1
|
Gallo S, Folco CB, Crepaldi T. The MET Oncogene Network of Interacting Cell Surface Proteins. Int J Mol Sci 2024; 25:13692. [PMID: 39769452 PMCID: PMC11728269 DOI: 10.3390/ijms252413692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
The MET oncogene, encoding the hepatocyte growth factor (HGF) receptor, plays a key role in tumorigenesis, invasion, and resistance to therapy, yet its full biological functions and activation mechanisms remain incompletely understood. A feature of MET is its extensive interaction network, encompassing the following: (i) receptor tyrosine kinases (RTKs); (ii) co-receptors (e.g., CDCP1, Neuropilin1); (iii) adhesion molecules (e.g., integrins, tetraspanins); (iv) proteases (e.g., ADAM10); and (v) other receptors (e.g., CD44, plexins, GPCRs, and NMDAR). These interactions dynamically modulate MET's activation, signaling, intracellular trafficking, and degradation, enhancing its functional versatility and oncogenic potential. This review offers current knowledge on MET's partnerships, focusing on their functional impact on signaling output, therapeutic resistance, and cellular behavior. Finally, we evaluate emerging combination therapies targeting MET and its interactors, highlighting their potential to overcome resistance and improve clinical outcomes. By exploring the complex interplay within the MET network of interacting cell surface proteins, this review provides insights into advancing anti-cancer strategies and understanding the broader implications of RTK crosstalk in oncology.
Collapse
Affiliation(s)
- Simona Gallo
- Department of Oncology, University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy; (S.G.); (C.B.F.)
- Candiolo Cancer Institute, FPO-IRCCS, SP142, Km 3.95, 10060 Candiolo, Italy
| | - Consolata Beatrice Folco
- Department of Oncology, University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy; (S.G.); (C.B.F.)
- Candiolo Cancer Institute, FPO-IRCCS, SP142, Km 3.95, 10060 Candiolo, Italy
| | - Tiziana Crepaldi
- Department of Oncology, University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy; (S.G.); (C.B.F.)
- Candiolo Cancer Institute, FPO-IRCCS, SP142, Km 3.95, 10060 Candiolo, Italy
| |
Collapse
|
2
|
Veselá K, Kejík Z, Masařík M, Babula P, Dytrych P, Martásek P, Jakubek M. Curcumin: A Potential Weapon in the Prevention and Treatment of Head and Neck Cancer. ACS Pharmacol Transl Sci 2024; 7:3394-3418. [PMID: 39539276 PMCID: PMC11555516 DOI: 10.1021/acsptsci.4c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Head and neck cancers (HNC) are aggressive, difficult-to-treat tumors that can be caused by genetic factors but mainly by lifestyle or infection caused by the human papillomavirus. As the sixth most common malignancy, it presents a formidable therapeutic challenge with limited therapeutic modalities. Curcumin, a natural polyphenol, is appearing as a promising multitarget anticancer and antimetastatic agent. Numerous studies have shown that curcumin and its derivatives have the potential to affect signaling pathways (NF-κB, JAK/STAT, and EGFR) and molecular mechanisms that are crucial for the growth and migration of head and neck tumors. Furthermore, its ability to interact with the tumor microenvironment and trigger the immune system may significantly influence the organism's immune response to the tumor. Combining curcumin with conventional therapies such as chemotherapy or radiotherapy may improve the efficacy of treatment and reduce the side effects of treatment, thereby increasing its therapeutic potential. This review is a comprehensive overview that discusses both the benefits and limitations of curcumin and its therapeutic effects in the context of tumor biology, with an emphasis on molecular mechanisms in the context of HNC. This review also includes possibilities to improve the limiting properties of curcumin both in terms of the development of new derivatives, formulations, or combinations with conventional therapies that have potential as a new type of therapy for the treatment of HNC and subsequent use in clinical practice.
