1
|
Sang Y, Ning X, Xu Q, Wang L, Yan Y, Zhang L, Bi X. Characterization of transcriptomics during aging and genes required for lifespan in Drosophila intestine. Sci Rep 2025; 15:14692. [PMID: 40287511 PMCID: PMC12033250 DOI: 10.1038/s41598-025-98888-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Aging is closely associated with imbalanced transcription. Regulated transcription in different organs is significantly different during aging, indicating that organ-specific transcriptomics is critical for understanding this process. Here we analyze the transcriptomics of the intestines of 3-, 15-, 30-, 40- and 50-days old female flies, which include young, middle-aged, and old flies. We find that the differential expression of protein-coding genes and lncRNAs is significant in aging, and fly age is characterized by well-separated gene expression trajectories. The highly clustered differentially expressed genes are connected to specific biological processes and signalling pathways. In particular, the Imd and Toll pathways are the top two immune signalling pathways that are highly regulated, and members with increased expression in the Imd pathway span all upstream activating events and include many ubiquitylation-associated factors and regulators of NF-κB factor Relish. Increased expression of Toll pathway members includes sensing mediators for all kinds of microorganisms and multiple proteases in the proteolytic processing cascade. Moreover, the expression of molecular markers of intestinal cells is greatly changed. Enterocyte markers are the most significantly influenced, and enteroendocrine markers AstA and NPF, as well as intestinal stem cell (ISC)/enteroblast (EB) markers Esg and Klu are expressed at low levels in young flies and much higher levels in aged flies. Furthermore, lncRNAs show similar expression trends and clustering patterns to those of protein-coding genes. Lastly, we find that ISC/EB-specific knock-down of 13 out of 19 genes that are highly differentially expressed reduces the lifespan of the fly. Together, the characterized transcriptomics and newly identified functional genes in aging will provide potential targets for preventing intestinal aging and associated disorders.
Collapse
Affiliation(s)
- Yan Sang
- Affiliated Hospital of Nantong University, School of Medicine, Nantong University, Nantong, 226001, China
| | - Xiufan Ning
- School of Medicine, Nantong University, Nantong, 226001, China
| | - Qi Xu
- College of Basic Medical Medicine, Dalian Medical University, Dalian, 116044, China
| | - Lan Wang
- College of Basic Medical Medicine, Dalian Medical University, Dalian, 116044, China
| | - Yuhang Yan
- School of Medicine, Nantong University, Nantong, 226001, China
| | - Lijiao Zhang
- School of Medicine, Nantong University, Nantong, 226001, China
| | - Xiaolin Bi
- School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
2
|
Park JS, Sung MJ, Na HJ. Drosophila model systems reveal intestinal stem cells as key players in aging. Ann N Y Acad Sci 2025. [PMID: 40276941 DOI: 10.1111/nyas.15351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
The intestines play important roles in responding immediately and dynamically to food intake, environmental stress, and metabolic dysfunction, and they are involved in various human diseases and aging. A key part of their function is governed by intestinal stem cells (ISCs); therefore, understanding ISCs is vital. Dysregulation of ISC activity, which is influenced by various cell signaling pathways and environmental signals, can lead to inflammatory responses, tissue damage, and increased cancer susceptibility. Aging exacerbates these dynamics and affects ISC function and tissue elasticity. Additionally, proliferation and differentiation profoundly affect ISC behavior and gut health, highlighting the complex interplay between environmental factors and gut homeostasis. Drosophila models help us understand the complex regulatory networks in the gut, providing valuable insights into disease mechanisms and therapeutic strategies targeting human intestinal diseases.
Collapse
Affiliation(s)
- Joung-Sun Park
- Institute of Nanobio Convergence, Pusan National University, Busan, Republic of Korea
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Mi Jeong Sung
- Aging Research Group, Division of Food Functionality Research, Korea Food Research Institute, Wanju, Republic of Korea
| | - Hyun-Jin Na
- Aging Research Group, Division of Food Functionality Research, Korea Food Research Institute, Wanju, Republic of Korea
| |
Collapse
|
3
|
Luo T, Zhao L, Feng C, Yan J, Yuan Y, Chen H. Asparagine prevents intestinal stem cell aging via the autophagy-lysosomal pathway. Aging Cell 2025; 24:e14423. [PMID: 39587832 PMCID: PMC11984690 DOI: 10.1111/acel.14423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024] Open
Abstract
The age-associated decline in intestinal stem cell (ISC) function is a key factor in intestinal aging in organisms, resulting in impaired intestinal function and increased susceptibility to age-related diseases. Consequently, it is imperative to develop effective therapeutic strategies to prevent ISC aging and functional decline. In this study, we utilized an aging Drosophila model screening of amino acids and found that asparagine (Asn), a nonessential amino acid in vivo, exhibits its profound anti-aging properties on ISCs. Asn inhibits the hyperproliferation of aging ISCs in Drosophila, maintains intestinal homeostasis, and extends the lifespan of aging flies. Complementarily, Asn promotes the growth and branching of elderly murine intestinal organoids, indicating its anti-aging capacity to enhance ISC function. Mechanistic analyses have revealed that Asn exerts its effects via the activation of the autophagic signaling pathway. In summary, this study has preliminarily explored the potential supportive role of Asn in ameliorating intestinal aging, providing a foundation for further research into therapeutic interventions targeting age-related intestinal dysfunction.
Collapse
Affiliation(s)
- Ting Luo
- Center of Gerontology and Geriatrics and Laboratory of Stem Cell and Anti‐Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China HospitalSichuan UniversityChengduSichuanChina
| | - Liusha Zhao
- Center of Gerontology and Geriatrics and Laboratory of Stem Cell and Anti‐Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China HospitalSichuan UniversityChengduSichuanChina
| | - Chenxi Feng
- Center of Gerontology and Geriatrics and Laboratory of Stem Cell and Anti‐Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China HospitalSichuan UniversityChengduSichuanChina
| | - Jinhua Yan
- Center of Gerontology and Geriatrics and Laboratory of Stem Cell and Anti‐Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yu Yuan
- Center of Gerontology and Geriatrics and Laboratory of Stem Cell and Anti‐Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China HospitalSichuan UniversityChengduSichuanChina
| | - Haiyang Chen
- Center of Gerontology and Geriatrics and Laboratory of Stem Cell and Anti‐Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
4
|
Wu K, Zhou J, Tang Y, Zhang Q, Xiong L, Li X, Zhuo Z, Luo M, Yuan Y, Liu X, Zhong Z, Guo X, Yu Z, Sheng X, Luo G, Chen H. Werner syndrome exonuclease promotes gut regeneration and causes age-associated gut hyperplasia in Drosophila. PLoS Biol 2025; 23:e3003121. [PMID: 40261911 PMCID: PMC12013949 DOI: 10.1371/journal.pbio.3003121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 03/18/2025] [Indexed: 04/24/2025] Open
Abstract
Human Werner syndrome (adult progeria, a well-established model of human aging) is caused by mutations in the Werner syndrome (WRN) gene. However, the expression patterns and functions of WRN in natural aging remain poorly understood. Despite the link between WRN deficiencies and progeria, our analyses of human colon tissues, mouse crypts, and Drosophila midguts revealed that WRN expression does not decrease but rather increases in intestinal stem cells (ISCs) with aging. Mechanistically, we found that the Drosophila WRN homologue (WRNexo) binds to Heat shock 70-kDa protein cognate 3 (Hsc70-3/Bip) to regulate the unfolded protein response of the endoplasmic reticulum (UPRER). Activation of the WRNexo-mediated UPRER in ISCs is required for ISC proliferation during injury repair. However, persistent DNA damage during aging leads to chronic upregulation of WRNexo in ISCs, where excessive WRNexo-induced ER stress drives age-associated gut hyperplasia in Drosophila. This study reveals how elevated WRNexo contributes to stem cell aging, providing new insights into organ aging and the pathogenesis of age-related diseases, such as colon cancer.
