judging them by their ability to predict mortality. Using clinical and biomarker data on 1,013 participants of the Canadian Study of Health and Aging who were followed for up to 6 years, we calculated two indices of biological age using the Klemera and Doubal method, which controversially includes using chronological age as a "biomarker," and three frailty indices (FIs) that do not include chronological age: a standard clinical FI, an FI from standard laboratory blood tests and blood pressure, and their combination (FI-combined). Predictive validity was tested using Cox proportional hazards analysis and discriminative ability by the area under the receiver-operating characteristic curves. All five measures showed moderate performance that was improved by combining measures to evaluate larger numbers of items. The greatest addition in explanatory power came from the FI-combined that showed the best mortality prediction in an age-adjusted model. More extensive comparisons across different databases are required, but these results do not support including chronological age as a biomarker.
Collapse
Affiliation(s)
| | - Susan E Howlett
- Department of Medicine and.,Department of Pharmacology (Division of Geriatric Medicine), Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Physiology, Institute of Cardiovascular Sciences and
| | - Kenneth Rockwood
- Department of Medicine and.,Department of Geriatric Medicine and Institute of Brain, Behaviour and Neurosciences, University of Manchester, UK
| |
Collapse
|
14
|
Barzilai A, Schumacher B, Shiloh Y. Genome instability: Linking ageing and brain degeneration. Mech Ageing Dev 2017; 161:4-18. [DOI: 10.1016/j.mad.2016.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/23/2016] [Accepted: 03/26/2016] [Indexed: 02/06/2023]
|
15
|
Martin GM. Geroscience: Addressing the mismatch between its exciting research opportunities, its economic imperative and its current funding crisis. Exp Gerontol 2016; 94:46-51. [PMID: 27871822 DOI: 10.1016/j.exger.2016.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/14/2016] [Accepted: 11/16/2016] [Indexed: 12/11/2022]
Abstract
There is at present a huge disconnect between levels of funding for basic research on fundamental mechanisms of biological aging and, given demographic projections, the anticipated enormous social and economic impacts of a litany of chronic diseases for which aging is by far the major risk factor: One valuable approach, recently instigated by Felipe Sierra & colleagues at the US National Institute on Aging, is the development of a Geroscience Interest Group among virtually all of the NIH institutes. A complementary approach would be to seek major escalations of private funding. The American Federation for Aging Research, the Paul Glenn Foundation and the Ellison Medical Foundation pioneered efforts by the private sector to provide substantial supplements to public sources of funding. It is time for our community to organize efforts towards the enhancements of such crucial contributions, especially in support of the emerging generation of young investigators, many of whom are leaving our ranks to seek alternative employment. To do so, we must provide potential donors with strong economic, humanitarian and scientific rationales. An initial approach to such efforts is briefly outlined in this manuscript as a basis for wider discussions within our community.
Collapse
Affiliation(s)
- George M Martin
- Department of Pathology, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
16
|
Kulminski AM, He L, Culminskaya I, Loika Y, Kernogitski Y, Arbeev KG, Loiko E, Arbeeva L, Bagley O, Duan M, Yashkin A, Fang F, Kovtun M, Ukraintseva SV, Wu D, Yashin AI. Pleiotropic Associations of Allelic Variants in a 2q22 Region with Risks of Major Human Diseases and Mortality. PLoS Genet 2016; 12:e1006314. [PMID: 27832070 PMCID: PMC5104356 DOI: 10.1371/journal.pgen.1006314] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/22/2016] [Indexed: 11/21/2022] Open
Abstract
Gaining insights into genetic predisposition to age-related diseases and lifespan is a challenging task complicated by the elusive role of evolution in these phenotypes. To gain more insights, we combined methods of genome-wide and candidate-gene studies. Genome-wide scan in the Atherosclerosis Risk in Communities (ARIC) Study (N = 9,573) was used to pre-select promising loci. Candidate-gene methods were used to comprehensively analyze associations of novel uncommon variants in Caucasians (minor allele frequency~2.5%) located in band 2q22.3 with risks of coronary heart disease (CHD), heart failure (HF), stroke, diabetes, cancer, neurodegenerative diseases (ND), and mortality in the ARIC study, the Framingham Heart Study (N = 4,434), and the Health and Retirement Study (N = 9,676). We leveraged the analyses of pleiotropy, age-related heterogeneity, and causal inferences. Meta-analysis of the results from these comprehensive analyses shows that the minor allele increases risks of death by about 50% (p = 4.6×10−9), CHD by 35% (p = 8.9×10−6), HF by 55% (p = 9.7×10−5), stroke by 25% (p = 4.0×10−2), and ND by 100% (p = 1.3×10−3). This allele also significantly influences each of two diseases, diabetes and cancer, in antagonistic fashion in different populations. Combined significance of the pleiotropic effects was p = 6.6×10−21. Causal mediation analyses show that endophenotypes explained only small fractions of these effects. This locus harbors an evolutionary conserved gene-desert region with non-coding intergenic sequences likely involved in regulation of protein-coding flanking genes ZEB2 and ACVR2A. This region is intensively studied for mutations causing severe developmental/genetic disorders. Our analyses indicate a promising target region for interventions aimed to reduce risks of many major human diseases and mortality. Biomedical research and medical care are traditionally focused on individual health conditions in order to postpone, ameliorate, or prevent the accumulation of morbidities in late life. An attractive idea is to find factors, which could reduce burden of not just one disease but a major subset of them to efficiently extend healthy lifespan. Here we focus on the analyses of genetic predisposition to risks of major human age-related diseases and mortality. The analyses highlight a locus in band 2q22.3 associated with risks of coronary heart disease, heart failure, stroke, diabetes, cancer, neurodegenerative diseases, and death. Our analyses indicate a promising target region for interventions aimed to reduce risks of many major human diseases and mortality.