Collapse
Affiliation(s)
- Kateřina Veselá
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Zdeněk Kejík
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Michal Masařík
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
- Department
of Physiology, Faculty of Medicine, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
- Department
of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Babula
- Department
of Physiology, Faculty of Medicine, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Dytrych
- First
Department of Surgery-Department of Abdominal, Thoracic Surgery and
Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121
08 Prague, Czech
Republic
| | - Pavel Martásek
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Milan Jakubek
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| |
Collapse
|
3
|
Vakili S, Behrooz AB, Whichelo R, Fernandes A, Emwas AH, Jaremko M, Markowski J, Los MJ, Ghavami S, Vitorino R. Progress in Precision Medicine for Head and Neck Cancer. Cancers (Basel) 2024; 16:3716. [PMID: 39518152 PMCID: PMC11544984 DOI: 10.3390/cancers16213716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
This paper presents a comprehensive comparative analysis of biomarkers for head and neck cancer (HNC), a prevalent but molecularly diverse malignancy. We detail the roles of key proteins and genes in tumourigenesis and progression, emphasizing their diagnostic, prognostic, and therapeutic relevance. Our bioinformatic validation reveals crucial genes such as AURKA, HMGA2, MMP1, PLAU, and SERPINE1, along with microRNAs (miRNA), linked to HNC progression. OncomiRs, including hsa-miR-21-5p, hsa-miR-31-5p, hsa-miR-221-3p, hsa-miR-222-3p, hsa-miR-196a-5p, and hsa-miR-200c-3p, drive tumourigenesis, while tumour-suppressive miRNAs like hsa-miR-375 and hsa-miR-145-5p inhibit it. Notably, hsa-miR-155-3p correlates with survival outcomes in addition to the genes RAI14, S1PR5, OSBPL10, and METTL6, highlighting its prognostic potential. Future directions should focus on leveraging precision medicine, novel therapeutics, and AI integration to advance personalized treatment strategies to optimize patient outcomes in HNC care.
Collapse
Affiliation(s)
- Sanaz Vakili
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0J9, Canada; (S.V.); (A.B.B.); (R.W.)
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0J9, Canada; (S.V.); (A.B.B.); (R.W.)
| | - Rachel Whichelo
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0J9, Canada; (S.V.); (A.B.B.); (R.W.)
- Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Alexandra Fernandes
- Guelph College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Abdul-Hamid Emwas
- Core Lab of NMR, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955-6900, Saudi Arabia;
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955-6900, Saudi Arabia;
| | - Jarosław Markowski
- Department of Laryngology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland;
| | - Marek J. Los
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Saeid Ghavami
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555 Katowice, Poland
- Paul Albrechtsen Research Institute, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Rui Vitorino
- Guelph College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4099-002 Porto, Portugal
| |
Collapse
|
4
|
Palollathil A, Nandakumar R, Ahmed M, Velikkakath AKG, Nisar M, Nisar M, Devasahayam Arokia Balaya R, Parate SS, Hanehalli V, Mahin A, Mathew RT, Shetty R, Codi JAK, Revikumar A, Vijayakumar M, Prasad TSK, Raju R. HNCDrugResDb: a platform for deciphering drug resistance in head and neck cancers. Sci Rep 2024; 14:25327. [PMID: 39455682 PMCID: PMC11511878 DOI: 10.1038/s41598-024-75861-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Drug resistance poses a significant obstacle to the success of anti-cancer therapy in head and neck cancers (HNCs). We aim to develop a platform for visualizing and analyzing molecular expression alterations associated with HNC drug resistance. Through data mining, we convened differentially expressed molecules and context-specific signaling events involved in drug resistance. The driver genes, interaction networks and transcriptional regulations were explored using bioinformatics approaches. A total of 2364 differentially expressed molecules were identified in 78 distinct drug-resistant cells against 14 anti-cancer drugs, comprising 1131 mRNAs, 746 proteins, 62 lncRNAs, 257 miRNAs, 1 circRNA, and 166 post-translational modifications. Among these, 255 molecules were considerably, the signature driver genes of HNC drug resistance. Further, we also developed a landscape of signaling pathways and their cross-talk with diverse signaling modules involved in drug resistance. Additionally, a publicly-accessible database named "HNCDrugResDb" was designed with browse, query, and pathway explorer options to fetch and enrich molecular alterations and signaling pathways altered in drug resistance. HNCDrugResDb is also enabled with a Drug Resistance Analysis tool as an initial platform to infer the likelihood of resistance based on the expression pattern of driver genes. HNCDrugResDb is anticipated to have substantial implications for future advancements in drug discovery and optimization of personalized medicine approaches.
Collapse
Affiliation(s)
- Akhina Palollathil
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Revathy Nandakumar
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Mukhtar Ahmed
- Department of Zoology, College of Science, King Saud University, Kingdom of Saudi Arabia, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Anoop Kumar G Velikkakath
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India.
| | - Mahammad Nisar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Muhammad Nisar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Rex Devasahayam Arokia Balaya
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Sakshi Sanjay Parate
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Vidyarashmi Hanehalli
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| | - Althaf Mahin
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Rohan Thomas Mathew
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Rohan Shetty
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Jalaluddin Akbar Kandel Codi
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Amjesh Revikumar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
- Kerala Genome Data Centre, Kerala Development and Innovation Strategic Council, Vazhuthacaud, Thiruvananthapuram, Kerala, 695014, India
| | - Manavalan Vijayakumar
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India.
| | - Thottethodi Subrahmanya Keshava Prasad
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India.
| | - Rajesh Raju
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India.
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India.
| |
Collapse
|
5
|
Sanwick AM, Chaple IF. Targeted radionuclide therapy for head and neck squamous cell carcinoma: a review. Front Oncol 2024; 14:1445191. [PMID: 39239273 PMCID: PMC11374632 DOI: 10.3389/fonc.2024.1445191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a type of head and neck cancer that is aggressive, difficult to treat, and often associated with poor prognosis. HNSCC is the sixth most common cancer worldwide, highlighting the need to develop novel treatments for this disease. The current standard of care for HNSCC usually involves a combination of surgical resection, radiation therapy, and chemotherapy. Chemotherapy is notorious for its detrimental side effects including nausea, fatigue, hair loss, and more. Radiation therapy can be a challenge due to the anatomy of the head and neck area and presence of normal tissues. In addition to the drawbacks of chemotherapy and radiation therapy, high morbidity and mortality rates for HNSCC highlight the urgent need for alternative treatment options. Immunotherapy has recently emerged as a possible treatment option for cancers including HNSCC, in which monoclonal antibodies are used to help the immune system fight disease. Combining monoclonal antibodies approved by the US Food and Drug Administration, such as cetuximab and pembrolizumab, with radiotherapy or platinum-based chemotherapy for patients with locally advanced, recurrent, or metastatic HNSCC is an accepted first-line therapy. Targeted radionuclide therapy can potentially be used in conjunction with the first-line therapy, or as an additional treatment option, to improve patient outcomes and quality of life. Epidermal growth factor receptor is a known molecular target for HNSCC; however, other targets such as human epidermal growth factor receptor 2, human epidermal growth factor receptor 3, programmed cell death protein 1, and programmed death-ligand 1 are emerging molecular targets for the diagnosis and treatment of HNSCC. To develop successful radiopharmaceuticals, it is imperative to first understand the molecular biology of the disease of interest. For cancer, this understanding often means detection and characterization of molecular targets, such as cell surface receptors, that can be used as sensitive targeting agents. The goal of this review article is to explore molecular targets for HNSCC and dissect previously conducted research in nuclear medicine and provide a possible path forward for the development of novel radiopharmaceuticals used in targeted radionuclide therapy for HNSCC, which has been underexplored to date.
Collapse
Affiliation(s)
- Alexis M Sanwick
- Department of Nuclear Engineering, University of Tennessee, Knoxville, TN, United States
| | - Ivis F Chaple
- Department of Nuclear Engineering, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
6
|
Geng W, Thomas H, Chen Z, Yan Z, Zhang P, Zhang M, Huang W, Ren X, Wang Z, Ding K, Zhang J. Mechanisms of acquired resistance to HER2-Positive breast cancer therapies induced by HER3: A comprehensive review. Eur J Pharmacol 2024; 977:176725. [PMID: 38851563 DOI: 10.1016/j.ejphar.2024.176725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/15/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Receptor tyrosine kinases (RTKs) are cell surface receptors with kinase activity that play a crucial role in diverse cellular processes. Among the RTK family members, Human epidermal growth factor receptor 2 (HER2) and HER3 are particularly relevant to breast cancer. The review delves into the complexities of receptor tyrosine kinase interactions, resistance mechanisms, and the potential of anti-HER3 drugs, offering valuable insights into the clinical implications and future directions in this field of study. It assesses the potential of anti-HER3 drugs, such as pertuzumab, in overcoming resistance observed in HER2-positive breast cancer therapies. The review also explores the resistance mechanisms associated with various drugs, including trastuzumab, lapatinib, and PI3K inhibitors, providing insights into the intricate molecular processes underlying resistance development. The review concludes by emphasizing the necessity for further clinical trials to assess the efficacy of HER3 inhibitors and the potential of developing safe and effective anti-HER3 treatments to improve treatment outcomes for patients with HER2-positive breast cancer.
Collapse
Affiliation(s)
- Wujun Geng
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Holly Thomas
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Hatherly Laboratories, Streatham Campus, Exeter, EX4 4PS, UK
| | - Zhiyuan Chen
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zhixiu Yan
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Pujuan Zhang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Meiying Zhang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Weixue Huang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xiaomei Ren
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jinwei Zhang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China; Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Hatherly Laboratories, Streatham Campus, Exeter, EX4 4PS, UK.
| |
Collapse
|
7
|
O’Neill CE, Sun K, Sundararaman S, Chang JC, Glynn SA. The impact of nitric oxide on HER family post-translational modification and downstream signaling in cancer. Front Physiol 2024; 15:1358850. [PMID: 38601214 PMCID: PMC11004480 DOI: 10.3389/fphys.2024.1358850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/16/2024] [Indexed: 04/12/2024] Open
Abstract
The human epidermal growth factor receptor (HER) family consists of four members, activated by two families of ligands. They are known for mediating cell-cell interactions in organogenesis, and their deregulation has been associated with various cancers, including breast and esophageal cancers. In particular, aberrant epidermal growth factor receptor (EGFR) and HER2 signaling drive disease progression and result in poorer patient outcomes. Nitric oxide (NO) has been proposed as an alternative activator of the HER family and may play a role in this aberrant activation due to its ability to induce s-nitrosation and phosphorylation of the EGFR. This review discusses the potential impact of NO on HER family activation and downstream signaling, along with its role in the efficacy of therapeutics targeting the family.
Collapse
Affiliation(s)
- Ciara E. O’Neill
- Lambe Institute for Translational Research, Discipline of Pathology, School of Medicine, University of Galway, Galway, Ireland
| | - Kai Sun
- Houston Methodist Research Institute, Houston, TX, United States
- Dr Mary and Ron Neal Cancer Center, Houston Methodist Hospital, Houston, TX, United States
| | | | - Jenny C. Chang
- Houston Methodist Research Institute, Houston, TX, United States
- Dr Mary and Ron Neal Cancer Center, Houston Methodist Hospital, Houston, TX, United States
| | - Sharon A. Glynn
- Lambe Institute for Translational Research, Discipline of Pathology, School of Medicine, University of Galway, Galway, Ireland
| |
Collapse
|
8
|
Nowak J, Bentele M, Kutle I, Zimmermann K, Lühmann JL, Steinemann D, Kloess S, Koehl U, Roßberg W, Ahmed A, Schaudien D, Neubert L, Kamp JC, Kuehnel MP, Warnecke A, Schambach A, Morgan M. CAR-NK Cells Targeting HER1 (EGFR) Show Efficient Anti-Tumor Activity against Head and Neck Squamous Cell Carcinoma (HNSCC). Cancers (Basel) 2023; 15:3169. [PMID: 37370779 DOI: 10.3390/cancers15123169] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
(1) Background: HNSCC is a highly heterogeneous and relapse-prone form of cancer. We aimed to expand the immunological tool kit against HNSCC by conducting a functional screen to generate chimeric antigen receptor (CAR)-NK-92 cells that target HER1/epidermal growth factor receptor (EGFR). (2) Methods: Selected CAR-NK-92 cell candidates were tested for enhanced reduction of target cells, CD107a expression and IFNγ secretion in different co-culture models. For representative HNSCC models, patient-derived primary HNSCC (pHNSCC) cell lines were generated by employing an EpCAM-sorting approach to eliminate the high percentage of non-malignant cells found. (3) Results: 2D and 3D spheroid co-culture experiments showed that anti-HER1 CAR-NK-92 cells effectively eliminated SCC cell lines and primary HNSCC (pHNSCC) cells. Co-culture of tumor models with anti-HER1 CAR-NK-92 cells led to enhanced degranulation and IFNγ secretion of NK-92 cells and apoptosis of target cells. Furthermore, remaining pHNSCC cells showed upregulated expression of putative cancer stem cell marker CD44v6. (4) Conclusions: These results highlight the promising potential of CAR-NK cell therapy in HNSCC and the likely necessity to target multiple tumor-associated antigens to reduce currently high relapse rates.
Collapse
Affiliation(s)
- Juliette Nowak
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Marco Bentele
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Ivana Kutle
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Katharina Zimmermann
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | | | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany
| | - Stephan Kloess
- Institute for Cellular Therapeutics, Hannover Medical School, 30625 Hannover, Germany
| | - Ulrike Koehl
- Institute for Cellular Therapeutics, Hannover Medical School, 30625 Hannover, Germany
- Institute of Clinical Immunology, University Leipzig, 04103 Leipzig, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, IZI, 04103 Leipzig, Germany
| | - Willi Roßberg
- Department of Otolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Amed Ahmed
- Department of Otolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine, ITEM, 30625 Hannover, Germany
| | - Lavinia Neubert
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Jan-Christopher Kamp
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Mark P Kuehnel
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Athanasia Warnecke
- Department of Otolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
9
|
Role of E2F transcription factor in Oral cancer: Recent Insight and Advancements. Semin Cancer Biol 2023; 92:28-41. [PMID: 36924812 DOI: 10.1016/j.semcancer.2023.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
The family of mammalian E2F transcription factors (E2Fs) comprise of 8 members (E2F1-E2F8) classified as activators (E2F1-E2F3) and repressors (E2F4-E2F8) primarily regulating the expression of several genes related to cell proliferation, apoptosis and differentiation, mainly in a cell cycle-dependent manner. E2F activity is frequently controlled via the retinoblastoma protein (pRb), cyclins, p53 and the ubiquitin-proteasome pathway. Additionally, genetic or epigenetic changes result in the deregulation of E2F family genes expression altering S phase entry and apoptosis, an important hallmark for the onset and development of cancer. Although studies reveal E2Fs to be involved in several human malignancies, the mechanisms underlying the role of E2Fs in oral cancer lies nascent and needs further investigations. This review focuses on the role of E2Fs in oral cancer and the etiological factors regulating E2Fs activity, which in turn transcriptionally control the expression of their target genes, thus contributing to cell proliferation, metastasis, and drug/therapy resistance. Further, we will discuss therapeutic strategies for E2Fs, which may prevent oral tumor growth, metastasis, and drug resistance.
Collapse
|
10
|
Li Q, Tie Y, Alu A, Ma X, Shi H. Targeted therapy for head and neck cancer: signaling pathways and clinical studies. Signal Transduct Target Ther 2023; 8:31. [PMID: 36646686 PMCID: PMC9842704 DOI: 10.1038/s41392-022-01297-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/27/2022] [Accepted: 12/13/2022] [Indexed: 01/17/2023] Open
Abstract
Head and neck cancer (HNC) is malignant, genetically complex and difficult to treat and is the sixth most frequent cancer, with tobacco, alcohol and human papillomavirus being major risk factors. Based on epigenetic data, HNC is remarkably heterogeneous, and treatment remains challenging. There is a lack of significant improvement in survival and quality of life in patients with HNC. Over half of HNC patients experience locoregional recurrence or distal metastasis despite the current multiple traditional therapeutic strategies and immunotherapy. In addition, resistance to chemotherapy, radiotherapy and some targeted therapies is common. Therefore, it is urgent to explore more effective and tolerable targeted therapies to improve the clinical outcomes of HNC patients. Recent targeted therapy studies have focused on identifying promising biomarkers and developing more effective targeted therapies. A well understanding of the pathogenesis of HNC contributes to learning more about its inner association, which provides novel insight into the development of small molecule inhibitors. In this review, we summarized the vital signaling pathways and discussed the current potential therapeutic targets against critical molecules in HNC, as well as presenting preclinical animal models and ongoing or completed clinical studies about targeted therapy, which may contribute to a more favorable prognosis of HNC. Targeted therapy in combination with other therapies and its limitations were also discussed.
Collapse
Affiliation(s)
- Qingfang Li
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Tie
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Aqu Alu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Huashan Shi
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Zhang S, Wang W, Xu C, Zhang Y, Cai X, Wang Q, Song Z, Li Z, Yu J, Zhong W, Wang Z, Liu J, Liu A, Li W, Zhan P, Liu H, Lv T, Miao L, Min L, Lin G, Huang L, Yuan J, Jiang Z, Pu X, Rao C, Lv D, Yu Z, Li X, Tang C, Zhou C, Zhang J, Guo H, Chu Q, Meng R, Liu X, Wu J, Zhou J, Zhu Z, Pan W, Dong X, Pang F, Wang K, Yao C, Lin G, Li S, Yang Z, Luo J, Jia H, Nie X, Wang L, Zhu Y, Hu X, Xie Y, Lin X, Cai J, Xia Y, Feng H, Wang L, Du Y, Yao W, Shi X, Niu X, Yuan D, Yao Y, Kang J, Zhang J, Zhang C, Gao W, Huang J, Zhang Y, Sun P, Wang H, Ye M, Wang D, Wang Z, Wan B, Lv D, Yu G, Shi L, Xia Y, Gao F, Zhang X, Xu T, Zhou W, Wang H, Liu Z, Yang N, Wu L, Wang Q, Wang G, Hong Z, Wang J, Fang M, Fang Y, Zhang Y, Song Y, Ma S, Fang W, Lu Y. Chinese expert consensus on the diagnosis and treatment of HER2-altered non-small cell lung cancer. Thorac Cancer 2022; 14:91-104. [PMID: 36444143 PMCID: PMC9807451 DOI: 10.1111/1759-7714.14743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) possesses tyrosine kinase activity and participates in cell growth, differentiation and migration, and survival. Its alterations, mainly including mutations, amplifications, and overexpression are associated with poor prognosis and are one of the major drivers in non-small cell lung cancer (NSCLC). Several clinical trials had been investigating on the treatments of HER2-altered NSCLC, including conventional chemotherapy, programmed death 1 (PD-1) inhibitors, tyrosine kinase inhibitors (TKIs) and antibody-drug conjugates (ADCs), however, the results were either disappointing or encouraging, but inconsistent. Trastuzumab deruxtecan (T-DXd) was recently approved by the Food and Drug Administration as the first targeted agent for treating HER2-mutant NSCLC. Effective screening of patients is the key to the clinical application of HER2-targeted agents such as TKIs and ADCs. Various testing methods are nowadays available, including polymerase chain reaction (PCR), next-generation sequencing (NGS), fluorescence in situ hybridization (FISH), immunohistochemistry (IHC), etc. Each method has its pros and cons and should be reasonably assigned to appropriate patients for diagnosis and guiding treatment decisions. To help standardize the clinical workflow, our expert group reached a consensus on the clinical management of HER2-altered NSCLC, focusing on the diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Shirong Zhang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer CenterZhejiang University School of MedicineHangzhouChina
| | - Wenxian Wang
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouChina
| | - Chunwei Xu
- Institute of Cancer and Basic Medicine (ICBM)Chinese Academy of SciencesHangzhouChina,Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Xiuyu Cai
- Department of VIP Inpatient, Sun Yet‐Sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Qian Wang
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese MedicineJiangsu Province Hospital of Chinese MedicineNanjingChina
| | - Zhengbo Song
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouChina
| | - Ziming Li
- Department of Shanghai Lung Cancer Center, Shanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Jinpu Yu
- Department of Cancer Molecular Diagnostics CoreTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Wenzhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesSchool of MedicineGuangzhouChina
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jingjing Liu
- Department of Thoracic CancerJilin Cancer HospitalChangchunChina
| | - Anwen Liu
- Department of OncologySecond Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Cancer CenterZhejiang UniversityHangzhouChina
| | - Ping Zhan
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Hongbing Liu
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Tangfeng Lv
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Liyun Miao
- Department of Respiratory Medicine, Affiliated Drum Tower HospitalMedical School of Nanjing UniversityNanjingChina
| | - Lingfeng Min
- Department of Respiratory Medicine, Clinical Medical School of Yangzhou UniversitySubei People's Hospital of Jiangsu ProvinceYangzhouChina
| | - Gen Lin
- Department of Medical OncologyFujian Medical University Cancer Hospital and Fujian Cancer HospitalFuzhouChina
| | - Long Huang
- Department of OncologySecond Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Jingping Yuan
- Department of PathologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhansheng Jiang
- Department of Integrative OncologyTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Xingxiang Pu
- Department of Medical Oncology, Lung Cancer and Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Chuangzhou Rao
- Department of Radiotherapy and Chemotherapy, Hwamei HospitalUniversity of Chinese Academy of SciencesNingboChina
| | - Dongqing Lv
- Department of Pulmonary MedicineTaizhou Hospital of Wenzhou Medical UniversityTaizhouChina
| | - Zongyang Yu
- Department of Respiratory Medicine, the 900th Hospital of the Joint Logistics Team (the Former Fuzhou General Hospital)Fujian Medical UniversityFuzhouChina
| | - Xiaoyan Li
- Department of Oncology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Chuanhao Tang
- Department of Medical OncologyPeking University International HospitalBeijingChina
| | - Chengzhi Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease; Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical University (The First Affiliated Hospital of Guangzhou Medical University)GuangzhouChina
| | - Junping Zhang
- Department of Thoracic Oncology, Shanxi Academy of Medical SciencesShanxi Bethune HospitalTaiyuanChina
| | - Hui Guo
- Department of Medical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xuewen Liu
- Department of Oncology, the Third Xiangya HospitalCentral South UniversityChangshaChina
| | - Jingxun Wu
- Department of Medical Oncology, the First Affiliated Hospital of MedicineXiamen UniversityXiamenChina
| | - Jin Zhou
- Department of Medical Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of MedicineUniversity of Electronic Science and TechnologyChengduChina
| | - Zhengfei Zhu
- Department of Radiation OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Weiwei Pan
- Department of Cell Biology, College of MedicineJiaxing UniversityJiaxingChina
| | - Xiaowei Dong
- Department of MedicalShanghai OrigiMed Co., LtdShanghaiChina
| | - Fei Pang
- Department of MedicalShanghai OrigiMed Co., LtdShanghaiChina
| | - Kai Wang
- Department of MedicalShanghai OrigiMed Co., LtdShanghaiChina
| | - Chao Yao
- Department of MedicalShanghai OrigiMed Co., LtdShanghaiChina
| | - Guomin Lin
- Department of MedicalShanghai OrigiMed Co., LtdShanghaiChina
| | - Site Li
- Department of IVD Medical Marketing3D MedicinesShanghaiChina
| | - Zhi Yang
- Department of IVD Medical Marketing3D MedicinesShanghaiChina
| | | | - Hongtao Jia
- Department of MedicalAiyi TechnologyBeijingChina
| | - Xiuqing Nie
- Department of Clinical TrialNovocodex BiopharmaceuticShaoxingChina
| | - Liping Wang
- Department of Oncology, Baotou Cancer HospitalBaotouChina
| | - Youcai Zhu
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun HospitalThe Third Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Xiao Hu
- Zhejiang Key Laboratory of Radiation OncologyCancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)HangzhouChina
| | - