1
|
Ngana GS, Di Bernardo MA, Surette MG, MacNeil LT. Actinomyces viscosus promotes neuroprotection in C. elegans models of Parkinson's disease. Mech Ageing Dev 2025:112061. [PMID: 40258426 DOI: 10.1016/j.mad.2025.112061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 04/04/2025] [Accepted: 04/11/2025] [Indexed: 04/23/2025]
Abstract
Parkinson's Disease is characterized by selective degeneration of dopaminergic neurons, primarily in the substantia nigra pars compacta, as well as accumulation of alpha-synuclein enriched protein aggregates within neurons. The pathogenesis of PD is still not completely understood, and no treatments exist that alter disease progression. Obvious genetic causes are detected in only a small number of PD patients (5-10%), suggesting that environmental factors play a significant role the development of PD. Correlative studies suggest that the microbiota could be an important environmental modifier of neurodegeneration. We identified a microbiotal isolate, Actinomyces viscosus, that reduced neurodegeneration in C. elegans expressing a pathological mutant form (G2019S) of leucine-rich repeat kinase 2 (LRRK2) in dopaminergic neurons. A. viscosus also suppressed autophagic dysfunction in these animals and reduced alpha-synuclein aggregation in a synucleinopathy model. Global gene expression analysis revealed increased expression of aspartic cathepsins in response to A. viscosus. Consistent with the involvement of these proteins in neuroprotection, we found that reducing aspartic cathepsin function increased neurodegeneration in the LRRK2 transgenic model. Our findings contribute to the current understanding of how the gut microbiota may influence PD, elucidating one potential mechanism of microbiota-mediated neuroprotection.
Collapse
Affiliation(s)
- G Sophie Ngana
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W. Hamilton, ON, Canada
| | - Mercedes A Di Bernardo
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W. Hamilton, ON, Canada
| | - Michael G Surette
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W. Hamilton, ON, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, 1280 Main St W Hamilton, ON, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W Hamilton, ON, Canada
| | - Lesley T MacNeil
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W. Hamilton, ON, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, 1280 Main St W Hamilton, ON, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W Hamilton, ON, Canada.
| |
Collapse
|
2
|
Nirmala FS, Lee H, Cho Y, Um MY, Seo HD, Jung CH, Hahm JH, Ahn J. Norharmane prevents muscle aging via activation of SKN-1/NRF2 stress response pathways. Redox Biol 2025; 80:103512. [PMID: 39874928 PMCID: PMC11810848 DOI: 10.1016/j.redox.2025.103512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025] Open
Abstract
Sarcopenia, the age-related decline in muscle mass and function, is a significant contributor to increased frailty and mortality in the elderly. Currently, no FDA-approved treatment exists for sarcopenia. Here, we identified norharmane (NR), a β-carboline alkaloid, as a potential therapeutic agent for mitigating muscle aging. We aimed to determine the ability of NR to delay muscle aging in Caenorhabditis elegans (C. elegans), mouse, and muscle cells in mice and humans. NR treatment improved swimming ability and increased the maximum velocity in aged C. elegans. Transcriptomic analysis revealed that NR upregulated detoxification genes in C. elegans, including cytochrome P450, UGT, and GST enzymes. NR-induced benefits were dependent on the SKN-1/Nrf2 stress response pathway. In mammalian models, NR delayed cellular senescence in human skeletal muscle myoblasts and enhanced myogenesis in C2C12 cells and primary aged myoblasts. NR supplementation in aged mice prevented muscle loss, improved muscle function, and reduced markers of cellular senescence. We found that the p38 MAPK pathway mediated NR activation of Nrf2 by disrupting the Nrf2-Keap1 interaction. NR also improved oxygen consumption rates and promoted mitochondrial biogenesis. These findings suggest that NR is a promising candidate for preventing sarcopenia and improving muscle health.
Collapse
Affiliation(s)
- Farida S Nirmala
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, South Korea; Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si, South Korea
| | - Hyunjung Lee
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, South Korea
| | - Yejin Cho
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, South Korea
| | - Min Young Um
- Functional Food Materials Research Group, Korea Food Research Institute, Wanju-gun, South Korea; Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si, South Korea
| | - Hyo Deok Seo
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si, South Korea
| | - Chang Hwa Jung
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, South Korea; Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si, South Korea
| | - Jeong-Hoon Hahm
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, South Korea.
| | - Jiyun Ahn
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, South Korea; Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si, South Korea.
| |
Collapse
|
3
|
Jochim BE, Topalidou I, Lehrbach NJ. Protein sequence editing defines distinct and overlapping functions of SKN-1A/Nrf1 and SKN-1C/Nrf2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635299. [PMID: 39975340 PMCID: PMC11838306 DOI: 10.1101/2025.01.29.635299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The Nrf/NFE2L family of transcription factors regulates redox balance, xenobiotic detoxification, metabolism, proteostasis, and aging. Nrf1/NFE2L1 is primarily responsible for stress-responsive upregulation of proteasome subunit genes and is essential for adaptation to proteotoxic stress. Nrf2/NFE2L2 is mainly involved in activating oxidative stress responses and promoting xenobiotic detoxification. Nrf1 and Nrf2 contain very similar DNA binding domains and can drive similar transcriptional responses. In C. elegans, a single gene, skn-1, encodes distinct protein isoforms, SKN-1A and SKN-1C, that function analogously to mammalian Nrf1 and Nrf2, respectively, and share an identical DNA binding domain. Thus, the extent to which SKN-1A/Nrf1 and SKN-1C/Nrf2 functions are distinct or overlapping has been unclear. Regulation of the proteasome by SKN-1A/Nrf1 requires post-translational conversion of N-glycosylated asparagine residues to aspartate by the PNG-1/NGLY1 peptide:N-glycanase, a process we term 'sequence editing'. Here, we reveal the consequences of sequence editing for the transcriptomic output of activated SKN-1A. We confirm that activation of proteasome subunit genes is strictly dependent on sequence editing. In addition, we find that sequence edited SKN-1A can also activate genes linked to redox homeostasis and xenobiotic detoxification that are also regulated by SKN-1C, but the extent of these genes' activation is antagonized by sequence editing. Using mutant alleles that selectively inactivate either SKN-1A or SKN-1C, we show that both isoforms promote optimal oxidative stress resistance, acting as effectors for distinct signaling pathways. These findings suggest that sequence editing governs SKN-1/Nrf functions by tuning the SKN-1A/Nrf1 regulated transcriptome.
Collapse
|
4
|
Duangjan C, Arpawong TE, Spatola BN, Curran SP. Hepatic WDR23 proteostasis mediates insulin homeostasis by regulating insulin-degrading enzyme capacity. GeroScience 2024; 46:4461-4478. [PMID: 38767782 PMCID: PMC11336002 DOI: 10.1007/s11357-024-01196-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
Maintaining insulin homeostasis is critical for cellular and organismal metabolism. In the liver, insulin is degraded by the activity of the insulin-degrading enzyme (IDE). Here, we establish a hepatic regulatory axis for IDE through WDR23-proteostasis. Wdr23KO mice have increased IDE expression, reduced circulating insulin, and defective insulin responses. Genetically engineered human cell models lacking WDR23 also increase IDE expression and display dysregulated phosphorylation of insulin signaling cascade proteins, IRS-1, AKT2, MAPK, FoxO, and mTOR, similar to cells treated with insulin, which can be mitigated by chemical inhibition of IDE. Mechanistically, the cytoprotective transcription factor NRF2, a direct target of WDR23-Cul4 proteostasis, mediates the enhanced transcriptional expression of IDE when WDR23 is ablated. Moreover, an analysis of human genetic variation in WDR23 across a large naturally aging human cohort in the US Health and Retirement Study reveals a significant association of WDR23 with altered hemoglobin A1C (HbA1c) levels in older adults, supporting the use of WDR23 as a new molecular determinant of metabolic health in humans.
Collapse
Affiliation(s)
- Chatrawee Duangjan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Thalida Em Arpawong
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Brett N Spatola
- Dornsife College of Letters, Arts, and Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
5
|
Fong A, Rodriguez M, Choe KP. Increased expression of metabolism and lysosome-associated genes in a C. elegans dpy-7 cuticle furrow mutant. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001241. [PMID: 39144098 PMCID: PMC11322832 DOI: 10.17912/micropub.biology.001241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/03/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
The collagen-based epidermal 'cuticle' of Caenorhabditis elegans functions as an extracellular sensor for damage that regulates genes promoting osmotic balance, innate immunity, and detoxification. Prior studies demonstrate that SKN-1 , an ortholog of the mammalian Nrf transcription factors, activates core detoxification genes downstream from cuticle damage. Prior RNAseq data suggested that expression of five genes with functions in redox balance, ATP homeostasis, and lysosome function ( gst-15 , gst-24 , cyts-1 , argk-1 , and mfsd-8.4 ) were increased in a cuticle collagen mutant; this study employed RT-qPCR to verify this observation and to test the role of SKN-1 . Activation of all five genes was verified in dpy-7 mutants, but none were reduced by skn-1 (RNAi) suggesting parallel or distinct regulatory mechanisms.
Collapse
Affiliation(s)
- Aiden Fong
- Biology, University of Florida, Gainesville, Florida, United States
| | | | - Keith Patrick Choe
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL USA
| |
Collapse
|
6
|
Turner CD, Ramos CM, Curran SP. Disrupting the SKN-1 homeostat: mechanistic insights and phenotypic outcomes. FRONTIERS IN AGING 2024; 5:1369740. [PMID: 38501033 PMCID: PMC10944932 DOI: 10.3389/fragi.2024.1369740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/15/2024] [Indexed: 03/20/2024]
Abstract
The mechanisms that govern maintenance of cellular homeostasis are crucial to the lifespan and healthspan of all living systems. As an organism ages, there is a gradual decline in cellular homeostasis that leads to senescence and death. As an organism lives into advanced age, the cells within will attempt to abate age-related decline by enhancing the activity of cellular stress pathways. The regulation of cellular stress responses by transcription factors SKN-1/Nrf2 is a well characterized pathway in which cellular stress, particularly xenobiotic stress, is abated by SKN-1/Nrf2-mediated transcriptional activation of the Phase II detoxification pathway. However, SKN-1/Nrf2 also regulates a multitude of other processes including development, pathogenic stress responses, proteostasis, and lipid metabolism. While this process is typically tightly regulated, constitutive activation of SKN-1/Nrf2 is detrimental to organismal health, this raises interesting questions surrounding the tradeoff between SKN-1/Nrf2 cryoprotection and cellular health and the ability of cells to deactivate stress response pathways post stress. Recent work has determined that transcriptional programs of SKN-1 can be redirected or suppressed to abate negative health outcomes of constitutive activation. Here we will detail the mechanisms by which SKN-1 is controlled, which are important for our understanding of SKN-1/Nrf2 cytoprotection across the lifespan.
Collapse
Affiliation(s)
- Chris D. Turner
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Carmen M. Ramos
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
- Dornsife College of Letters, Arts, and Sciences, Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, United States
| | - Sean P. Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
7
|
Turner CD, Stuhr NL, Ramos CM, Van Camp BT, Curran SP. A dicer-related helicase opposes the age-related pathology from SKN-1 activation in ASI neurons. Proc Natl Acad Sci U S A 2023; 120:e2308565120. [PMID: 38113255 PMCID: PMC10756303 DOI: 10.1073/pnas.2308565120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/02/2023] [Indexed: 12/21/2023] Open
Abstract
Coordination of cellular responses to stress is essential for health across the lifespan. The transcription factor SKN-1 is an essential homeostat that mediates survival in stress-inducing environments and cellular dysfunction, but constitutive activation of SKN-1 drives premature aging thus revealing the importance of turning off cytoprotective pathways. Here, we identify how SKN-1 activation in two ciliated ASI neurons in Caenorhabditis elegans results in an increase in organismal transcriptional capacity that drives pleiotropic outcomes in peripheral tissues. An increase in the expression of established SKN-1 stress response and lipid metabolism gene classes of RNA in the ASI neurons, in addition to the increased expression of several classes of noncoding RNA, define a molecular signature of animals with constitutive SKN-1 activation and diminished healthspan. We reveal neddylation as a unique regulator of the SKN-1 homeostat that mediates SKN-1 abundance within intestinal cells. Moreover, RNAi-independent activity of the dicer-related DExD/H-box helicase, drh-1, in the intestine, can oppose the effects of aberrant SKN-1 transcriptional activation and delays age-dependent decline in health. Taken together, our results uncover a cell nonautonomous circuit to maintain organism-level homeostasis in response to excessive SKN-1 transcriptional activity in the sensory nervous system.
Collapse
Affiliation(s)
- Chris D. Turner
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA90089
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA90089
| | - Nicole L. Stuhr
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA90089
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA90089
| | - Carmen M. Ramos
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA90089
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA90089
| | - Bennett T. Van Camp
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA90089
| | - Sean P. Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA90089
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA90089
| |
Collapse
|
8
|
Ramos CM, Curran SP. Comparative analysis of the molecular and physiological consequences of constitutive SKN-1 activation. GeroScience 2023; 45:3359-3370. [PMID: 37751046 PMCID: PMC10643742 DOI: 10.1007/s11357-023-00937-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023] Open
Abstract
Molecular homeostats play essential roles across all levels of biological organization to ensure a return to normal function after responding to abnormal internal and environmental events. SKN-1 is an evolutionarily conserved cytoprotective transcription factor that is integral for the maintenance of cellular homeostasis upon exposure to a variety of stress conditions. Despite the essentiality of turning on SKN-1/NRF2 in response to exogenous and endogenous stress, animals with chronic activation of SKN-1 display premature loss of health with age, and ultimately, diminished lifespan. Previous genetic models of constitutive SKN-1 activation include gain-of-function alleles of skn-1 and loss-of-function alleles of wdr-23 that impede the turnover of SKN-1 by the ubiquitin proteasome. Here, we define a novel gain-of-function mutation in the xrep-4 locus that results in constitutive activation of SKN-1 in the absence of stress. Although each of these genetic mutations results in continuously unregulated transcriptional output from SKN-1, the physiological consequences of each model on development, stress resistance, reproduction, lipid homeostasis, and lifespan are distinct. Here, we provide a comprehensive assessment of the differential healthspan impacts across multiple models of constitutive SKN-1 activation. Although our results reveal the universal need to reign in the uncontrolled activity of cytoprotective transcription factors, we also define the unique signatures of each model of constitutive SKN-1 activation, which provides innovative solutions for the design of molecular "off-switches" of unregulated transcriptional homeostats.
Collapse
Affiliation(s)
- Carmen M Ramos
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Dornsife College of Letters, Arts, and Sciences, Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
9
|
Turner CD, Stuhr NL, Ramos CM, Van Camp BT, Curran SP. A dicer-related helicase opposes the age-related pathology from SKN-1 activation in ASI neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.01.560409. [PMID: 37873147 PMCID: PMC10592859 DOI: 10.1101/2023.10.01.560409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Coordination of cellular responses to stress are essential for health across the lifespan. The transcription factor SKN-1 is an essential homeostat that mediates survival in stress-inducing environments and cellular dysfunction, but constitutive activation of SKN-1 drives premature aging thus revealing the importance of turning off cytoprotective pathways. Here we identify how SKN-1 activation in two ciliated ASI neurons in C. elegans results in an increase in organismal transcriptional capacity that drives pleiotropic outcomes in peripheral tissues. An increase in the expression of established SKN-1 stress response and lipid metabolism gene classes of RNA in the ASI neurons, in addition to the increased expression of several classes of non-coding RNA, define a molecular signature of animals with constitutive SKN-1 activation and diminished healthspan. We reveal neddylation as a novel regulator of the SKN-1 homeostat that mediates SKN-1 abundance within intestinal cells. Moreover, RNAi-independent activity of the dicer-related DExD/H-box helicase, drh-1 , in the intestine, can oppose the e2ffects of aberrant SKN-1 transcriptional activation and delays age-dependent decline in health. Taken together, our results uncover a cell non-autonomous circuit to maintain organism-level homeostasis in response to excessive SKN-1 transcriptional activity in the sensory nervous system. SIGNIFICANCE STATEMENT Unlike activation, an understudied fundamental question across biological systems is how to deactivate a pathway, process, or enzyme after it has been turned on. The irony that the activation of a transcription factor that is meant to be protective can diminish health was first documented by us at the organismal level over a decade ago, but it has long been appreciated that chronic activation of the human ortholog of SKN-1, NRF2, could lead to chemo- and radiation resistance in cancer cells. A colloquial analogy to this biological idea is a sink faucet that has an on valve without a mechanism to shut the water off, which will cause the sink to overflow. Here, we define this off valve.
Collapse
|
10
|
Gao X, Yang Z, Huang L, Zuo S, Li X, Yao J, Jiang W, Wang S, Zhang Y. Protective effects of pumpkin polysaccharide hydrolysates on oxidative stress injury and its potential mechanism - Antioxidant mechanism of pumpkin polysaccharide hydrolysates. Int J Biol Macromol 2023; 241:124423. [PMID: 37062385 DOI: 10.1016/j.ijbiomac.2023.124423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 04/18/2023]
Abstract
Pumpkin polysaccharides (PPe) exhibit multiple bioactive properties, including the ability to reduce blood sugar and lipids. Our prior investigation discovered that hydrolysates (PPe-s) derived from PPe demonstrated stronger antioxidant capabilities than PPe. The objective of the current study was to explore the potential mechanism of PPe-s, utilizing Caenorhabditis elegans and MIN6 cells as models. The results of this investigation revealed that PPe-s exhibited strong scavenging ability towards ABTS+ and OH·in vitro. Additionally, PPe-s extended the lifespan of C. elegans under hydrogen peroxide stress (p < 0.05) by upregulating the mRNA expression of daf-16, sod-1, sod-3, and skn-1 (all >1.43-fold, p < 0.05). Furthermore, PPe-s enhanced the proliferation activity of MIN6 cells, induced by alloxan, increased insulin secretion and cAMP levels, and excreted intracellular excessive Ca2+ in a concentration-dependent manner. Our study demonstrated that PPe-s upregulated the expression levels of antioxidative-related genes and augmented the antioxidant defense system.
Collapse
Affiliation(s)
- Xiaofeng Gao
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Zeen Yang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Lingte Huang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Siying Zuo
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Xinghan Li
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Jing Yao
- Liang Xin College, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Wen Jiang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Shuang Wang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Yongjun Zhang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China.
| |
Collapse
|
11
|
Tabarraei H, Waddell BM, Raymond K, Murray SM, Wang Y, Choe KP, Wu CW. CCR4-NOT subunit CCF-1/CNOT7 promotes transcriptional activation to multiple stress responses in Caenorhabditis elegans. Aging Cell 2023; 22:e13795. [PMID: 36797658 PMCID: PMC10086529 DOI: 10.1111/acel.13795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/13/2023] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
CCR4-NOT is a versatile eukaryotic protein complex that controls multiple steps in gene expression regulation from synthesis to decay. In yeast, CCR4-NOT has been implicated in stress response regulation, though this function in other organisms remains unclear. In a genome-wide RNAi screen, we identified a subunit of the CCR4-NOT complex, ccf-1, as a requirement for the C. elegans transcriptional response to cadmium and acrylamide stress. Using whole-transcriptome RNA sequencing, we show that the knockdown of ccf-1 attenuates the activation of a broad range of stress-protective genes in response to cadmium and acrylamide, including those encoding heat shock proteins and xenobiotic detoxification. Consistently, survival assays show that the knockdown of ccf-1 decreases C. elegans stress resistance and normal lifespan. A yeast 2-hybrid screen using a CCF-1 bait identified the homeobox transcription factor PAL-1 as a physical interactor. Knockdown of pal-1 inhibits the activation of ccf-1 dependent stress genes and reduces C. elegans stress resistance. Gene expression analysis reveals that knockdown of ccf-1 and pal-1 attenuates the activation of elt-2 and elt-3 under stress that encode master transcriptional co-regulators of stress response in the C. elegans, and that overexpression of ELT-2 can suppress ccf-1's requirement for gene transcription in a stress-dependent manner. Our findings reveal a new role for CCR4-NOT in the environmental stress response and define its role in stress resistance and longevity in C. elegans.
Collapse
Affiliation(s)
- Hadi Tabarraei
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Brandon M Waddell
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kelly Raymond
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sydney M Murray
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ying Wang
- Department of Biology and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Keith P Choe
- Department of Biology and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Cheng-Wei Wu
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
12
|
Chandler LM, Rodriguez M, Choe KP. RNAi screening for modulators of an osmo-sensitive gene response to extracellular matrix damage reveals negative feedback and interactions with translation inhibition. PLoS One 2023; 18:e0285328. [PMID: 37155688 PMCID: PMC10166495 DOI: 10.1371/journal.pone.0285328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 04/19/2023] [Indexed: 05/10/2023] Open
Abstract
In epidermal tissues, extracellular matrices (ECMs) function as barriers between the organism and environment. Despite being at the interface with the environment, little is known about the role of animal barrier ECMs in sensing stress and communicating with cytoprotective gene pathways in neighboring cells. We and others have identified a putative damage sensor in the C. elegans cuticle that regulates osmotic, detoxification, and innate immune response genes. This pathway is associated with circumferential collagen bands called annular furrows; mutation or loss of furrow collagens causes constitutive activation of osmotic, detoxification, and innate immune response genes. Here, we performed a genome-wide RNAi screen for modulators of osmotic stress response gene gpdh-1 in a furrow collagen mutant strain. RNAi of six genes identified in this screen were tested under other conditions and for effects on other stress responses. The functions of these genes suggest negative feedback within osmolyte accumulation pathways and interactions with ATP homeostasis and protein synthesis. Loss of these gpdh-1 modulators had distinct effects on canonical detoxification and innate immune response genes.
Collapse
Affiliation(s)
- Luke M Chandler
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, United States of America
| | - Michael Rodriguez
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, United States of America
| | - Keith P Choe
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
13
|
Piloto JH, Rodriguez M, Choe KP. Sexual dimorphism in Caenorhabditis elegans stress resistance. PLoS One 2022; 17:e0272452. [PMID: 35951614 PMCID: PMC9371273 DOI: 10.1371/journal.pone.0272452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
Physiological responses to the environment, disease, and aging vary by sex in many animals, but mechanisms of dimorphism have only recently begun to receive careful attention. The genetic model nematode Caenorhabditis elegans has well-defined mechanisms of stress response, aging, and sexual differentiation. C. elegans has males, but the vast majority of research only uses hermaphrodites. We found that males of the standard N2 laboratory strain were more resistant to hyperosmolarity, heat, and a natural pro-oxidant than hermaphrodites when in mixed-sex groups. Resistance to heat and pro-oxidant were also male-biased in three genetically and geographically diverse C. elegans strains consistent with a species-wide dimorphism that is not specific to domestication. N2 males were also more resistant to heat and pro-oxidant when keep individually indicating that differences in resistance do not require interactions between worms. We found that males induce canonical stress response genes by similar degrees and in similar tissues as hermaphrodites suggesting the importance of other mechanisms. We find that resistance to heat and pro-oxidant are influenced by the sex differentiation transcription factor TRA-1 suggesting that downstream organ differentiation pathways establish differences in stress resistance. Environmental stress influences survival in natural environments, degenerative disease, and aging. Understanding mechanisms of stress response dimorphism can therefore provide insights into sex-specific population dynamics, disease, and longevity.
Collapse
Affiliation(s)
- Juan H. Piloto
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, United States of America
| | - Michael Rodriguez
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, United States of America
| | - Keith P. Choe
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
14
|
Frankino PA, Siddiqi TF, Bolas T, Bar-Ziv R, Gildea HK, Zhang H, Higuchi-Sanabria R, Dillin A. SKN-1 regulates stress resistance downstream of amino catabolism pathways. iScience 2022; 25:104571. [PMID: 35784796 PMCID: PMC9240870 DOI: 10.1016/j.isci.2022.104571] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/03/2022] [Accepted: 06/03/2022] [Indexed: 11/04/2022] Open
Abstract
The deleterious potential to generate oxidative stress is a fundamental challenge to metabolism. The oxidative stress response transcription factor, SKN-1/NRF2, can sense and respond to changes in metabolic state, although the mechanism and consequences of this remain unknown. Here, we performed a genetic screen in C. elegans targeting amino acid catabolism and identified multiple metabolic pathways as regulators of SKN-1 activity. We found that knockdown of the conserved amidohydrolase T12A2.1/amdh-1 activates a unique subset of SKN-1 regulated genes. Interestingly, this transcriptional program is independent of canonical P38-MAPK signaling components but requires ELT-3, NHR-49 and MDT-15. This activation of SKN-1 is dependent on upstream histidine catabolism genes HALY-1 and Y51H4A.7/UROC-1 and may occur through accumulation of a catabolite, 4-imidazolone-5-propanoate. Activating SKN-1 results in increased oxidative stress resistance but decreased survival to heat stress. Together, our data suggest that SKN-1 acts downstream of key catabolic pathways to influence physiology and stress resistance.
Collapse
Affiliation(s)
- Phillip A. Frankino
- Howard Hughes Medical Institute University of California, Berkeley, CA 94720, USA
- California Institute for Regenerative Medicine, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Talha F. Siddiqi
- Howard Hughes Medical Institute University of California, Berkeley, CA 94720, USA
- California Institute for Regenerative Medicine, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Theodore Bolas
- Howard Hughes Medical Institute University of California, Berkeley, CA 94720, USA
- California Institute for Regenerative Medicine, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Raz Bar-Ziv
- Howard Hughes Medical Institute University of California, Berkeley, CA 94720, USA
- California Institute for Regenerative Medicine, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Holly K. Gildea
- Howard Hughes Medical Institute University of California, Berkeley, CA 94720, USA
- California Institute for Regenerative Medicine, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Hanlin Zhang
- Howard Hughes Medical Institute University of California, Berkeley, CA 94720, USA
- California Institute for Regenerative Medicine, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ryo Higuchi-Sanabria
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew Dillin
- Howard Hughes Medical Institute University of California, Berkeley, CA 94720, USA
- California Institute for Regenerative Medicine, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
15
|
Wimberly K, Choe KP. An extracellular matrix damage sensor signals through membrane-associated kinase DRL-1 to mediate cytoprotective responses in Caenorhabditis elegans. Genetics 2022; 220:iyab217. [PMID: 34849856 PMCID: PMC9208646 DOI: 10.1093/genetics/iyab217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
We and others previously identified circumferential bands of collagen named annular furrows as key components of a damage sensor in the cuticle of Caenorhabditis elegans that regulates cytoprotective genes. Mutation or loss of noncollagen secreted proteins OSM-7, OSM-8, and OSM-11 activate the same cytoprotective responses without obvious changes to the cuticle indicating that other extracellular proteins are involved. Here, we used RNAi screening to identify protein kinase DRL-1 as a key modulator of cytoprotective gene expression and stress resistance in furrow and extracellular OSM protein mutants. DRL-1 functions downstream from furrow disruption and is expressed in cells that induce cytoprotective genes. DRL-1 is not required for the expression of cytoprotective genes under basal or oxidative stress conditions consistent with specificity to extracellular signals. DRL-1 was previously shown to regulate longevity via a "Dietary Restriction-Like" state, but it functions downstream from furrow disruption by a distinct mechanism. The kinase domain of DRL-1 is related to mammalian MEKK3, and MEKK3 is recruited to a plasma membrane osmosensor complex by a scaffold protein. In C. elegans, DRL-1 contains an atypical hydrophobic C-terminus with predicted transmembrane domains and is constitutively expressed at or near the plasma membrane where it could function to receive extracellular damage signals for cells that mount cytoprotective responses.
Collapse
Affiliation(s)
- Keon Wimberly
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Keith P Choe
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
16
|
Wang Y, Sun Y, Wang X, Wang Y, Liao L, Zhang Y, Fang B, Fu Y. Novel antioxidant peptides from Yak bones collagen enhanced the capacities of antiaging and antioxidant in Caenorhabditis elegans. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
17
|
Jiang S, Jiang CP, Cao P, Liu YH, Gao CH, Yi XX. Sonneradon A Extends Lifespan of Caenorhabditis elegans by Modulating Mitochondrial and IIS Signaling Pathways. Mar Drugs 2022; 20:md20010059. [PMID: 35049915 PMCID: PMC8778700 DOI: 10.3390/md20010059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/15/2022] Open
Abstract
Aging is related to the lowered overall functioning and increased risk for various age-related diseases in humans. Sonneradon A (SDA), a new compound first extracted from the edible fruits of mangrove Sonneratia apetala, showed remarkable antiaging activity. However, the role of SDA in antiaging remains unclear. In this article, we studied the function of SDA in antiaging by using the animal model Caenorhabditis elegans. Results showed that SDA inhibited production of reactive oxygen species (ROS) by 53%, and reduced the accumulation of aging markers such as lipids and lipofuscins. Moreover, SDA also enhanced the innate immune response to Pseudomonas aeruginosa infection. Genetic analysis of a series of mutants showed that SDA extended the lifespan of the mutants of eat-2 and glp-1. Together, this effect may be related to the enhanced resistance to oxidative stress via mitochondrial and insulin/insulin-like growth factor-1 signaling (IIS) pathways. The results of this study provided new evidence for an antiaging effect of SDA in C. elegans, as well as insights into the implication of antiaging activity of SDA in higher organisms.
Collapse
|
18
|
Xiao B, Chen S, Huang Q, Tan J, Zeng J, Yao J, Feng T, Wang G, Zhang Y. The lipid lowering and antioxidative stress potential of polysaccharide from Auricularia auricula prepared by enzymatic method. Int J Biol Macromol 2021; 187:651-663. [PMID: 34303740 DOI: 10.1016/j.ijbiomac.2021.07.138] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 01/05/2023]
Abstract
An efficient extraction method of Auricularia auricula polysaccharides (AAPs) by neutral protease was developed and optimized by response surface methodology. AAPs were graded by stepwise ethanol precipitation, the fraction with high recovery rate and strong radical scavenging rate were obtained, then its antioxidant and lipid lowering effect were studied using Caenorhabditis elegans as model organism. The extract yield and ABTS+ scavenging rates of AAPs could reach 14.90% and 86.0% at 50 °C, 75 mL/g of liquid-to-material ratio and pH 9.0. AAP3 obtained by 15% ethanol was a heteropolysaccharide comprised of mannose, glucose, glucuronic acid, xylose, galactose and glucosamine. AAP3 could significantly prolong the lifespan of C. elegans and enhance the activity of antioxidant enzymes including superoxide dismutase (SOD), catalases (CAT) at 0.25 mg/mL (p < 0.05). The qRT-PCR results showed that AAP3 could up regulate mRNA expression levels of daf-16 and skn-1 (>1.6 fold) at 0.25 mg/mL. Besides, AAP3 could significantly reduce the level of body fat and triglyceride in C. elegans (p < 0.05). These studies demonstrated that A. auricula polysaccharides prepared by neutral protease had a prominent protective effect to the damage induced by the intracellular free radical generating agents.
Collapse
Affiliation(s)
- Bin Xiao
- Liang Xin College, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Shuang Chen
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Qiqi Huang
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Jingjing Tan
- Liang Xin College, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Jiangying Zeng
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Jing Yao
- Liang Xin College, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Tao Feng
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Ge Wang
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Yongjun Zhang
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
19
|
Naß J, Abdelfatah S, Efferth T. The triterpenoid ursolic acid ameliorates stress in Caenorhabditis elegans by affecting the depression-associated genes skn-1 and prdx2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 88:153598. [PMID: 34111615 DOI: 10.1016/j.phymed.2021.153598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 05/03/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Depression is one of the leading causes of death worldwide. Lower antioxidant concentrations and increased oxidative stress levels contribute to the development of depression. Effective and tolerable medications are urgently needed. Nrf2 and PRDX2 are promising targets in the treatment of oxidative stress and, therefore, promising for the development of novel antidepressants. Ursolic acid (UA), a natural triterpenoid found in various plants is known to exert neuroprotective and antioxidant effects. Skn-1 (which corresponds to human Nrf2) and prdx2 deficient mutants of the nematode Caenorhabditis elegans are suitable models to study the effect of UA on these targets. Additionally, stress assays are used to mimic stress or depressed state. METHODS We examined the antioxidant activity of UA in Caenorhabditis elegans wildtype and skn-1- and prdx2-deficient strains by H2DCF-DA and juglone assays as well as osmotic and heat stress assays. Additionally, we analyzed the binding of UA to human PRDX2 and Skn-1 proteins by molecular docking and microscale thermophoresis. RESULTS UA exerted strong antioxidant activities. Additionally, induction of stress resistance towards osmotic and heat stress was observed. qRT-PCR revealed that UA upregulated the gene expression of skn-1 and prdx2. Molecular docking studies supported these findings. CONCLUSION Our findings implicate that the strong antioxidant activity of UA may exert anti-depressive effects by its interaction with the Skn-1 transcription factor, which is part of a detoxification network, and the antioxidant PRDX2 protein, which protects the organism from the detrimental effects of radical oxygen species.
Collapse
Affiliation(s)
- Janine Naß
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Sara Abdelfatah
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
20
|
Abstract
Glutathione (GSH) is the most abundant cellular antioxidant. As reactive oxygen species (ROS) are widely believed to promote aging and age-related diseases, and antioxidants can neutralize ROS, it follows that GSH and its precursor, N-acetyl cysteine (NAC), are among the most popular dietary supplements. However, the long- term effects of GSH or NAC on healthy animals have not been thoroughly investigated. We employed C. elegans to demonstrate that chronic administration of GSH or NAC to young or aged animals perturbs global gene expression, inhibits skn-1-mediated transcription, and accelerates aging. In contrast, limiting the consumption of dietary thiols, including those naturally derived from the microbiota, extended lifespan. Pharmacological GSH restriction activates the unfolded protein response and increases proteotoxic stress resistance in worms and human cells. It is thus advantageous for healthy individuals to avoid excessive dietary antioxidants and, instead, rely on intrinsic GSH biosynthesis, which is fine-tuned to match the cellular redox status and to promote homeostatic ROS signaling.
Collapse
|
21
|
Mohankumar A, Kalaiselvi D, Thiruppathi G, Muthusaravanan S, Nivitha S, Levenson C, Tawata S, Sundararaj P. α- and β-Santalols Delay Aging in Caenorhabditis elegans via Preventing Oxidative Stress and Protein Aggregation. ACS OMEGA 2020; 5:32641-32654. [PMID: 33376901 PMCID: PMC7758982 DOI: 10.1021/acsomega.0c05006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/25/2020] [Indexed: 05/08/2023]
Abstract
α- and β-Santalol (santalol isomers) are the most abundant sesquiterpenoids found in sandalwood, contributing to its pleasant fragrance and wide-spectrum bioactivity. This study aimed at identifying the antiaging and antiaggregation mechanism of α- and β-santalol using the genetic tractability of an in vivo model Caenorhabditis elegans. The results showed that santalol isomers retard aging, improved health span, and inhibited the aggregation of toxic amyloid-β (Aβ1-42) and polyglutamine repeats (Q35, Q40, and HtnQ150) in C. elegans models for Alzheimer's and Huntington's disease, respectively. The genetic study, reporter gene expression, RNA-based reverse genetic approach (RNA interferences/RNAi), and gene expression analysis revealed that santalol isomers selectively regulate SKN-1/Nrf2 and EOR-1/PLZF transcription factors through the RTK/Ras/MAPK-dependent signaling axis that could trigger the expression of several antioxidants and protein aggregation inhibitory genes, viz., gst-4, gcs-1, gst-10, gsr-1, hsp-4, and skr-5, which extend longevity and help minimize age-induced protein oxidation and aggregation. We believe that these findings will further promote α- and β-santalol to become next-generation prolongevity and antiaggregation molecules for longer and healthier life.
Collapse
Affiliation(s)
| | - Duraisamy Kalaiselvi
- Department
of Zoology, Bharathiar University, Coimbatore, Tamilnadu 641046, India
- Department
of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture,
College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | | | | | - Sundararaj Nivitha
- College
of Science, Northeastern University, Boston, Massachusetts 02115, United States
| | - Corey Levenson
- Santalis
Pharmaceuticals, Inc., 18618 Tuscany Stone, Suite 100, San Antonio, Texas 78258, United States
| | - Shinkichi Tawata
- Department
of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Senbaru 1, Nishihara-cho, Okinawa 903-0213, Japan
| | | |
Collapse
|
22
|
Gu J, Li Q, Liu J, Ye Z, Feng T, Wang G, Wang W, Zhang Y. Ultrasonic-assisted extraction of polysaccharides from Auricularia auricula and effects of its acid hydrolysate on the biological function of Caenorhabditis elegans. Int J Biol Macromol 2020; 167:423-433. [PMID: 33249158 DOI: 10.1016/j.ijbiomac.2020.11.160] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 12/26/2022]
Abstract
The present study was designed to explore the in vivo-antioxidant capacity and the probable mechanism of AAPs-H, prepared from Auricularia auricula polysaccharides with the optimal extraction conditions by Box-Behnken design and acid hydrolysis, using Caenorhabditis elegans as a model organism. The effects of AAPs-H on the locomotion behavior, life span, antioxidant-related enzymes activities, and antioxidants levels in C. elegans were studied. Furthermore, the potentials of AAPs-H in up-regulating the expression of antioxidant-related genes in C. elegans, such as skn-1, sod-3 and sir-2.1, were also discussed. AAPs-H demonstrated a highly significant protective effect against the damage caused by paraquat, could significantly increase U-Turn frequency of worms (p < 0.01), extend their lifespan, enhance antioxidant systems including GR by 63.96% (p < 0.05), GSH-Px by 71.16% (p < 0.01), SOD by 78.65% (p < 0.01) and CAT by 98.52% (p < 0.01), increase the level of GSH by 28.12% (p < 0.05), and decrease the level of MDA by 39.29% (p < 0.01). The qRT-PCR results showed that AAPs-H could up regulate mRNA expression levels of skn-1, sod-1, sod-2, sod-3 and sir-2.1 in wild-type C. elegans (>1.6 fold) when treated with the concentration of 0.4 mg/mL (p < 0.05 or p < 0.01). Our studies provide evidence that AAPs-H improves antioxidant defense system, and up-regulation of oxidative stress related genes for prevention of stress damage in C. elegans.
Collapse
Affiliation(s)
- Jingyi Gu
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Qiaowei Li
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Jing Liu
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Zhongdu Ye
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Tao Feng
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Ge Wang
- College of Modern Science and Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Weimin Wang
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Yongjun Zhang
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
23
|
Johnson LM, Smith OJ, Hahn DA, Baer CF. Short-term heritable variation overwhelms 200 generations of mutational variance for metabolic traits in Caenorhabditis elegans. Evolution 2020; 74:2451-2464. [PMID: 32989734 DOI: 10.1111/evo.14104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/05/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
Metabolic disorders have a large heritable component, and have increased markedly in human populations over the past few generations. Genome-wide association studies of metabolic traits typically find a substantial unexplained fraction of total heritability, suggesting an important role of spontaneous mutation. An alternative explanation is that epigenetic effects contribute significantly to the heritable variation. Here, we report a study designed to quantify the cumulative effects of spontaneous mutation on adenosine metabolism in the nematode Caenorhabditis elegans, including both the activity and concentration of two metabolic enzymes and the standing pools of their associated metabolites. The only prior studies on the effects of mutation on metabolic enzyme activity, in Drosophila melanogaster, found that total enzyme activity presents a mutational target similar to that of morphological and life-history traits. However, those studies were not designed to account for short-term heritable effects. We find that the short-term heritable variance for most traits is of similar magnitude as the variance among MA lines. This result suggests that the potential heritable effects of epigenetic variation in metabolic disease warrant additional scrutiny.
Collapse
Affiliation(s)
- Lindsay M Johnson
- Department of Biology, University of Florida, Gainesville, Florida, 32611.,Ology Bioservices, Inc., Alachua, Florida, 32615
| | - Olivia J Smith
- Department of Biology, University of Florida, Gainesville, Florida, 32611
| | - Daniel A Hahn
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, 32611.,University of Florida Genetics Institute, Gainesville, Florida, 32611
| | - Charles F Baer
- Department of Biology, University of Florida, Gainesville, Florida, 32611.,University of Florida Genetics Institute, Gainesville, Florida, 32611
| |
Collapse
|
24
|
Lehrbach NJ, Breen PC, Ruvkun G. Protein Sequence Editing of SKN-1A/Nrf1 by Peptide:N-Glycanase Controls Proteasome Gene Expression. Cell 2020; 177:737-750.e15. [PMID: 31002798 DOI: 10.1016/j.cell.2019.03.035] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/14/2018] [Accepted: 03/15/2019] [Indexed: 12/20/2022]
Abstract
The proteasome mediates selective protein degradation and is dynamically regulated in response to proteotoxic challenges. SKN-1A/Nrf1, an endoplasmic reticulum (ER)-associated transcription factor that undergoes N-linked glycosylation, serves as a sensor of proteasome dysfunction and triggers compensatory upregulation of proteasome subunit genes. Here, we show that the PNG-1/NGLY1 peptide:N-glycanase edits the sequence of SKN-1A protein by converting particular N-glycosylated asparagine residues to aspartic acid. Genetically introducing aspartates at these N-glycosylation sites bypasses the requirement for PNG-1/NGLY1, showing that protein sequence editing rather than deglycosylation is key to SKN-1A function. This pathway is required to maintain sufficient proteasome expression and activity, and SKN-1A hyperactivation confers resistance to the proteotoxicity of human amyloid beta peptide. Deglycosylation-dependent protein sequence editing explains how ER-associated and cytosolic isoforms of SKN-1 perform distinct cytoprotective functions corresponding to those of mammalian Nrf1 and Nrf2. Thus, we uncover an unexpected mechanism by which N-linked glycosylation regulates protein function and proteostasis.
Collapse
Affiliation(s)
- Nicolas J Lehrbach
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Peter C Breen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Horsman JW, Heinis FI, Miller DL. A Novel Mechanism To Prevent H 2S Toxicity in Caenorhabditis elegans. Genetics 2019; 213:481-490. [PMID: 31371406 PMCID: PMC6781907 DOI: 10.1534/genetics.119.302326] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/24/2019] [Indexed: 11/18/2022] Open
Abstract
Hydrogen sulfide (H2S) is an endogenously produced signaling molecule that can be cytoprotective, especially in conditions of ischemia/reperfusion injury. However, H2S is also toxic, and unregulated accumulation or exposure to environmental H2S can be lethal. In Caenorhabditis elegans, the hypoxia inducible factor (hif-1) coordinates the initial transcriptional response to H2S, and is essential to survive exposure to low concentrations of H2S. We performed a forward genetic screen to identify mutations that suppress the lethality of hif-1 mutant animals in H2S. The mutations we recovered are specific for H2S, as they do not suppress embryonic lethality or reproductive arrest of hif-1 mutant animals in hypoxia, nor can they prevent the death of hif-1 mutant animals exposed to hydrogen cyanide. The majority of hif-1 suppressor mutations we recovered activate the skn-1/Nrf2 transcription factor. Activation of SKN-1 by hif-1 suppressor mutations increased the expression of a subset of H2S-responsive genes, consistent with previous findings that skn-1 plays a role in the transcriptional response to H2S. Using transgenic rescue, we show that overexpression of a single gene, rhy-1, is sufficient to protect hif-1 mutant animals in H2S. The rhy-1 gene encodes a predicated O-acyltransferase enzyme that has previously been shown to negatively regulate HIF-1 activity. Our data indicate that RHY-1 has novel, hif-1 independent, function that promotes survival in H2S.
Collapse
Affiliation(s)
- Joseph W Horsman
- Department of Biochemistry, University of Washington School of Medicine, Seattle, Washington 98195
| | - Frazer I Heinis
- Department of Biochemistry, University of Washington School of Medicine, Seattle, Washington 98195
| | - Dana L Miller
- Department of Biochemistry, University of Washington School of Medicine, Seattle, Washington 98195
| |
Collapse
|
26
|
Kellerová P, Matoušková P, Lamka J, Vokřál I, Szotáková B, Zajíčková M, Pasák M, Skálová L. Ivermectin-induced changes in the expression of cytochromes P450 and efflux transporters in Haemonchus contortus female and male adults. Vet Parasitol 2019; 273:24-31. [DOI: 10.1016/j.vetpar.2019.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/12/2019] [Accepted: 07/20/2019] [Indexed: 12/12/2022]
|
27
|
Nuclear and cytoplasmic WDR-23 isoforms mediate differential effects on GEN-1 and SKN-1 substrates. Sci Rep 2019; 9:11783. [PMID: 31409866 PMCID: PMC6692315 DOI: 10.1038/s41598-019-48286-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/01/2019] [Indexed: 01/14/2023] Open
Abstract
Maintaining a healthy cellular environment requires the constant control of proteostasis. E3 ubiquitin ligase complexes facilitate the post-translational addition of ubiquitin, which based on the quantity and specific lysine linkages, results in different outcomes. Our studies reveal the CUL4-DDB1 substrate receptor, WDR23, as both a positive and a negative regulator in cellular stress responses. These opposing roles are mediated by two distinct isoforms: WDR-23A in the cytoplasm and WDR-23B in the nucleus. C. elegans expressing only WDR-23A display activation of SKN-1 and enhanced survival to oxidative stress, whereas animals with restricted WDR-23B expression do not. Additionally, we identify GEN-1, a Holliday junction resolvase, as an evolutionarily conserved WDR-23 substrate and find that the nuclear and cytoplasmic isoforms of WDR-23 differentially affect double-strand break repair. Our results suggest that through differential ubiquitination, nuclear WDR-23B inhibits the activity of substrates, most likely by promoting protein turnover, while cytoplasmic WDR-23A performs a proteasome-independent role. Together, our results establish a cooperative role between two spatially distinct isoforms of WDR-23 in ensuring proper regulation of WDR-23 substrates.
Collapse
|
28
|
Ganner A, Gerber J, Ziegler AK, Li Y, Kandzia J, Matulenski T, Kreis S, Breves G, Klein M, Walz G, Neumann-Haefelin E. CBP-1/p300 acetyltransferase regulates SKN-1/Nrf cellular levels, nuclear localization, and activity in C. elegans. Exp Gerontol 2019; 126:110690. [PMID: 31419472 DOI: 10.1016/j.exger.2019.110690] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/18/2019] [Accepted: 08/11/2019] [Indexed: 11/28/2022]
Abstract
SKN-1/Nrf transcription factors regulate diverse biological processes essentially stress defense, detoxification, and longevity. Studies in model organisms have identified a broad range of regulatory processes and mechanisms that profoundly influence SKN-1/Nrf functions. Defining the mechanisms how SKN-1 is regulated will provide insight how cells defend against diverse stressors contributing to aging and disease. In this study, we demonstrate a crucial role for the acetyltransferase CBP-1, the C. elegans homolog of mammalian CREB-binding protein CBP/p300 in the activation of SKN-1. cbp-1 is essential for tolerance of oxidative stress and normal lifespan. CBP-1 directly interacts with SKN-1 and increases SKN-1 protein abundance. In particular CBP-1 modulates SKN-1 nuclear translocation under basal conditions and in response to stress and promotes SKN-1-dependent transcription of protective genes. Moreover, CBP-1 is required for SKN-1 nuclear recruitment, transcriptional activity, and longevity due to reduced insulin/IGF-1-like signaling, mTOR-, and GSK-3 signaling. Our findings establish the acetyltransferase CBP-1 as a critical activator of SKN-1 that directly modulates SKN-1 protein stability, nuclear localization, and function to ascertain normal stress response and lifespan.
Collapse
Affiliation(s)
- Athina Ganner
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Julia Gerber
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Department of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Anna-Katharina Ziegler
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Department of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Yujie Li
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Jakob Kandzia
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Tanja Matulenski
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Department of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Saskia Kreis
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Department of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Gerhard Breves
- Department of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Marinella Klein
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Gerd Walz
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Elke Neumann-Haefelin
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
29
|
Ferguson GD, Bridge WJ. The glutathione system and the related thiol network in Caenorhabditis elegans. Redox Biol 2019. [DOI: 10.1110.1016/j.redox.2019.101171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
30
|
Hamaguchi T, Sato K, Vicente CSL, Hasegawa K. Nematicidal actions of the marigold exudate α-terthienyl: oxidative stress-inducing compound penetrates nematode hypodermis. Biol Open 2019; 8:bio038646. [PMID: 30926596 PMCID: PMC6504006 DOI: 10.1242/bio.038646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/22/2019] [Indexed: 12/17/2022] Open
Abstract
α-terthienyl is an allelochemical derived from the roots of marigold (Tagetes spp.), which is used to suppress plant parasitic nematodes. We investigated the nematicidal activity of α-terthienyl against the model organism Caenorhabditis elegans and the root-knot nematode, Meloidogyne incognita. As reported previously, α-terthienyl action was much higher after photoactivation, but was still effective against C. elegans dauer larvae and M. incognita second stage juveniles, even without photoactivation. Expression induction of two major enzymes, glutathione S-transferase (GST) and superoxide dismutase (SOD), was restricted in C. elegans hypodermis following treatment with α-terthienyl. The susceptibility of nematodes to α-terthienyl changed when the expression of GST and SOD was induced or suppressed. From these results, under dark conditions (without photoactivation), α-terthienyl is an oxidative stress-inducing chemical that effectively penetrates the nematode hypodermis and exerts nematicidal activity, suggesting high potential for its use as a practicable nematode control agent in agriculture.
Collapse
Affiliation(s)
- Takahiro Hamaguchi
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan
| | - Kazuki Sato
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Cláudia S L Vicente
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan
- NemaLab/ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Departamento de Biologia, Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002-554 Évora, Portugal
| | - Koichi Hasegawa
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan
| |
Collapse
|
31
|
Ferguson GD, Bridge WJ. The glutathione system and the related thiol network in Caenorhabditis elegans. Redox Biol 2019; 24:101171. [PMID: 30901603 PMCID: PMC6429583 DOI: 10.1016/j.redox.2019.101171] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/07/2019] [Accepted: 03/13/2019] [Indexed: 01/09/2023] Open
Abstract
Advances in the field of redox biology have contributed to the understanding of the complexity of the thiol-based system in mediating signal transduction. The redox environment is the overall spatiotemporal balance of oxidation-reduction systems within the integrated compartments of the cell, tissues and whole organisms. The ratio of the reduced to disulfide glutathione redox couple (GSH:GSSG) is a key indicator of the redox environment and its associated cellular health. The reaction mechanisms of glutathione-dependent and related thiol-based enzymes play a fundamental role in the function of GSH as a redox regulator. Glutathione homeostasis is maintained by the balance of GSH synthesis (de novo and salvage pathways) and its utilization through its detoxification, thiol signalling, and antioxidant defence functions via GSH-dependent enzymes and free radical scavenging. As such, GSH acts in concert with the entire redox network to maintain reducing conditions in the cell. Caenorhabditis elegans offers a simple model to facilitate further understanding at the multicellular level of the physiological functions of GSH and the GSH-dependent redox network. This review discusses the C. elegans studies that have investigated glutathione and related systems of the redox network including; orthologs to the protein-encoding genes of GSH synthesis; glutathione peroxidases; glutathione-S-transferases; and the glutaredoxin, thioredoxin and peroxiredoxin systems.
Collapse
Affiliation(s)
- Gavin Douglas Ferguson
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Wallace John Bridge
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
32
|
Cytoplasmic and Mitochondrial NADPH-Coupled Redox Systems in the Regulation of Aging. Nutrients 2019; 11:nu11030504. [PMID: 30818813 PMCID: PMC6471790 DOI: 10.3390/nu11030504] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/20/2022] Open
Abstract
The reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) protects against redox stress by providing reducing equivalents to antioxidants such as glutathione and thioredoxin. NADPH levels decline with aging in several tissues, but whether this is a major driving force for the aging process has not been well established. Global or neural overexpression of several cytoplasmic enzymes that synthesize NADPH have been shown to extend lifespan in model organisms such as Drosophila suggesting a positive relationship between cytoplasmic NADPH levels and longevity. Mitochondrial NADPH plays an important role in the protection against redox stress and cell death and mitochondrial NADPH-utilizing thioredoxin reductase 2 levels correlate with species longevity in cells from rodents and primates. Mitochondrial NADPH shuttles allow for some NADPH flux between the cytoplasm and mitochondria. Since a decline of nicotinamide adenine dinucleotide (NAD+) is linked with aging and because NADP+ is exclusively synthesized from NAD+ by cytoplasmic and mitochondrial NAD+ kinases, a decline in the cytoplasmic or mitochondrial NADPH pool may also contribute to the aging process. Therefore pro-longevity therapies should aim to maintain the levels of both NAD+ and NADPH in aging tissues.
Collapse
|
33
|
Fang Z, Chen Y, Wang G, Feng T, Shen M, Xiao B, Gu J, Wang W, Li J, Zhang Y. Evaluation of the antioxidant effects of acid hydrolysates from Auricularia auricular polysaccharides using a Caenorhabditis elegans model. Food Funct 2019; 10:5531-5543. [DOI: 10.1039/c8fo02589d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Caenorhabditis elegans is an important model organism for studying stress response mechanisms. In this paper, C. elegans was used to evaluate the antioxidant effects of acid hydrolysates from Auricularia auricular polysaccharides.
Collapse
Affiliation(s)
- Zhiyu Fang
- College of Life Sciences
- China Jiliang University
- Hangzhou
- China
| | - Yutao Chen
- College of Life Sciences
- China Jiliang University
- Hangzhou
- China
| | - Ge Wang
- College of Modern Science and Technology
- China Jiliang University
- Zhejiang Province
- China
| | - Tao Feng
- College of Life Sciences
- China Jiliang University
- Hangzhou
- China
| | - Meng Shen
- College of Life Sciences
- China Jiliang University
- Hangzhou
- China
| | - Bin Xiao
- College of Life Sciences
- China Jiliang University
- Hangzhou
- China
| | - Jingyi Gu
- College of Life Sciences
- China Jiliang University
- Hangzhou
- China
| | - Weimin Wang
- College of Life Sciences
- China Jiliang University
- Hangzhou
- China
| | - Jia Li
- College of Life Sciences
- China Jiliang University
- Hangzhou
- China
| | - Yongjun Zhang
- College of Life Sciences
- China Jiliang University
- Hangzhou
- China
| |
Collapse
|
34
|
WDR-23 and SKN-1/Nrf2 Coordinate with the BLI-3 Dual Oxidase in Response to Iodide-Triggered Oxidative Stress. G3-GENES GENOMES GENETICS 2018; 8:3515-3527. [PMID: 30166349 PMCID: PMC6222583 DOI: 10.1534/g3.118.200586] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Animals utilize conserved mechanisms to regulate oxidative stress. The C. elegans SKN-1 protein is homologous to the vertebrate Nrf (NF-E2-related factor) family of cap 'n' collar (CnC) transcription factors and functions as a core regulator of xenobiotic and oxidative stress responses. The WD40 repeat-containing protein WDR-23 is a key negative regulator of SKN-1 activity. We previously found that the oxidative stress induced by excess iodide can be relieved by loss of function in the BLI-3/TSP-15/DOXA-1 dual oxidase complex. To further understand the molecular mechanism of this process, we screened for new mutants that can survive in excess iodide and identified gain-of-function mutations in skn-1 and loss-of-function mutations in wdr-23 The SKN-1C isoform functions in the hypodermis to affect animal's response to excess iodide, while the SKN-1A isoform appears to play a minor role. wdr-23(lf) can interact with bli-3 mutations in a manner different from skn-1(gf) Transcriptome studies suggest that excess iodide causes developmental arrest largely independent of changes in gene expression, and wdr-23(lf) could affect the expression of a subset of genes by a mechanism different from SKN-1 activation. We propose that WDR-23 and SKN-1 coordinate with the BLI-3/TSP-15/DOXA-1 dual oxidase complex in response to iodide-triggered oxidative stress.
Collapse
|
35
|
Mohankumar A, Shanmugam G, Kalaiselvi D, Levenson C, Nivitha S, Thiruppathi G, Sundararaj P. East Indian sandalwood ( Santalum album L.) oil confers neuroprotection and geroprotection in Caenorhabditis elegans via activating SKN-1/Nrf2 signaling pathway. RSC Adv 2018; 8:33753-33774. [PMID: 30319772 PMCID: PMC6171454 DOI: 10.1039/c8ra05195j] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 09/18/2018] [Indexed: 02/06/2023] Open
Abstract
East Indian Sandalwood Oil (EISO) has diverse beneficial effects and has been used for thousands of years in traditional folk-medicine for treatment of different human ailments. However, there has been no in-depth scientific investigation to decipher the neuroprotective and geroprotective mechanism of EISO and its principle components, α- and β-santalol. Hence the current study was undertaken to assess the protective effects of EISO, and α- and β-santalol against neurotoxic (6-OHDA/6-hydroxydopamine) and proteotoxic (α-synuclein) stresses in a Caenorhabditis elegans model. Initially, we found that EISO and its principle components exerted an excellent antioxidant and antiapoptotic activity as it was able to extend the lifespan, and inhibit the ROS generation, and germline cell apoptosis in 6-OHDA-intoxicated C. elegans. Further, we showed that supplementation of EISO, and α- and β-santalol reduced the 6-OHDA and α-synuclein-induced Parkinson's disease associated pathologies and improved the physiological functions. The genetic and reporter gene expression analysis revealed that an EISO, or α- and β-santalol-mediated protective effect does not appear to rely on DAF-2/DAF-16, but selectively regulates SKN-1 and its downstream targets involved in antioxidant defense and geroprotective processes. Together, our findings indicated that EISO and its principle components are worth exploring further as a candidate redox-based neuroprotectant for the prevention and management of age-related neurological disorders.
Collapse
Affiliation(s)
- A Mohankumar
- Unit of Nematology, Department of Zoology, Bharathiar University, Coimbatore, Tamilnadu-641046, India. ; ; ; Tel: +91-9943340405; Tel: +91-9677667720
| | - G Shanmugam
- Unit of Nematology, Department of Zoology, Bharathiar University, Coimbatore, Tamilnadu-641046, India. ; ; ; Tel: +91-9943340405; Tel: +91-9677667720
| | - D Kalaiselvi
- Unit of Nematology, Department of Zoology, Bharathiar University, Coimbatore, Tamilnadu-641046, India. ; ; ; Tel: +91-9943340405; Tel: +91-9677667720
| | - C Levenson
- Santalis Pharmaceuticals Inc., 18618 Tuscany Stone, Suite 100, San Antonio, Texas 78258, USA
| | - S Nivitha
- College of Science, Northeastern University, Boston, Massachusetts 02115, USA
| | - G Thiruppathi
- Unit of Nematology, Department of Zoology, Bharathiar University, Coimbatore, Tamilnadu-641046, India. ; ; ; Tel: +91-9943340405; Tel: +91-9677667720
| | - P Sundararaj
- Unit of Nematology, Department of Zoology, Bharathiar University, Coimbatore, Tamilnadu-641046, India. ; ; ; Tel: +91-9943340405; Tel: +91-9677667720
| |
Collapse
|
36
|
Fontaine P, Choe K. The transcription factor SKN-1 and detoxification gene ugt-22 alter albendazole efficacy in Caenorhabditis elegans. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:312-319. [PMID: 29793058 PMCID: PMC6039320 DOI: 10.1016/j.ijpddr.2018.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/18/2018] [Accepted: 04/22/2018] [Indexed: 11/29/2022]
Abstract
Parasitic nematodes infect over 1/4 th of the human population and are a major burden on livestock and crop production. Benzimidazole class anthelmintics are widely used to treat infections, but resistance is a widespread problem. Mutation of genes encoding the benzimidazole target β-tubulin is a well-established mechanism of resistance, but recent evidence suggests that metabolism of the drugs may also occur. Our objective was to investigate contributions of the detoxification-response transcription factor SKN-1 to anthelmintic drug resistance using C. elegans. We find that skn-1 mutations alter EC50 of the common benzimidazole albendazole in motility assays by 1.5–1.7 fold. We also identify ugt-22 as a detoxification gene associated with SKN-1 that influences albendazole efficacy. Mutation and overexpression of ugt-22 alter albendazole EC50 by 2.3–2.5-fold. The influence of a nematode UGT on albendazole efficacy is consistent with recent studies demonstrating glucose conjugation of benzimidazoles.
Collapse
Affiliation(s)
- Pauline Fontaine
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Keith Choe
- Department of Biology, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
37
|
A Damage Sensor Associated with the Cuticle Coordinates Three Core Environmental Stress Responses in Caenorhabditis elegans. Genetics 2018; 208:1467-1482. [PMID: 29487136 PMCID: PMC5887142 DOI: 10.1534/genetics.118.300827] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/08/2018] [Indexed: 12/24/2022] Open
Abstract
Although extracellular matrices function as protective barriers to many types of environmental insult, their role in sensing stress and regulating adaptive gene induction responses has not been studied carefully... Extracellular matrix barriers and inducible cytoprotective genes form successive lines of defense against chemical and microbial environmental stressors. The barrier in nematodes is a collagenous extracellular matrix called the cuticle. In Caenorhabditis elegans, disruption of some cuticle collagen genes activates osmolyte and antimicrobial response genes. Physical damage to the epidermis also activates antimicrobial responses. Here, we assayed the effect of knocking down genes required for cuticle and epidermal integrity on diverse cellular stress responses. We found that disruption of specific bands of collagen, called annular furrows, coactivates detoxification, hyperosmotic, and antimicrobial response genes, but not other stress responses. Disruption of other cuticle structures and epidermal integrity does not have the same effect. Several transcription factors act downstream of furrow loss. SKN-1/Nrf and ELT-3/GATA are required for detoxification, SKN-1/Nrf is partially required for the osmolyte response, and STA-2/Stat and ELT-3/GATA for antimicrobial gene expression. Our results are consistent with a cuticle-associated damage sensor that coordinates detoxification, hyperosmotic, and antimicrobial responses through overlapping, but distinct, downstream signaling.
Collapse
|
38
|
Abstract
Reactive oxygen species (ROS), generated externally and during aerobic metabolism, are a potent cause of cell damage. Oxidative damage is a feature of many diseases and ageing, including age-associated diseases, such as diabetes, cancer, cardiovascular and neurodegenerative diseases. Indeed, this association helped lead to the widely expounded 'Free Radical Theory of Aging', proposing that the accumulation of ROS-induced damage is the underlying cause of ageing. In the last decade, it has become apparent that ROS play more complex roles in ageing than simply causing damage. This includes the induction of signalling pathways that protect against/repair cell damage. Cells encode a variety of enzymes that metabolise ROS, some of which reduce them to less reactive species. In this chapter, we review the evidence that manipulating the levels of these enzymes has any effect/s on ageing. We will also highlight a few examples illustrating why it is an over-simplification to describe the activities of some of these enzymes as 'antioxidants'. We discuss how these studies have helped refine our view of how ROS and ROS-metabolising enzymes contribute to the ageing process.
Collapse
Affiliation(s)
- Elizabeth Veal
- Institute for Cell and Molecular Biosciences and Institute for Ageing, Newcastle University, Tyne, UK.
| | - Thomas Jackson
- Institute for Cell and Molecular Biosciences and Institute for Ageing, Newcastle University, Tyne, UK
| | - Heather Latimer
- Institute for Cell and Molecular Biosciences and Institute for Ageing, Newcastle University, Tyne, UK
| |
Collapse
|
39
|
Tullet JM, Green JW, Au C, Benedetto A, Thompson MA, Clark E, Gilliat AF, Young A, Schmeisser K, Gems D. The SKN-1/Nrf2 transcription factor can protect against oxidative stress and increase lifespan in C. elegans by distinct mechanisms. Aging Cell 2017; 16:1191-1194. [PMID: 28612944 PMCID: PMC5595692 DOI: 10.1111/acel.12627] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2017] [Indexed: 11/29/2022] Open
Abstract
In C. elegans, the skn‐1 gene encodes a transcription factor that resembles mammalian Nrf2 and activates a detoxification response. skn‐1 promotes resistance to oxidative stress (Oxr) and also increases lifespan, and it has been suggested that the former causes the latter, consistent with the theory that oxidative damage causes aging. Here, we report that effects of SKN‐1 on Oxr and longevity can be dissociated. We also establish that skn‐1 expression can be activated by the DAF‐16/FoxO transcription factor, another central regulator of growth, metabolism, and aging. Notably, skn‐1 is required for Oxr but not increased lifespan resulting from over‐expression of DAF‐16; concomitantly, DAF‐16 over‐expression rescues the short lifespan of skn‐1 mutants but not their hypersensitivity to oxidative stress. These results suggest that SKN‐1 promotes longevity by a mechanism other than protection against oxidative damage.
Collapse
Affiliation(s)
- Jennifer M.A. Tullet
- School of Biosciences; University of Kent; Canterbury Kent CT2 7NZ UK
- Institute of Healthy Ageing; Department of Genetics, Evolution and Environment; University College London; Gower Street London WC1E 6BT UK
| | - James W. Green
- School of Biosciences; University of Kent; Canterbury Kent CT2 7NZ UK
| | - Catherine Au
- Institute of Healthy Ageing; Department of Genetics, Evolution and Environment; University College London; Gower Street London WC1E 6BT UK
| | | | | | - Emily Clark
- Institute of Healthy Ageing; Department of Genetics, Evolution and Environment; University College London; Gower Street London WC1E 6BT UK
| | - Ann F. Gilliat
- Institute of Healthy Ageing; Department of Genetics, Evolution and Environment; University College London; Gower Street London WC1E 6BT UK
| | - Adelaide Young
- Institute of Healthy Ageing; Department of Genetics, Evolution and Environment; University College London; Gower Street London WC1E 6BT UK
| | - Kathrin Schmeisser
- Institute of Healthy Ageing; Department of Genetics, Evolution and Environment; University College London; Gower Street London WC1E 6BT UK
| | - David Gems
- Institute of Healthy Ageing; Department of Genetics, Evolution and Environment; University College London; Gower Street London WC1E 6BT UK
| |
Collapse
|
40
|
A Genetic Analysis of the Caenorhabditis elegans Detoxification Response. Genetics 2017; 206:939-952. [PMID: 28428286 DOI: 10.1534/genetics.117.202515] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/18/2017] [Indexed: 12/11/2022] Open
Abstract
Oxidative damage contributes to human diseases of aging including diabetes, cancer, and cardiovascular disorders. Reactive oxygen species resulting from xenobiotic and endogenous metabolites are sensed by a poorly understood process, triggering a cascade of regulatory factors and leading to the activation of the transcription factor Nrf2 (Nuclear factor-erythroid-related factor 2, SKN-1 in Caenorhabditis elegans). Nrf2/SKN-1 activation promotes the induction of the phase II detoxification system that serves to limit oxidative stress. We have extended a previous C. elegans genetic approach to explore the mechanisms by which a phase II enzyme is induced by endogenous and exogenous oxidants. The xrep (xenobiotics response pathway) mutants were isolated as defective in their ability to properly regulate the induction of a glutathione S-transferase (GST) reporter. The xrep-1 gene was previously identified as wdr-23, which encodes a C. elegans homolog of the mammalian β-propeller repeat-containing protein WDR-23 Here, we identify and confirm the mutations in xrep-2, xrep-3, and xrep-4 The xrep-2 gene is alh-6, an ortholog of a human gene mutated in familial hyperprolinemia. The xrep-3 mutation is a gain-of-function allele of skn-1 The xrep-4 gene is F46F11.6, which encodes a F-box-containing protein. We demonstrate that xrep-4 alters the stability of WDR-23 (xrep-1), a key regulator of SKN-1 (xrep-3). Epistatic relationships among the xrep mutants and their interacting partners allow us to propose an ordered genetic pathway by which endogenous and exogenous stressors induce the phase II detoxification response.
Collapse
|
41
|
Lo JY, Spatola BN, Curran SP. WDR23 regulates NRF2 independently of KEAP1. PLoS Genet 2017; 13:e1006762. [PMID: 28453520 PMCID: PMC5428976 DOI: 10.1371/journal.pgen.1006762] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 05/12/2017] [Accepted: 04/13/2017] [Indexed: 12/22/2022] Open
Abstract
Cellular adaptation to stress is essential to ensure organismal survival. NRF2/NFE2L2 is a key determinant of xenobiotic stress responses, and loss of negative regulation by the KEAP1-CUL3 proteasome system is implicated in several chemo- and radiation-resistant cancers. Advantageously using C. elegans alongside human cell culture models, we establish a new WDR23-DDB1-CUL4 regulatory axis for NRF2 activity that operates independently of the canonical KEAP1-CUL3 system. WDR23 binds the DIDLID sequence within the Neh2 domain of NRF2 to regulate its stability; this regulation is not dependent on the KEAP1-binding DLG or ETGE motifs. The C-terminal domain of WDR23 is highly conserved and involved in regulation of NRF2 by the DDB1-CUL4 complex. The addition of WDR23 increases cellular sensitivity to cytotoxic chemotherapeutic drugs and suppresses NRF2 in KEAP1-negative cancer cell lines. Together, our results identify WDR23 as an alternative regulator of NRF2 proteostasis and uncover a cellular pathway that regulates NRF2 activity and capacity for cytoprotection independently of KEAP1.
Collapse
Affiliation(s)
- Jacqueline Y. Lo
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, California, United States of America
- University of Southern California, Dornsife College of Letters, Arts, and Sciences, Department of Molecular and Computational Biology, Los Angeles, California, United States of America
| | - Brett N. Spatola
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, California, United States of America
- University of Southern California, Dornsife College of Letters, Arts, and Sciences, Department of Molecular and Computational Biology, Los Angeles, California, United States of America
| | - Sean P. Curran
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, California, United States of America
- University of Southern California, Dornsife College of Letters, Arts, and Sciences, Department of Molecular and Computational Biology, Los Angeles, California, United States of America
| |
Collapse
|
42
|
F-Box Protein XREP-4 Is a New Regulator of the Oxidative Stress Response in Caenorhabditis elegans. Genetics 2017; 206:859-871. [PMID: 28341649 DOI: 10.1534/genetics.117.200592] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/16/2017] [Indexed: 12/18/2022] Open
Abstract
The transcription factor SKN-1 (Skinhead family member-1) in Caenorhabditis elegans is a homolog of the mammalian Nrf-2 protein and functions to promote oxidative stress resistance and longevity. SKN-1 mediates protection from reactive oxygen species (ROS) via the transcriptional activation of genes involved in antioxidant defense and phase II detoxification. Although many core regulators of SKN-1 have been identified, much remains unknown about this complex signaling pathway. We carried out an ethyl methanesulfonate (EMS) mutagenesis screen and isolated six independent mutants with attenuated SKN-1-dependent gene activation in response to acrylamide. All six were found to contain mutations in F46F11.6/xrep-4 (xenobiotics response pathways-4), which encodes an uncharacterized F-box protein. Loss of xrep-4 inhibits the skn-1-dependent expression of detoxification genes in response to prooxidants and decreases survival of oxidative stress, but does not shorten life span under standard culture conditions. XREP-4 interacts with the ubiquitin ligase component SKR-1 and the SKN-1 principal repressor WDR-23, and knockdown of xrep-4 increases nuclear localization of a WDR-23::GFP fusion protein. Furthermore, a missense mutation in the conserved XREP-4 F-box domain that reduces interaction with SKR-1 but not WDR-23 strongly attenuates SKN-1-dependent gene activation. These results are consistent with XREP-4 influencing the SKN-1 stress response by functioning as a bridge between WDR-23 and the ubiquitin ligase component SKR-1.
Collapse
|
43
|
Wu CW, Deonarine A, Przybysz A, Strange K, Choe KP. The Skp1 Homologs SKR-1/2 Are Required for the Caenorhabditis elegans SKN-1 Antioxidant/Detoxification Response Independently of p38 MAPK. PLoS Genet 2016; 12:e1006361. [PMID: 27776126 PMCID: PMC5077136 DOI: 10.1371/journal.pgen.1006361] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 09/13/2016] [Indexed: 01/12/2023] Open
Abstract
SKN-1/Nrf are the primary antioxidant/detoxification response transcription factors in animals and they promote health and longevity in many contexts. SKN-1/Nrf are activated by a remarkably broad-range of natural and synthetic compounds and physiological conditions. Defining the signaling mechanisms that regulate SKN-1/Nrf activation provides insights into how cells coordinate responses to stress. Nrf2 in mammals is regulated in part by the redox sensor repressor protein named Keap1. In C. elegans, the p38 MAPK cascade in the intestine activates SKN-1 during oxidative stress by promoting its nuclear accumulation. Interestingly, we find variation in the kinetics of p38 MAPK activation and tissues with SKN-1 nuclear accumulation among different pro-oxidants that all trigger strong induction of SKN-1 target genes. Using genome-wide RNAi screening, we identify new genes that are required for activation of the core SKN-1 target gene gst-4 during exposure to the natural pro-oxidant juglone. Among 10 putative activators identified in this screen was skr-1/2, highly conserved homologs of yeast and mammalian Skp1, which function to assemble protein complexes. Silencing of skr-1/2 inhibits induction of SKN-1 dependent detoxification genes and reduces resistance to pro-oxidants without decreasing p38 MAPK activation. Global transcriptomics revealed strong correlation between genes that are regulated by SKR-1/2 and SKN-1 indicating a high degree of specificity. We also show that SKR-1/2 functions upstream of the WD40 repeat protein WDR-23, which binds to and inhibits SKN-1. Together, these results identify a novel p38 MAPK independent signaling mechanism that activates SKN-1 via SKR-1/2 and involves WDR-23.
Collapse
Affiliation(s)
- Cheng-Wei Wu
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Andrew Deonarine
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620
| | - Aaron Przybysz
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109
| | - Kevin Strange
- The MDI Biological Laboratory, Salisbury Cove, ME 04672
| | - Keith P. Choe
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
- * E-mail:
| |
Collapse
|
44
|
Braeckman BP, Smolders A, Back P, De Henau S. In Vivo Detection of Reactive Oxygen Species and Redox Status in Caenorhabditis elegans. Antioxid Redox Signal 2016; 25:577-92. [PMID: 27306519 PMCID: PMC5041511 DOI: 10.1089/ars.2016.6751] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/14/2016] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Due to its large families of redox-active enzymes, genetic amenability, and complete transparency, the nematode Caenorhabditis elegans has the potential to become an important model for the in vivo study of redox biology. RECENT ADVANCES The recent development of several genetically encoded ratiometric reactive oxygen species (ROS) and redox sensors has revolutionized the quantification and precise localization of ROS and redox signals in living organisms. Only few exploratory studies have applied these sensors in C. elegans and undoubtedly much remains to be discovered in this model. As a follow-up to our recent findings that the C. elegans somatic gonad uses superoxide and hydrogen peroxide (H2O2) signals to communicate with the germline, we here analyze the patterns of H2O2 inside the C. elegans germline. CRITICAL ISSUES Despite the advantages of genetically encoded ROS and redox sensors over classic chemical sensors, still several general as well as C. elegans-specific issues need to be addressed. The major concerns for the application of these sensors in C. elegans are (i) decreased vitality of some reporter strains, (ii) interference of autofluorescent compartments with the sensor signal, and (iii) the use of immobilization methods that do not influence the worm's redox physiology. FUTURE DIRECTIONS We propose that several of the current issues may be solved by designing reporter strains carrying single copies of codon-optimized sensors. Preferably, these sensors should have their emission wavelengths in the red region, where autofluorescence is absent. Worm analysis could be optimized using four-dimensional ratiometric fluorescence microscopy of worms immobilized in microfluidic chips. Antioxid. Redox Signal. 25, 577-592.
Collapse
Affiliation(s)
| | - Arne Smolders
- Biology Department, Ghent University, Ghent, Belgium
| | - Patricia Back
- Biology Department, Ghent University, Ghent, Belgium
| | - Sasha De Henau
- Biology Department, Ghent University, Ghent, Belgium
- Biomedical Genetics, University Medical Center Untrecht, Utrecht, The Netherlands
| |
Collapse
|
45
|
Crombie TA, Tang L, Choe KP, Julian D. Inhibition of the oxidative stress response by heat stress in Caenorhabditis elegans. J Exp Biol 2016; 219:2201-11. [DOI: 10.1242/jeb.135327] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 05/09/2016] [Indexed: 12/14/2022]
Abstract
It has long been recognized that simultaneous exposure to heat stress and oxidative stress shows a synergistic interaction that reduces organismal fitness, but relatively little is known about the mechanisms underlying this interaction. We investigated the role of molecular stress responses in driving this synergistic interaction using the nematode Caenorhabditis elegans. To induce oxidative stress, we used the pro-oxidant compounds acrylamide, paraquat, and juglone. As expected, we found that heat stress and oxidative stress interact synergistically to reduce survival. Compared to exposure to each stressor alone, during simultaneous, sub-lethal exposure to heat stress and oxidative stress the normal induction of key oxidative stress response (OxSR) genes was generally inhibited while the induction of key heat shock response (HSR) genes was not. Genetically activating the SKN-1 dependent OxSR increased a marker for protein aggregation and decreased whole-worm survival during heat stress alone, with the latter being independent of HSF-1. In contrast, inactivating the HSR by HSF-1 knockdown, which would be expected to decrease basal heat shock protein expression, increased survival during oxidative stress alone compared to wild- type worms. Taken together, these data suggest that in C. elegans the HSR and OxSR cannot be simultaneously activated to the same extent that each can be activated during a single stressor exposure. We conclude that the observed synergistic reduction in survival during combined exposure to heat stress and oxidative stress is due, at least in part, to inhibition of the OxSR during activation of the HSR.
Collapse
Affiliation(s)
| | - Lanlan Tang
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Keith P. Choe
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - David Julian
- Department of Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
46
|
Isolation of a Hypomorphic skn-1 Allele That Does Not Require a Balancer for Maintenance. G3-GENES GENOMES GENETICS 2015; 6:551-8. [PMID: 26715089 PMCID: PMC4777118 DOI: 10.1534/g3.115.023010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In Caenorhabditis elegans, the transcription factor SKN-1 has emerged as a central coordinator of stress responses and longevity, increasing the need for genetic tools to study its regulation and function. However, current loss-of-function alleles cause fully penetrant maternal effect embryonic lethality, and must be maintained with genetic balancers that require careful monitoring and labor intensive strategies to obtain large populations. In this study, we identified a strong, but viable skn-1 hypomorphic allele skn-1(zj15) from a genetic screen for suppressors of wdr-23, a direct regulator of the transcription factor. skn-1(zj15) is a point mutation in an intron that causes mis-splicing of a fraction of mRNA, and strongly reduces wildtype mRNA levels of the two long skn-1a/c variants. The skn-1(zj15) allele reduces detoxification gene expression and stress resistance to levels comparable to skn-1 RNAi, but, unlike RNAi, it is not restricted from some tissues. We also show that skn-1(zj15) is epistatic to canonical upstream regulators, demonstrating its utility for genetic analysis of skn-1 function and regulation in cases where large numbers of worms are needed, a balancer is problematic, diet is varied, or RNAi cannot be used.
Collapse
|