Collapse
Affiliation(s)
- Alexander M. Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC United States of America
- * E-mail:
| | - Liang He
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC United States of America
| | - Irina Culminskaya
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC United States of America
| | - Yury Loika
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC United States of America
| | - Yelena Kernogitski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC United States of America
| | - Konstantin G. Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC United States of America
| | - Elena Loiko
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC United States of America
| | - Liubov Arbeeva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC United States of America
| | - Olivia Bagley
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC United States of America
| | - Matt Duan
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC United States of America
| | - Arseniy Yashkin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC United States of America
| | - Fang Fang
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC United States of America
| | - Mikhail Kovtun
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC United States of America
| | - Svetlana V. Ukraintseva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC United States of America
| | - Deqing Wu
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC United States of America
| | - Anatoliy I. Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC United States of America
| |
Collapse
|
17
|
Abstract
A medically relevant understanding of aging requires an appreciation for how time degrades specific, healthy features of individual organisms over the course of their lives. Zach Pincus and colleagues make a key step in this direction, using C. elegans as a model system.
Collapse
Affiliation(s)
- Simon Melov
- Buck Institute for Research on Aging, Novato, CA 94945, USA.
| |
Collapse
|
18
|
Cinquin A, Chiang M, Paz A, Hallman S, Yuan O, Vysniauskaite I, Fowlkes CC, Cinquin O. Intermittent Stem Cell Cycling Balances Self-Renewal and Senescence of the C. elegans Germ Line. PLoS Genet 2016; 12:e1005985. [PMID: 27077385 PMCID: PMC4831802 DOI: 10.1371/journal.pgen.1005985] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/18/2016] [Indexed: 11/22/2022] Open
Abstract
Self-renewing organs often experience a decline in function in the course of aging. It is unclear whether chronological age or external factors control this decline, or whether it is driven by stem cell self-renewal—for example, because cycling cells exhaust their replicative capacity and become senescent. Here we assay the relationship between stem cell cycling and senescence in the Caenorhabditis elegans reproductive system, defining this senescence as the progressive decline in “reproductive capacity,” i.e. in the number of progeny that can be produced until cessation of reproduction. We show that stem cell cycling diminishes remaining reproductive capacity, at least in part through the DNA damage response. Paradoxically, gonads kept under conditions that preclude reproduction keep cycling and producing cells that undergo apoptosis or are laid as unfertilized gametes, thus squandering reproductive capacity. We show that continued activity is in fact beneficial inasmuch as gonads that are active when reproduction is initiated have more sustained early progeny production. Intriguingly, continued cycling is intermittent—gonads switch between active and dormant states—and in all likelihood stochastic. Other organs face tradeoffs whereby stem cell cycling has the beneficial effect of providing freshly-differentiated cells and the detrimental effect of increasing the likelihood of cancer or senescence; stochastic stem cell cycling may allow for a subset of cells to preserve proliferative potential in old age, which may implement a strategy to deal with uncertainty as to the total amount of proliferation to be undergone over an organism’s lifespan. Stem cell cycling is expected to be beneficial because it helps delay aging, by ensuring organ self-renewal. Yet stem cell cycling is best used sparingly: cycling likely causes mutation accumulation—increasing the likelihood of cancer—and may eventually cause stem cells to senesce and thus stop contributing to organ self renewal. It is unknown how self-renewing organs make tradeoffs between benefits and drawbacks of stem cell cycling. Here we use the C. elegans reproductive system as a model organ. We characterize benefits and drawbacks of stem cell cycling—which are keeping worms primed for reproduction, and reducing the number of future progeny worms may bear, respectively. We show that, under specific conditions of reproductive inactivity, stem cells switch back and forth between active and dormant states; the timing of these switches, whose genetic control we start delineating, appears random. This randomness may help explain why populations of aging, reproductively-inactive worms experience an increase in the variability of their reproductive capacity. Stochastic stem cell cycling may underlie tradeoffs between self-renewal and senescence in other organs.
Collapse
Affiliation(s)
- Amanda Cinquin
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| | - Michael Chiang
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| | - Adrian Paz
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| | - Sam Hallman
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Department of Computer Science, University of California, Irvine, Irvine, California, United States of America
| | - Oliver Yuan
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| | - Indre Vysniauskaite
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| | - Charless C. Fowlkes
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Department of Computer Science, University of California, Irvine, Irvine, California, United States of America
| | - Olivier Cinquin
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Stochastic fluctuations in gene expression in aging hippocampal neurons could be exacerbated by traumatic brain injury. Aging Clin Exp Res 2016; 28:363-7. [PMID: 26140916 DOI: 10.1007/s40520-015-0396-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/09/2015] [Indexed: 12/22/2022]
Abstract
Traumatic brain injury (TBI) is a risk factor for age-related dementia and development of neurodegenerative disorders such as Alzheimer's disease that are associated with cognitive decline. The exact mechanism for this risk is unknown but we hypothesized that TBI is exacerbating age-related changes in gene expression. Here, we present evidence in an animal model that experimental TBI increases age-related stochastic gene expression. We compared the variability in expression of several genes associated with cell survival or death, among three groups of laser capture microdissected hippocampal neurons from aging rat brains. TBI increased stochastic fluctuations in gene expression in both dying and surviving neurons compared to the naïve neurons. Increases in random, stochastic fluctuations in prosurvival or prodeath gene expression could potentially alter cell survival or cell death pathways in aging neurons after TBI which may lead to age-related cognitive decline.
Collapse
|
20
|
Hisama FM, Oshima J, Martin GM. How Research on Human Progeroid and Antigeroid Syndromes Can Contribute to the Longevity Dividend Initiative. Cold Spring Harb Perspect Med 2016; 6:a025882. [PMID: 26931459 DOI: 10.1101/cshperspect.a025882] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Although translational applications derived from research on basic mechanisms of aging are likely to enhance health spans and life spans for most of us (the longevity dividend), there will remain subsets of individuals with special vulnerabilities. Medical genetics is a discipline that describes such "private" patterns of aging and can reveal underlying mechanisms, many of which support genomic instability as a major mechanism of aging. We review examples of three classes of informative disorders: "segmental progeroid syndromes" (those that appear to accelerate multiple features of aging), "unimodal progeroid syndromes" (those that impact on a single disorder of aging), and "unimodal antigeroid syndromes," variants that provide enhanced protection against specific disorders of aging; we urge our colleagues to expand our meager research efforts on the latter, including ancillary somatic cell genetic approaches.
Collapse
Affiliation(s)
- Fuki M Hisama
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98195 International Registry of Werner Syndrome, University of Washington School of Medicine, Seattle, Washington 98195
| | - Junko Oshima
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98195 International Registry of Werner Syndrome, University of Washington School of Medicine, Seattle, Washington 98195 Department of Medicine, Chiba University, Chiba 260-8670, Japan
| | - George M Martin
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98195 International Registry of Werner Syndrome, University of Washington School of Medicine, Seattle, Washington 98195
| |
Collapse
|
21
|
Johnson SC, Dong X, Vijg J, Suh Y. Genetic evidence for common pathways in human age-related diseases. Aging Cell 2015; 14:809-17. [PMID: 26077337 PMCID: PMC4568968 DOI: 10.1111/acel.12362] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2015] [Indexed: 12/23/2022] Open
Abstract
Aging is the single largest risk factor for chronic disease. Studies in model organisms have identified conserved pathways that modulate aging rate and the onset and progression of multiple age-related diseases, suggesting that common pathways of aging may influence age-related diseases in humans as well. To determine whether there is genetic evidence supporting the notion of common pathways underlying age-related diseases, we analyzed the genes and pathways found to be associated with five major categories of age-related disease using a total of 410 genomewide association studies (GWAS). While only a small number of genes are shared among all five disease categories, those found in at least three of the five major age-related disease categories are highly enriched for apoliprotein metabolism genes. We found that a more substantial number of gene ontology (GO) terms are shared among the 5 age-related disease categories and shared GO terms include canonical aging pathways identified in model organisms, such as nutrient-sensing signaling, translation, proteostasis, stress responses, and genome maintenance. Taking advantage of the vast amount of genetic data from the GWAS, our findings provide the first direct evidence that conserved pathways of aging simultaneously influence multiple age-related diseases in humans as has been demonstrated in model organisms.
Collapse
Affiliation(s)
- Simon C. Johnson
- Department of Genetics Albert Einstein College of Medicine Bronx NY USA
| | - Xiao Dong
- Department of Genetics Albert Einstein College of Medicine Bronx NY USA
| | - Jan Vijg
- Department of Genetics Albert Einstein College of Medicine Bronx NY USA
- Department of Ophthalmology and Visual Sciences Albert Einstein College of Medicine Bronx NY USA
| | - Yousin Suh
- Department of Genetics Albert Einstein College of Medicine Bronx NY USA
- Department of Medicine Endocrinology Albert Einstein College of Medicine Bronx NY USA
| |
Collapse
|
22
|
Langevin SM, Pinney SM, Leung YK, Ho SM. Does epigenetic drift contribute to age-related increases in breast cancer risk? Epigenomics 2015; 6:367-9. [PMID: 25333845 DOI: 10.2217/epi.14.28] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Scott M Langevin
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | | | | |
Collapse
|
23
|
Lakatta EG. So! What's aging? Is cardiovascular aging a disease? J Mol Cell Cardiol 2015; 83:1-13. [PMID: 25870157 PMCID: PMC4532266 DOI: 10.1016/j.yjmcc.2015.04.005] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/02/2015] [Accepted: 04/03/2015] [Indexed: 12/21/2022]
Abstract
"Inside every old person is a young person wondering what happened." So, what is aging? Aging is a manifestation of progressive, time-dependent failure of molecular mechanisms that create disorder within a system of DNA and its environment (nuclear, cytosolic, tissue, organ, organism, other organisms, society, terra firma, atmosphere, universe). Continuous signaling, transmitted with different kinetics across each of these environments, confers a "mutual enslavement" that creates ordered functions among the components within the system. Accrual of this molecular disorder over time, i.e. during aging, causes progressive changes in the structure and function of the heart and arteries that are quite similar in humans, non-human primates, rabbits and rats that compromise cardiovascular reserve function, and confer a marked risk for incident cardiovascular disease. Nearly all aspects of signaling within the DNA environment system within the heart and arteries become disordered with advancing age: Signals change, as does sensing of the signals, transmission of signals and responses to signals, impaired cell renewal, changes in the proteome due to alterations in genomic transcription, mRNA translation, and proteostasis. The density of some molecules becomes reduced, and post-translational modifications, e.g. oxidation and nitration phosphorylation, lead to altered misfolding and disordered molecular interactions. The stoichiometry and kinetics of enzymatic and those reactions which underlie crucial cardiac and vascular cell functions and robust reserve mechanisms that remove damaged organelles and proteins deteriorate. The CV cells generate an inflammatory defense in an attempt to limit the molecular disorder. The resultant proinflammatory milieu is not executed by "professional" inflammatory cells (i.e. white blood cells), however, but by activation of renin-angiotensin-aldosterone endothelin signaling cascades that leads to endothelial and vascular smooth muscle and cardiac cells' phenotype shifts, resulting in production of inflammatory cytokines. Progressive molecular disorder within the heart and arteries over time leads to an excessive allostatic load on the CV system, that results in an increase and "overshoot" in the inflammatory defense signaling. This age-associated molecular disorder-induced inflammation that accrues in the heart and arteries does not, itself, cause clinical signs or symptoms of CVD. Clinical signs and symptoms of these CVDs begin to emerge, however, when the age-associated inflammation in the heart and arteries exceeds a threshold. Thus, an emerging school of thought is that accelerated age-associated alterations within the heart and arteries, per se, ought to be considered to be a type of CVD, because the molecular disorder and the inflammatory milieu it creates within the heart and arteries with advancing age are the roots of the pathophysiology of most cardiovascular diseases, e.g. athersclerosis and hypertension. Because many effects of aging on the CV system can be delayed or attenuated by changes in lifestyle, e.g. diet and exercise, or by presently available drugs, e.g. those that suppress Ang II signaling, CV aging is a promising frontier in preventive cardiology that is not only ripe for, but also in dire need of attention! There is an urgency to incorporate the concept of cardiovascular aging as a disease into clinical medicine. But, sadly, the reality of the age-associated molecular disorder within the heart and ateries has, for the most part, been kept outside of mainstream clinical medicine. This article is part of a Special Issue entitled CV Aging.
Collapse
Affiliation(s)
- Edward G Lakatta
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Biomedical Research Center, NIH, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| |
Collapse
|
24
|
Salminen A, Haapasalo A, Kauppinen A, Kaarniranta K, Soininen H, Hiltunen M. Impaired mitochondrial energy metabolism in Alzheimer's disease: Impact on pathogenesis via disturbed epigenetic regulation of chromatin landscape. Prog Neurobiol 2015; 131:1-20. [PMID: 26001589 DOI: 10.1016/j.pneurobio.2015.05.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 05/05/2015] [Accepted: 05/11/2015] [Indexed: 12/14/2022]
Abstract
The amyloid cascade hypothesis for the pathogenesis of Alzheimer's disease (AD) was proposed over twenty years ago. However, the mechanisms of neurodegeneration and synaptic loss have remained elusive delaying the effective drug discovery. Recent studies have revealed that amyloid-β peptides as well as phosphorylated and fragmented tau proteins accumulate within mitochondria. This process triggers mitochondrial fission (fragmentation) and disturbs Krebs cycle function e.g. by inhibiting the activity of 2-oxoglutarate dehydrogenase. Oxidative stress, hypoxia and calcium imbalance also disrupt the function of Krebs cycle in AD brains. Recent studies on epigenetic regulation have revealed that Krebs cycle intermediates control DNA and histone methylation as well as histone acetylation and thus they have fundamental roles in gene expression. DNA demethylases (TET1-3) and histone lysine demethylases (KDM2-7) are included in the family of 2-oxoglutarate-dependent oxygenases (2-OGDO). Interestingly, 2-oxoglutarate is the obligatory substrate of 2-OGDO enzymes, whereas succinate and fumarate are the inhibitors of these enzymes. Moreover, citrate can stimulate histone acetylation via acetyl-CoA production. Epigenetic studies have revealed that AD is associated with changes in DNA methylation and histone acetylation patterns. However, the epigenetic results of different studies are inconsistent but one possibility is that they represent both coordinated adaptive responses and uncontrolled stochastic changes, which provoke pathogenesis in affected neurons. Here, we will review the changes observed in mitochondrial dynamics and Krebs cycle function associated with AD, and then clarify the mechanisms through which mitochondrial metabolites can control the epigenetic landscape of chromatin and induce pathological changes in AD.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | - Annakaisa Haapasalo
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Anu Kauppinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Hilkka Soininen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Mikko Hiltunen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland; Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| |
Collapse
|
25
|
Salminen A, Kauppinen A, Hiltunen M, Kaarniranta K. Krebs cycle intermediates regulate DNA and histone methylation: epigenetic impact on the aging process. Ageing Res Rev 2014; 16:45-65. [PMID: 24910305 DOI: 10.1016/j.arr.2014.05.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 05/20/2014] [Accepted: 05/29/2014] [Indexed: 02/01/2023]
Abstract
Many aging theories have proposed that mitochondria and energy metabolism have a major role in the aging process. There are recent studies indicating that Krebs cycle intermediates can shape the epigenetic landscape of chromatin by regulating DNA and histone methylation. A growing evidence indicates that epigenetics plays an important role in the regulation of healthspan but also is involved in the aging process. 2-Oxoglutarate (α-ketoglutarate) is a key metabolite in the Krebs cycle but it is also an obligatory substrate for 2-oxoglutarate-dependent dioxygenases (2-OGDO). The 2-OGDO enzyme family includes the major enzymes of DNA and histone demethylation, i.e. Ten-Eleven Translocation (TETs) and Jumonji C domain containing (JmjC) demethylases. In addition, 2-OGDO members can regulate collagen synthesis and hypoxic responses in a non-epigenetical manner. Interestingly, succinate and fumarate, also Krebs cycle intermediates, are potent inhibitors of 2-OGDO enzymes, i.e. the balance of Krebs cycle reactions can affect the level of DNA and histone methylation and thus control gene expression. We will review the epigenetic mechanisms through which Krebs cycle intermediates control the DNA and histone methylation. We propose that age-related disturbances in the Krebs cycle function induce stochastic epigenetic changes in chromatin structures which in turn promote the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 1777, FIN-70211 Kuopio, Finland.
| | - Anu Kauppinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 1777, FIN-70211 Kuopio, Finland
| | - Mikko Hiltunen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 1777, FIN-70211 Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 1777, FIN-70211 Kuopio, Finland
| |
Collapse
|
26
|
Tower J, Landis G, Gao R, Luan A, Lee J, Sun Y. Variegated expression of Hsp22 transgenic reporters indicates cell-specific patterns of aging in Drosophila oenocytes. J Gerontol A Biol Sci Med Sci 2014; 69:253-9. [PMID: 23723429 PMCID: PMC3976136 DOI: 10.1093/gerona/glt078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/19/2013] [Indexed: 01/10/2023] Open
Abstract
The cytoplasmic chaperone gene Hsp70 and the mitochondrial chaperone gene Hsp22 are upregulated during normal aging in Drosophila in tissue-general patterns. In addition, Hsp22 reporters are dramatically upregulated during aging in a subset of the oenocytes (liver-like cells). Hsp22 reporter expression varied dramatically between individual oenocytes and between groups of oenocytes located in adjacent body segments, and was negatively correlated with accumulation of age pigment, indicating cell-specific and cell-lineage-specific patterns of oenocyte aging. Conditional transgenic systems were used to express 88 transgenes to search for trans-regulators of the Hsp70 and Hsp22 reporters during aging. The wingless gene increased tissue-general upregulation of both Hsp70 and Hsp22 reporters. In contrast, the mitochondrial genes MnSOD and Hsp22 increased expression of Hsp22 reporters in the oenocytes and decreased accumulation of age pigment in these cells. The data suggest that cell-specific and cell lineage-specific patterns of mitochondrial malfunction contribute to oenocyte aging.
Collapse
Affiliation(s)
- John Tower
- University of Southern California, 1050 Childs Way, RRI 201, Los Angeles, CA 90089-2910.
| | | | | | | | | | | |
Collapse
|
27
|
Eaton NR, Krueger RF, South SC, Gruenewald TL, Seeman TE, Roberts BW. Genes, environments, personality, and successful aging: toward a comprehensive developmental model in later life. J Gerontol A Biol Sci Med Sci 2012; 67:480-8. [PMID: 22454369 DOI: 10.1093/gerona/gls090] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Outcomes in aging and health research, such as longevity, can be conceptualized as reflecting both genetic and environmental (nongenetic) effects. Parsing genetic and environmental influences can be challenging, particularly when taking a life span perspective, but an understanding of how genetic variants and environments relate to successful aging is critical to public health and intervention efforts. METHODS We review the literature, and survey promising methods, to understand this interplay. We also propose the investigation of personality as a nexus connecting genetics, environments, and health outcomes. RESULTS Personality traits may reflect psychological mechanisms by which underlying etiologic (genetic and environmental) effects predispose individuals to broad propensities to engage in (un)healthy patterns of behavior across the life span. In terms of methodology, traditional behavior genetic approaches have been used profitably to understand how genetic factors and environments relate to health and personality in somewhat separate literatures; we discuss how other behavior genetic approaches can help connect these literatures and provide new insights. CONCLUSIONS Co-twin control designs can be employed to help determine causality via a closer approximation of the idealized counterfactual design. Gene-by-environment interaction (G × E) designs can be employed to understand how individual difference characteristics, such as personality, might moderate genetic and environmental influences on successful aging outcomes. Application of such methods can clarify the interplay of genes, environments, personality, and successful aging.
Collapse
Affiliation(s)
- Nicholas R Eaton
- Department of Psychology, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Martin GM. Commentary: a gerontological perspective on Klaus Gärtner's discovery that phenotypic variability of mammals is driven by stochastic events. Int J Epidemiol 2012; 41:354-6. [PMID: 22266058 DOI: 10.1093/ije/dyr224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|