Collapse
Affiliation(s)
- Kun Wu
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Juanyu Zhou
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yiming Tang
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qiaoqiao Zhang
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Lishou Xiong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaorong Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhangpeng Zhuo
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mei Luo
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu Yuan
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xingzhu Liu
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhendong Zhong
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - XiaoXin Guo
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zihua Yu
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Sheng
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Guanzheng Luo
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haiyang Chen
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Yu Z, Zhu Y, Chen Y, Feng C, Zhang Z, Guo X, Chen H, Liu X, Yuan Y, Chen H. Nutrient-sensing alteration leads to age-associated distortion of intestinal stem cell differentiating direction. Nat Commun 2024; 15:9243. [PMID: 39455549 PMCID: PMC11512028 DOI: 10.1038/s41467-024-53675-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Nutrient-sensing pathways undergo deregulation in aged animals, exerting a pivotal role in regulating the cell cycle and subsequent stem cell division. Nevertheless, their precise functions in governing pluripotent stem cell differentiation remain largely elusive. Here, we uncovered a significant alteration in the cellular constituents of the intestinal epithelium in aged humans and mice. Employing Drosophila midgut and mouse organoid culture models, we made an observation regarding the altered trajectory of differentiation in intestinal stem cells (ISC) during overnutrition or aging, which stems from the erroneous activation of the insulin receptor signaling pathway. Through genetic analyses, we ascertained that the nutrient-sensing pathway regulated the direction of ISC differentiation by modulating the maturation of endosomes and SOX21A transcription factor. This study elucidates a nutrient-sensing pathway-mediated mechanism underlying stem cell differentiation, offering insights into the etiology of stem cell dysfunction in aged animals, including humans.
Collapse
Affiliation(s)
- Zihua Yu
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuedan Zhu
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Chen
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chenxi Feng
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zehong Zhang
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoxin Guo
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiou Chen
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xingzhu Liu
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Yuan
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiyang Chen
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Dos Santos E, Cochemé HM. How does a fly die? Insights into ageing from the pathophysiology of Drosophila mortality. GeroScience 2024; 46:4003-4015. [PMID: 38642259 PMCID: PMC11336040 DOI: 10.1007/s11357-024-01158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/22/2024] Open
Abstract
The fruit fly Drosophila melanogaster is a common animal model in ageing research. Large populations of flies are used to study the impact of genetic, nutritional and pharmacological interventions on survival. However, the processes through which flies die and their relative prevalence in Drosophila populations are still comparatively unknown. Understanding the causes of death in an animal model is essential to dissect the lifespan-extending interventions that are organism- or disease-specific from those broadly applicable to ageing. Here, we review the pathophysiological processes that can lead to fly death and discuss their relation to ageing.
Collapse
Affiliation(s)
- Eliano Dos Santos
- MRC Laboratory of Medical Sciences (LMS), Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
- Institute of Clinical Sciences, Hammersmith Hospital Campus, Imperial College London, Du Cane Road, London, W12 0HS, UK
| | - Helena M Cochemé
- MRC Laboratory of Medical Sciences (LMS), Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK.
- Institute of Clinical Sciences, Hammersmith Hospital Campus, Imperial College London, Du Cane Road, London, W12 0HS, UK.
| |
Collapse
|
7
|
Ranjan R, Ma B, Gleason RJ, Liao Y, Bi Y, Davis BEM, Yang G, Clark M, Mahajan V, Condon M, Broderick NA, Chen X. Modulating DNA Polα Enhances Cell Reprogramming Across Species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613993. [PMID: 39345551 PMCID: PMC11429986 DOI: 10.1101/2024.09.19.613993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
As a fundamental biological process, DNA replication ensures the accurate copying of genetic information. However, the impact of this process on cellular plasticity in multicellular organisms remains elusive. Here, we find that reducing the level or activity of a replication component, DNA Polymerase α (Polα), facilitates cell reprogramming in diverse stem cell systems across species. In Drosophila male and female germline stem cell lineages, reducing Polα levels using heterozygotes significantly enhances fertility of both sexes, promoting reproductivity during aging without compromising their longevity. Consistently, in C. elegans the pola heterozygous hermaphrodites exhibit increased fertility without a reduction in lifespan, suggesting that this phenomenon is conserved. Moreover, in male germline and female intestinal stem cell lineages of Drosophila, polα heterozygotes exhibit increased resistance to tissue damage caused by genetic ablation or pathogen infection, leading to enhanced regeneration and improved survival during post-injury recovery, respectively. Additionally, fine tuning of an inhibitor to modulate Polα activity significantly enhances the efficiency of reprogramming human embryonic fibroblasts into induced pluripotent cells. Together, these findings unveil novel roles of a DNA replication component in regulating cellular reprogramming potential, and thus hold promise for promoting tissue health, facilitating post-injury rehabilitation, and enhancing healthspan.
Collapse
Affiliation(s)
- Rajesh Ranjan
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Baltimore, MD 21218, USA
| | - Binbin Ma
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Baltimore, MD 21218, USA
| | - Ryan J. Gleason
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yijun Liao
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yingshan Bi
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Brendon E. M. Davis
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Guanghui Yang
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Baltimore, MD 21218, USA
| | - Maggie Clark
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Vikrant Mahajan
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Madison Condon
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Baltimore, MD 21218, USA
| |
Collapse
|
8
|
Ye J, Yan L, Yuan Y, Fu F, Yuan L, Fan X, Zhou J, Zhu Y, Liu X, Ren G, Chen H. Natural flavonoid glycosides Chrysosplenosides I & A rejuvenate intestinal stem cell aging via activation of PPARγ signaling. LIFE MEDICINE 2024; 3:lnae025. [PMID: 39871890 PMCID: PMC11749787 DOI: 10.1093/lifemedi/lnae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/26/2024] [Indexed: 01/29/2025]
Abstract
The decline in intestinal stem cell (ISC) function is a hallmark of aging, contributing to compromised intestinal regeneration and increased incidence of age-associated diseases. Novel therapeutic agents that can rejuvenate aged ISCs are of paramount importance for extending healthspan. Here, we report on the discovery of Chrysosplenosides I and A (CAs 1 & 2), flavonol glycosides from the Xizang medicinal plant Chrysosplenium axillare Maxim., which exhibit potent anti-aging effects on ISCs. Our research, using Drosophila models, reveals that CAs 1 & 2 treatments not only restrain excessive ISC proliferation, thereby preserving intestinal homeostasis, but also extend the lifespan of aging Drosophila. In aged mouse intestinal organoids, CAs 1 & 2 enhance the growth and budding of intestinal organoids, indicating improved regenerative capacity. Mechanistic investigations show that CAs 1 & 2 exert their effects by activating the peroxisome proliferator-activated receptor-gamma (PPARγ) and concurrently inhibiting the epidermal growth factor receptor (EGFR) signaling pathways. Our findings position CAs 1 & 2 as promising candidates for ameliorating ISC aging and suggest that targeting PPARγ, in particular, may offer a therapeutic strategy to counteract age-related intestinal dysfunction.
Collapse
Affiliation(s)
- Jinbao Ye
- Laboratory of Stem cell and anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - La Yan
- Laboratory of Stem cell and anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Yuan
- Laboratory of Stem cell and anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fang Fu
- Laboratory of Stem cell and anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lu Yuan
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xinxin Fan
- Laboratory of Stem cell and anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Juanyu Zhou
- Laboratory of Stem cell and anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuedan Zhu
- Laboratory of Stem cell and anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xingzhu Liu
- Laboratory of Stem cell and anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gang Ren
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Haiyang Chen
- Laboratory of Stem cell and anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Veneti Z, Fasoulaki V, Kalavros N, Vlachos IS, Delidakis C, Eliopoulos AG. Polycomb-mediated silencing of miR-8 is required for maintenance of intestinal stemness in Drosophila melanogaster. Nat Commun 2024; 15:1924. [PMID: 38429303 PMCID: PMC10907375 DOI: 10.1038/s41467-024-46119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 02/15/2024] [Indexed: 03/03/2024] Open
Abstract
Balancing maintenance of self-renewal and differentiation is a key property of adult stem cells. The epigenetic mechanisms controlling this balance remain largely unknown. Herein, we report that the Polycomb Repressive Complex 2 (PRC2) is required for maintenance of the intestinal stem cell (ISC) pool in the adult female Drosophila melanogaster. We show that loss of PRC2 activity in ISCs by RNAi-mediated knockdown or genetic ablation of the enzymatic subunit Enhancer of zeste, E(z), results in loss of stemness and precocious differentiation of enteroblasts to enterocytes. Mechanistically, we have identified the microRNA miR-8 as a critical target of E(z)/PRC2-mediated tri-methylation of histone H3 at Lys27 (H3K27me3) and uncovered a dynamic relationship between E(z), miR-8 and Notch signaling in controlling stemness versus differentiation of ISCs. Collectively, these findings uncover a hitherto unrecognized epigenetic layer in the regulation of stem cell specification that safeguards intestinal homeostasis.
Collapse
Affiliation(s)
- Zoe Veneti
- Institute of Molecular Biology and Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Greece.
- Medical School, University of Crete, Heraklion, Greece.
| | - Virginia Fasoulaki
- Institute of Molecular Biology and Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Nikolaos Kalavros
- Spatial Technologies Unit, Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ioannis S Vlachos
- Spatial Technologies Unit, Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Christos Delidakis
- Institute of Molecular Biology and Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Aristides G Eliopoulos
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
10
|
Wang J, Li X, Wang X, Zhang C, Hao Y, Jin LH. The zinc finger protein CG12744 regulates intestinal stem cells in aged Drosophila through the EGFR and BMP pathways. Life Sci 2024; 340:122485. [PMID: 38311220 DOI: 10.1016/j.lfs.2024.122485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/08/2024]
Abstract
AIM Aging is a process characterized by a time-dependent decline in the functionality of adult stem cells and is closely associated with age-related diseases. However, understanding how aging promotes disease and its underlying causes is critical for combating aging. MAIN METHODS The offspring of UAS-Gal4 and CG12744RNAiDrosophila were cultured for 33 days to evaluate the role of CG12744 in the aging intestine. Immunofluorescence was performed to detect specific cell type markers for assessing proliferation and differentiation. qRT-PCR was used to observe the changes in signaling regulating intestinal homeostasis in the aging intestine after CG12744 knockdown. 16S rRNA-seq analysis was also conducted to elucidate the role of gut microbes in CG12744-mediated intestinal dysfunction. KEY FINDINGS The mRNA levels of CG12744 were significantly increased in the aged midguts. Knockdown of CG12744 in progenitor cells further exacerbates the age-related intestinal hyperplasia and dysfunction. In particular, upon depletion of CG12744 in progenitors, enteroblasts (EBs) exhibited an increased propensity to differentiate along the enteroendocrine cell (EE) lineage. In contrast, the overexpression of CG12744 in progenitor cells restrained age-related gut hyperplasia in Drosophila. Moreover, CG12744 prevented age-related intestinal stem cell (ISC) overproliferation and differentiation by modulating the EGFR, JNK, and BMP pathways. In addition, the inhibition of CG12744 resulted in a significant increase in the gut microbial composition in aging flies. SIGNIFICANCE This study established a role for the CG12744 in regulating the proliferation and differentiation of adult stem cells, thereby identifying a potential therapeutic target for diseases caused by age-related dysfunction stem cell dysfunction.
Collapse
Affiliation(s)
- Jiewei Wang
- Department of Genetics, College of Life Sciences, Northeast Forestry University, No.26 Hexing Road Xiangfang District, Harbin 150040, China
| | - Xianhao Li
- Department of Genetics, College of Life Sciences, Northeast Forestry University, No.26 Hexing Road Xiangfang District, Harbin 150040, China
| | - Xiaoran Wang
- Department of Genetics, College of Life Sciences, Northeast Forestry University, No.26 Hexing Road Xiangfang District, Harbin 150040, China
| | - Chengcheng Zhang
- Department of Genetics, College of Life Sciences, Northeast Forestry University, No.26 Hexing Road Xiangfang District, Harbin 150040, China
| | - Yangguang Hao
- Department of Basic Medical, Shenyang Medical College, Shenyang 110034, China
| | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, No.26 Hexing Road Xiangfang District, Harbin 150040, China.
| |
Collapse
|
11
|
Wang Z, Yang Y, Li S, Ma W, Wang K, Soberón M, Yan S, Shen J, Francis F, Bravo A, Zhang J. JAK/STAT signaling regulated intestinal regeneration defends insect pests against pore-forming toxins produced by Bacillus thuringiensis. PLoS Pathog 2024; 20:e1011823. [PMID: 38236820 PMCID: PMC10796011 DOI: 10.1371/journal.ppat.1011823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/13/2023] [Indexed: 01/22/2024] Open
Abstract
A variety of coordinated host-cell responses are activated as defense mechanisms against pore-forming toxins (PFTs). Bacillus thuringiensis (Bt) is a worldwide used biopesticide whose efficacy and precise application methods limits its use to replace synthetic pesticides in agricultural settings. Here, we analyzed the intestinal defense mechanisms of two lepidopteran insect pests after intoxication with sublethal dose of Bt PFTs to find out potential functional genes. We show that larval intestinal epithelium was initially damaged by the PFTs and that larval survival was observed after intestinal epithelium regeneration. Further analyses showed that the intestinal regeneration caused by Cry9A protein is regulated through c-Jun NH (2) terminal kinase (JNK) and Janus tyrosine kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathways. JAK/STAT signaling regulates intestinal regeneration through proliferation and differentiation of intestinal stem cells to defend three different Bt proteins including Cry9A, Cry1F or Vip3A in both insect pests, Chilo suppressalis and Spodoptera frugiperda. Consequently, a nano-biopesticide was designed to improve pesticidal efficacy based on the combination of Stat double stranded RNA (dsRNA)-nanoparticles and Bt strain. This formulation controlled insect pests with better effect suggesting its potential use to reduce the use of synthetic pesticides in agricultural settings for pest control.
Collapse
Affiliation(s)
- Zeyu Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanchao Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Sirui Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Kui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Shuo Yan
- Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Shen
- Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Frederic Francis
- Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Zion EH, Ringwalt D, Rinaldi K, Kahney EW, Li Y, Chen X. Old and newly synthesized histones are asymmetrically distributed in Drosophila intestinal stem cell divisions. EMBO Rep 2023; 24:e56404. [PMID: 37255015 PMCID: PMC10328082 DOI: 10.15252/embr.202256404] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/30/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023] Open
Abstract
We report that preexisting (old) and newly synthesized (new) histones H3 and H4 are asymmetrically partitioned during the division of Drosophila intestinal stem cells (ISCs). Furthermore, the inheritance patterns of old and new H3 and H4 in postmitotic cell pairs correlate with distinct expression patterns of Delta, an important cell fate gene. To understand the biological significance of this phenomenon, we expressed a mutant H3T3A to compromise asymmetric histone inheritance. Under this condition, we observe an increase in Delta-symmetric cell pairs and overpopulated ISC-like, Delta-positive cells. Single-cell RNA-seq assays further indicate that H3T3A expression compromises ISC differentiation. Together, our results indicate that asymmetric histone inheritance potentially contributes to establishing distinct cell identities in a somatic stem cell lineage, consistent with previous findings in Drosophila male germline stem cells.
Collapse
Affiliation(s)
- Emily H Zion
- Department of BiologyThe Johns Hopkins UniversityBaltimoreMDUSA
| | - Daniel Ringwalt
- Department of BiologyThe Johns Hopkins UniversityBaltimoreMDUSA
| | | | | | - Yingying Li
- Department of BiologyThe Johns Hopkins UniversityBaltimoreMDUSA
| | - Xin Chen
- Department of BiologyThe Johns Hopkins UniversityBaltimoreMDUSA
- Howard Hughes Medical InstituteBaltimoreMDUSA
| |
Collapse
|
13
|
Lu TC, Brbić M, Park YJ, Jackson T, Chen J, Kolluru SS, Qi Y, Katheder NS, Cai XT, Lee S, Chen YC, Auld N, Liang CY, Ding SH, Welsch D, D’Souza S, Pisco AO, Jones RC, Leskovec J, Lai EC, Bellen HJ, Luo L, Jasper H, Quake SR, Li H. Aging Fly Cell Atlas identifies exhaustive aging features at cellular resolution. Science 2023; 380:eadg0934. [PMID: 37319212 PMCID: PMC10829769 DOI: 10.1126/science.adg0934] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Abstract
Aging is characterized by a decline in tissue function, but the underlying changes at cellular resolution across the organism remain unclear. Here, we present the Aging Fly Cell Atlas, a single-nucleus transcriptomic map of the whole aging Drosophila. We characterized 163 distinct cell types and performed an in-depth analysis of changes in tissue cell composition, gene expression, and cell identities. We further developed aging clock models to predict fly age and show that ribosomal gene expression is a conserved predictive factor for age. Combining all aging features, we find distinctive cell type-specific aging patterns. This atlas provides a valuable resource for studying fundamental principles of aging in complex organisms.
Collapse
Affiliation(s)
- Tzu-Chiao Lu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maria Brbić
- School of Computer and Communication Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Ye-Jin Park
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Tyler Jackson
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Cancer Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jiaye Chen
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sai Saroja Kolluru
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco CA, USA
| | - Yanyan Qi
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Xiaoyu Tracy Cai
- Regenerative Medicine, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Seungjae Lee
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave, New York, NY 10065, USA
| | - Yen-Chung Chen
- Department of Biology, New York University, New York, NY 10013, USA
| | - Niccole Auld
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Cancer Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chung-Yi Liang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sophia H. Ding
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Doug Welsch
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | - Robert C. Jones
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Jure Leskovec
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Eric C. Lai
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave, New York, NY 10065, USA
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Liqun Luo
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Heinrich Jasper
- Regenerative Medicine, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Stephen R. Quake
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco CA, USA
| | - Hongjie Li
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
14
|
Targeting the "hallmarks of aging" to slow aging and treat age-related disease: fact or fiction? Mol Psychiatry 2023; 28:242-255. [PMID: 35840801 PMCID: PMC9812785 DOI: 10.1038/s41380-022-01680-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 01/09/2023]
Abstract
Aging is a major risk factor for a number of chronic diseases, including neurodegenerative and cerebrovascular disorders. Aging processes have therefore been discussed as potential targets for the development of novel and broadly effective preventatives or therapeutics for age-related diseases, including those affecting the brain. Mechanisms thought to contribute to aging have been summarized under the term the "hallmarks of aging" and include a loss of proteostasis, mitochondrial dysfunction, altered nutrient sensing, telomere attrition, genomic instability, cellular senescence, stem cell exhaustion, epigenetic alterations and altered intercellular communication. We here examine key claims about the "hallmarks of aging". Our analysis reveals important weaknesses that preclude strong and definitive conclusions concerning a possible role of these processes in shaping organismal aging rate. Significant ambiguity arises from the overreliance on lifespan as a proxy marker for aging, the use of models with unclear relevance for organismal aging, and the use of study designs that do not allow to properly estimate intervention effects on aging rate. We also discuss future research directions that should be taken to clarify if and to what extent putative aging regulators do in fact interact with aging. These include multidimensional analytical frameworks as well as designs that facilitate the proper assessment of intervention effects on aging rate.
Collapse
|
15
|
Yan L, Guo X, Zhou J, Zhu Y, Zhang Z, Chen H. Quercetin Prevents Intestinal Stem Cell Aging via Scavenging ROS and Inhibiting Insulin Signaling in Drosophila. Antioxidants (Basel) 2022; 12:antiox12010059. [PMID: 36670921 PMCID: PMC9854609 DOI: 10.3390/antiox12010059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/11/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Adult stem cells, a class of cells that possess self-renewal and differentiation capabilities, modulate tissue regeneration, repair, and homeostasis maintenance. These cells undergo functional degeneration during aging, resulting in decreased tissue regeneration ability and increased disease incidence. Thus, it is essential to provide effective therapeutic solutions to preventing the aging-related functional decline of stem cells. Quercetin (Que) is a popular natural polyphenolic flavonoid found in various plant species. It exhibits many beneficial effects against aging and aging-related diseases; however, its efficacy against adult stem cell aging remains largely unclear. Drosophila possesses a mammalian-like intestinal system with a well-studied intestinal stem cell (ISC) lineage, making it an attractive model for adult stem cell research. Here, we show that Que supplementation could effectively prevent the hyperproliferation of ISCs, maintain intestinal homeostasis, and prolong the lifespan in aged Drosophila. In addition, we found that Que could accelerate recovery of the damaged gut and improve the tolerance of Drosophila to stressful stimuli. Furthermore, results demonstrated that Que prevents the age-associated functional decline of ISCs via scavenging reactive oxygen species (ROS) and inhibiting the insulin signaling pathway. Overall, our findings suggest that Que plays a significant role in delaying adult stem cell aging.
Collapse
Affiliation(s)
- La Yan
- Department of Oncology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610000, China
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Xiaoxin Guo
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Juanyu Zhou
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Yuedan Zhu
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Zehong Zhang
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Haiyang Chen
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610000, China
- Correspondence:
| |
Collapse
|
16
|
Zheng H, Zhang C, Wang Q, Feng S, Fang Y, Zhang S. The impact of aging on intestinal mucosal immune function and clinical applications. Front Immunol 2022; 13:1029948. [PMID: 36524122 PMCID: PMC9745321 DOI: 10.3389/fimmu.2022.1029948] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
Immune cells and immune molecules in the intestinal mucosa participate in innate and adaptive immunity to maintain local and systematic homeostasis. With aging, intestinal mucosal immune dysfunction will promote the emergence of age-associated diseases. Although there have been a number of studies on the impact of aging on systemic immunity, relatively fewer studies have been conducted on the impact of aging on the intestinal mucosal immune system. In this review, we will briefly introduce the impact of aging on the intestinal mucosal barrier, the impact of aging on intestinal immune cells as well as immune molecules, and the process of interaction between intestinal mucosal immunity and gut microbiota during aging. After that we will discuss potential strategies to slow down intestinal aging in the elderly.
Collapse
Affiliation(s)
- Han Zheng
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chi Zhang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qianqian Wang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuyan Feng
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Fang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuo Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China,*Correspondence: Shuo Zhang,
| |
Collapse
|
17
|
Kaur P, Otgonbaatar A, Ramamoorthy A, Chua EHZ, Harmston N, Gruber J, Tolwinski NS. Combining stem cell rejuvenation and senescence targeting to synergistically extend lifespan. Aging (Albany NY) 2022; 14:8270-8291. [PMID: 36287172 PMCID: PMC9648810 DOI: 10.18632/aging.204347] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022]
Abstract
Why biological age is a major risk factor for many of the most important human diseases remains mysterious. We know that as organisms age, stem cell pools are exhausted while senescent cells progressively accumulate. Independently, induction of pluripotency via expression of Yamanaka factors (Oct4, Klf4, Sox2, c-Myc; OKSM) and clearance of senescent cells have each been shown to ameliorate cellular and physiological aspects of aging, suggesting that both processes are drivers of organismal aging. But stem cell exhaustion and cellular senescence likely interact in the etiology and progression of age-dependent diseases because both undermine tissue and organ homeostasis in different if not complementary ways. Here, we combine transient cellular reprogramming (stem cell rejuvenation) with targeted removal of senescent cells to test the hypothesis that simultaneously targeting both cell-fate based aging mechanisms will maximize life and health span benefits. We find that OKSM extends lifespan and show that both interventions protect the intestinal stem cell pool, lower inflammation, activate pro-stem cell signaling pathways, and synergistically improve health and lifespan. Our findings suggest that a combination therapy, simultaneously replacing lost stem cells and removing senescent cells, shows synergistic potential for anti-aging treatments. Our finding that transient expression of both is the most effective suggests that drug-based treatments in non-genetically tractable organisms will likely be the most translatable.
Collapse
Affiliation(s)
- Prameet Kaur
- Division of Science, Yale-NUS College, Singapore 138527, Singapore
| | | | | | | | - Nathan Harmston
- Division of Science, Yale-NUS College, Singapore 138527, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jan Gruber
- Division of Science, Yale-NUS College, Singapore 138527, Singapore
- Department of Biochemistry, NUS, Singapore 117596, Singapore
| | - Nicholas S. Tolwinski
- Division of Science, Yale-NUS College, Singapore 138527, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
18
|
Drosophila melanogaster as an emerging model host for entomopathogenic fungi. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Untersmayr E, Brandt A, Koidl L, Bergheim I. The Intestinal Barrier Dysfunction as Driving Factor of Inflammaging. Nutrients 2022; 14:949. [PMID: 35267924 PMCID: PMC8912763 DOI: 10.3390/nu14050949] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
The intestinal barrier, composed of the luminal microbiota, the mucus layer, and the physical barrier consisting of epithelial cells and immune cells, the latter residing underneath and within the epithelial cells, plays a special role in health and disease. While there is growing knowledge on the changes to the different layers associated with disease development, the barrier function also plays an important role during aging. Besides changes in the composition and function of cellular junctions, the entire gastrointestinal physiology contributes to essential age-related changes. This is also reflected by substantial differences in the microbial composition throughout the life span. Even though it remains difficult to define physiological age-related changes and to distinguish them from early signs of pathologies, studies in centenarians provide insights into the intestinal barrier features associated with longevity. The knowledge reviewed in this narrative review article might contribute to the definition of strategies to prevent the development of diseases in the elderly. Thus, targeted interventions to improve overall barrier function will be important disease prevention strategies for healthy aging in the future.
Collapse
Affiliation(s)
- Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Annette Brandt
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria;
| | - Larissa Koidl
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
20
|
Bronikowski AM, Meisel RP, Biga PR, Walters J, Mank JE, Larschan E, Wilkinson GS, Valenzuela N, Conard AM, de Magalhães JP, Duan J, Elias AE, Gamble T, Graze R, Gribble KE, Kreiling JA, Riddle NC. Sex-specific aging in animals: Perspective and future directions. Aging Cell 2022; 21:e13542. [PMID: 35072344 PMCID: PMC8844111 DOI: 10.1111/acel.13542] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/15/2021] [Accepted: 12/11/2021] [Indexed: 12/14/2022] Open
Abstract
Sex differences in aging occur in many animal species, and they include sex differences in lifespan, in the onset and progression of age-associated decline, and in physiological and molecular markers of aging. Sex differences in aging vary greatly across the animal kingdom. For example, there are species with longer-lived females, species where males live longer, and species lacking sex differences in lifespan. The underlying causes of sex differences in aging remain mostly unknown. Currently, we do not understand the molecular drivers of sex differences in aging, or whether they are related to the accepted hallmarks or pillars of aging or linked to other well-characterized processes. In particular, understanding the role of sex-determination mechanisms and sex differences in aging is relatively understudied. Here, we take a comparative, interdisciplinary approach to explore various hypotheses about how sex differences in aging arise. We discuss genomic, morphological, and environmental differences between the sexes and how these relate to sex differences in aging. Finally, we present some suggestions for future research in this area and provide recommendations for promising experimental designs.
Collapse
Affiliation(s)
- Anne M. Bronikowski
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowaUSA
| | - Richard P. Meisel
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexasUSA
| | - Peggy R. Biga
- Department of BiologyThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - James R. Walters
- Department of Ecology and Evolutionary BiologyThe University of KansasLawrenceKansasUSA
| | - Judith E. Mank
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of BioscienceUniversity of ExeterPenrynUK
| | - Erica Larschan
- Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
| | | | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowaUSA
| | - Ashley Mae Conard
- Department of Computer ScienceCenter for Computational and Molecular BiologyBrown UniversityProvidenceRhode IslandUSA
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing GroupInstitute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
| | | | - Amy E. Elias
- Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
| | - Tony Gamble
- Department of Biological SciencesMarquette UniversityMilwaukeeWisconsinUSA
- Milwaukee Public MuseumMilwaukeeWisconsinUSA
- Bell Museum of Natural HistoryUniversity of MinnesotaSaint PaulMinnesotaUSA
| | - Rita M. Graze
- Department of Biological SciencesAuburn UniversityAuburnAlabamaUSA
| | - Kristin E. Gribble
- Josephine Bay Paul Center for Comparative Molecular Biology and EvolutionMarine Biological LaboratoryWoods HoleMassachusettsUSA
| | - Jill A. Kreiling
- Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
| | - Nicole C. Riddle
- Department of BiologyThe University of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
21
|
Abstract
In adult insects, as in vertebrates, the gut epithelium is a highly regenerative tissue that can renew itself rapidly in response to changing inputs from nutrition, the gut microbiota, ingested toxins, and signals from other organs. Because of its cellular and genetic similarities to the mammalian intestine, and its relevance as a target for the control of insect pests and disease vectors, many researchers have used insect intestines to address fundamental questions about stem cell functions during tissue maintenance and regeneration. In Drosophila, where most of the experimental work has been performed, not only are intestinal cell types and behaviors well characterized, but numerous cell signaling interactions have been detailed that mediate gut epithelial regeneration. A prevailing model for regenerative responses in the insect gut invokes stress sensing by damaged enterocytes (ECs) as a principal source for signaling that activates the division of intestinal stem cells (ISCs) and the growth and differentiation of their progeny. However, extant data also reveal alternative mechanisms for regeneration that involve ISC-intrinsic functions, active culling of healthy epithelial cells, enhanced EC growth, and even cytoplasmic shedding by infected ECs. This article reviews current knowledge of the molecular mechanisms involved in gut regeneration in several insect models (Drosophila and Aedes of the order Diptera, and several Lepidoptera).
Collapse
Affiliation(s)
- Peng Zhang
- Huntsman Cancer Institute, University of Utah
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| | - Bruce A Edgar
- Huntsman Cancer Institute, University of Utah
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
22
|
Intravital imaging strategy FlyVAB reveals the dependence of Drosophila enteroblast differentiation on the local physiology. Commun Biol 2021; 4:1223. [PMID: 34697396 PMCID: PMC8546075 DOI: 10.1038/s42003-021-02757-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 10/06/2021] [Indexed: 02/05/2023] Open
Abstract
Aging or injury in Drosophila intestine promotes intestinal stem cell (ISC) proliferation and enteroblast (EB) differentiation. However, the manner the local physiology couples with dynamic EB differentiation assessed by traditional lineage tracing method is still vague. Therefore, we developed a 3D-printed platform “FlyVAB” for intravital imaging strategy that enables the visualization of the Drosophila posterior midgut at a single cell level across the ventral abdomen cuticle. Using ISCs in young and healthy midgut and enteroendocrine cells in age-associated hyperplastic midgut as reference coordinates, we traced ISC-EB-enterocyte lineages with Notch signaling reporter for multiple days. Our results reveal a “differentiation-poised” EB status correlated with slow ISC divisions and a “differentiation-activated” EB status correlated with ISC hyperplasia and rapid EB to enterocyte differentiation. Our FlyVAB imaging strategy opens the door to long-time intravital imaging of intestinal epithelium. Tang et. al. demonstrate a 3Dprinted platform, FlyVAB, for intravital imaging and visualization of the Drosophila posterior midgut at a single-cell level. This method enables tracking of the stem cell lineage in the midgut of the flies constantly for up to 10 days.
Collapse
|
23
|
Kannan K, Rogina B. The Role of Citrate Transporter INDY in Metabolism and Stem Cell Homeostasis. Metabolites 2021; 11:705. [PMID: 34677421 PMCID: PMC8540898 DOI: 10.3390/metabo11100705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
I'm Not Dead Yet (Indy) is a fly gene that encodes a homologue of mammalian SLC13A5 plasma membrane citrate transporter. Reducing expression of Indy gene in flies, and its homologues in worms, extends longevity. Indy reduction in flies, worms, mice and rats affects metabolism by regulating the levels of cytoplasmic citrate, inducing a state similar to calorie restriction. Changes include lower lipid levels, increased insulin sensitivity, increased mitochondrial biogenesis, and prevention of weight gain, among others. The INDY protein is predominantly expressed in fly metabolic tissues: the midgut, fat body and oenocytes. Changes in fly midgut metabolism associated with reduced Indy gene activity lead to preserved mitochondrial function and reduced production of reactive oxygen species. All these changes lead to preserved intestinal stem cell homeostasis, which has a key role in maintaining intestinal epithelium function and enhancing fly healthspan and lifespan. Indy gene expression levels change in response to caloric content of the diet, inflammation and aging, suggesting that INDY regulates metabolic adaptation to nutrition or energetic requirements by controlling citrate levels.
Collapse
Affiliation(s)
- Kavitha Kannan
- Department of Genetics & Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA;
| | - Blanka Rogina
- Department of Genetics & Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA;
- Institute for Systems Genomics, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
24
|
Bach DM, Holzman MA, Wague F, Miranda JL, Lopatkin AJ, Mansfield JH, Snow JW. Thermal stress induces tissue damage and a broad shift in regenerative signaling pathways in the honey bee digestive tract. J Exp Biol 2021; 224:272039. [PMID: 34477881 DOI: 10.1242/jeb.242262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/19/2021] [Indexed: 11/20/2022]
Abstract
Honey bee colonies in the USA have suffered from increased die-off in the last few years with a complex set of interacting stresses playing a key role. With changing climate, an increase in the frequency of severe weather events, such as heat waves, is anticipated. Understanding how these changes may contribute to stress in honey bees is crucial. Individual honey bees appear to have a high capacity to endure thermal stress. One reason for this high-level endurance is likely their robust heat shock response (HSR), which contributes to thermotolerance at the cellular level. However, less is known about other mechanisms of thermotolerance, especially those operating at the tissue level. To elucidate other determinants of resilience in this species, we used thermal stress coupled with RNAseq and identified broad transcriptional remodeling of a number of key signaling pathways in the honey bee, including those pathways known to be involved in digestive tract regeneration in the fruit fly such as the Hippo and JAK/STAT pathways. We also observed cell death and shedding of epithelial cells, which likely leads to induction of this regenerative transcriptional program. We found that thermal stress affects many of these pathways in other tissues, suggesting a shared program of damage response. This study provides important foundational characterization of the tissue damage response program in this key pollinating species. In addition, our data suggest that a robust regeneration program may also be a critical contributor to thermotolerance at the tissue level, a possibility which warrants further exploration in this and other species.
Collapse
Affiliation(s)
- Dunay M Bach
- Biology Department, Barnard College, New York, NY 10027, USA
| | | | - Fatoumata Wague
- Biology Department, Barnard College, New York, NY 10027, USA
| | - Jj L Miranda
- Biology Department, Barnard College, New York, NY 10027, USA
| | - Allison J Lopatkin
- Biology Department, Barnard College, New York, NY 10027, USA.,Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027, USA.,Data Science Institute , Columbia University, New York, NY 10027, USA
| | | | - Jonathan W Snow
- Biology Department, Barnard College, New York, NY 10027, USA
| |
Collapse
|
25
|
Wu K, Tang Y, Zhang Q, Zhuo Z, Sheng X, Huang J, Ye J, Li X, Liu Z, Chen H. Aging-related upregulation of the homeobox gene caudal represses intestinal stem cell differentiation in Drosophila. PLoS Genet 2021; 17:e1009649. [PMID: 34228720 PMCID: PMC8284806 DOI: 10.1371/journal.pgen.1009649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/16/2021] [Accepted: 06/08/2021] [Indexed: 02/05/2023] Open
Abstract
The differentiation efficiency of adult stem cells undergoes a significant decline in aged animals, which is closely related to the decline in organ function and age-associated diseases. However, the underlying mechanisms that ultimately lead to this observed decline of the differentiation efficiency of stem cells remain largely unclear. This study investigated Drosophila midguts and identified an obvious upregulation of caudal (cad), which encodes a homeobox transcription factor. This factor is traditionally known as a central regulator of embryonic anterior-posterior body axis patterning. This study reports that depletion of cad in intestinal stem/progenitor cells promotes quiescent intestinal stem cells (ISCs) to become activate and produce enterocytes in the midgut under normal gut homeostasis conditions. However, overexpression of cad results in the failure of ISC differentiation and intestinal epithelial regeneration after injury. Moreover, this study suggests that cad prevents intestinal stem/progenitor cell differentiation by modulating the Janus kinase/signal transducers and activators of the transcription pathway and Sox21a-GATAe signaling cascade. Importantly, the reduction of cad expression in intestinal stem/progenitor cells restrained age-associated gut hyperplasia in Drosophila. This study identified a function of the homeobox gene cad in the modulation of adult stem cell differentiation and suggested a potential gene target for the treatment of age-related diseases induced by age-related stem cell dysfunction. Adult stem cells undergo an aging-related decline of differentiation efficiency in aged animals. However, the underlying mechanisms that ultimately lead to this observed decline of differentiation efficiency in stem cells still remain largely unclear. By using the Drosophila midgut as a model system, this study identified the homeobox family transcription factor gene caudal (cad), the expression of which is significantly upregulated in intestinal stem cells (ISCs) and progenitor cells of aged Drosophila. Depletion of cad promoted quiescent ISCs to become activate and produce enterocytes (ECs) in midguts under normal gut homeostasis conditions; However, overexpression of cad resulted in the failure of ISC differentiation and intestinal epithelial regeneration after injury. Moreover, cad prevents ISC-to-EC differentiation by inhibiting JAK/STAT signaling, and the expressions of Sox21a and GATAe. Reduction of cad expression in intestinal stem/progenitor cells restrained age-associated gut hyperplasia in Drosophila. These findings enable a detailed understanding of the roles of homeobox genes in the modulation of adult stem cell aging in humans. This will be beneficial for the treatment of age-associated diseases that are caused by a functional decline of stem cells.
Collapse
Affiliation(s)
- Kun Wu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yiming Tang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiaoqiao Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhangpeng Zhuo
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao Sheng
- Laboratory for Aging and Stem Cell Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingping Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jie’er Ye
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaorong Li
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhiming Liu
- Laboratory for Aging and Stem Cell Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiyang Chen
- Laboratory for Aging and Stem Cell Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|
26
|
Boumard B, Bardin AJ. An amuse-bouche of stem cell regulation: Underlying principles and mechanisms from adult Drosophila intestinal stem cells. Curr Opin Cell Biol 2021; 73:58-68. [PMID: 34217969 DOI: 10.1016/j.ceb.2021.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/27/2022]
Abstract
Stem cells have essential functions in the development and maintenance of our organs. Improper regulation of adult stem cells and tissue homeostasis can result in cancers and age-dependent decline. Therefore, understanding how tissue-specific stem cells can accurately renew tissues is an important aim of regenerative medicine. The Drosophila midgut harbors multipotent adult stem cells that are essential to renew the gut in homeostatic conditions and upon stress-induced regeneration. It is now a widely used model system to decipher regulatory mechanisms of stem cell biology. Here, we review recent findings on how adult intestinal stem cells differentiate, interact with their environment, and change during aging.
Collapse
Affiliation(s)
- Benjamin Boumard
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, Paris, France
| | - Allison J Bardin
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, Paris, France.
| |
Collapse
|
27
|
Keller A, Temple T, Sayanjali B, Mihaylova MM. Metabolic Regulation of Stem Cells in Aging. CURRENT STEM CELL REPORTS 2021; 7:72-84. [PMID: 35251892 PMCID: PMC8893351 DOI: 10.1007/s40778-021-00186-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW From invertebrates to vertebrates, the ability to sense nutrient availability is critical for survival. Complex organisms have evolved numerous signaling pathways to sense nutrients and dietary fluctuations, which influence many cellular processes. Although both overabundance and extreme depletion of nutrients can lead to deleterious effects, dietary restriction without malnutrition can increase lifespan and promote overall health in many model organisms. In this review, we focus on age-dependent changes in stem cell metabolism and dietary interventions used to modulate stem cell function in aging. RECENT FINDINGS Over the last half-century, seminal studies have illustrated that dietary restriction confers beneficial effects on longevity in many model organisms. Many researchers have now turned to dissecting the molecular mechanisms by which these diets affect aging at the cellular level. One subpopulation of cells of particular interest are adult stem cells, the most regenerative cells of the body. It is generally accepted that the regenerative capacity of stem cells declines with age, and while the metabolic requirements of each vary across tissues, the ability of dietary interventions to influence stem cell function is striking. SUMMARY In this review, we will focus primarily on how metabolism plays a role in adult stem cell homeostasis with respect to aging, with particular emphasis on intestinal stem cells while also touching on hematopoietic, skeletal muscle, and neural stem cells. We will also discuss key metabolic signaling pathways influenced by both dietary restriction and the aging process, and will examine their role in improving tissue homeostasis and lifespan. Understanding the mechanisms behind the metabolic needs of stem cells will help bridge the divide between a basic science interpretation of stem cell function and a whole-organism view of nutrition, thereby providing insight into potential dietary or therapeutic interventions.
Collapse
Affiliation(s)
- Andrea Keller
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, OH, USA
| | - Tyus Temple
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, OH, USA
| | - Behnam Sayanjali
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Maria M. Mihaylova
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
28
|
Tiwari SK, Mandal S. Mitochondrial Control of Stem Cell State and Fate: Lessons From Drosophila. Front Cell Dev Biol 2021; 9:606639. [PMID: 34012959 PMCID: PMC8128071 DOI: 10.3389/fcell.2021.606639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/06/2021] [Indexed: 01/09/2023] Open
Abstract
Over the years, Drosophila has served as a wonderful genetically tractable model system to unravel various facets of tissue-resident stem cells in their microenvironment. Studies in different stem and progenitor cell types of Drosophila have led to the discovery of cell-intrinsic and extrinsic factors crucial for stem cell state and fate. Though initially touted as the ATP generating machines for carrying various cellular processes, it is now increasingly becoming clear that mitochondrial processes alone can override the cellular program of stem cells. The last few years have witnessed a surge in our understanding of mitochondria's contribution to governing different stem cell properties in their subtissular niches in Drosophila. Through this review, we intend to sum up and highlight the outcome of these in vivo studies that implicate mitochondria as a central regulator of stem cell fate decisions; to find the commonalities and uniqueness associated with these regulatory mechanisms.
Collapse
Affiliation(s)
- Satish Kumar Tiwari
- Developmental Genetics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Sudip Mandal
- Molecular Cell and Developmental Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| |
Collapse
|
29
|
Ding X, Kakanj P, Leptin M, Eming SA. Regulation of the Wound Healing Response during Aging. J Invest Dermatol 2021; 141:1063-1070. [DOI: 10.1016/j.jid.2020.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022]
|
30
|
Erez N, Israitel L, Bitman-Lotan E, Wong WH, Raz G, Cornelio-Parra DV, Danial S, Flint Brodsly N, Belova E, Maksimenko O, Georgiev P, Druley T, Mohan RD, Orian A. A Non-stop identity complex (NIC) supervises enterocyte identity and protects from premature aging. eLife 2021; 10:62312. [PMID: 33629655 PMCID: PMC7936876 DOI: 10.7554/elife.62312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
A hallmark of aging is loss of differentiated cell identity. Aged Drosophila midgut differentiated enterocytes (ECs) lose their identity, impairing tissue homeostasis. To discover identity regulators, we performed an RNAi screen targeting ubiquitin-related genes in ECs. Seventeen genes were identified, including the deubiquitinase Non-stop (CG4166). Lineage tracing established that acute loss of Non-stop in young ECs phenocopies aged ECs at cellular and tissue levels. Proteomic analysis unveiled that Non-stop maintains identity as part of a Non-stop identity complex (NIC) containing E(y)2, Sgf11, Cp190, (Mod) mdg4, and Nup98. Non-stop ensured chromatin accessibility, maintaining the EC-gene signature, and protected NIC subunit stability. Upon aging, the levels of Non-stop and NIC subunits declined, distorting the unique organization of the EC nucleus. Maintaining youthful levels of Non-stop in wildtype aged ECs safeguards NIC subunits, nuclear organization, and suppressed aging phenotypes. Thus, Non-stop and NIC, supervise EC identity and protects from premature aging.
Collapse
Affiliation(s)
- Neta Erez
- Rappaport Research Institute and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Lena Israitel
- Rappaport Research Institute and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eliya Bitman-Lotan
- Rappaport Research Institute and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Wing H Wong
- Division of Pediatric Hematology and Oncology, Washington University, Saint-Louis, United States
| | - Gal Raz
- Rappaport Research Institute and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dayanne V Cornelio-Parra
- Department of Genetics, Developmental & Evolutionary Biology, School of Biological and Chemical Sciences University of Missouri, Kansas City, United States
| | - Salwa Danial
- Rappaport Research Institute and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Na'ama Flint Brodsly
- Rappaport Research Institute and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Elena Belova
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russian Federation
| | - Oksana Maksimenko
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russian Federation
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russian Federation
| | - Todd Druley
- Division of Pediatric Hematology and Oncology, Washington University, Saint-Louis, United States
| | - Ryan D Mohan
- Department of Genetics, Developmental & Evolutionary Biology, School of Biological and Chemical Sciences University of Missouri, Kansas City, United States
| | - Amir Orian
- Rappaport Research Institute and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|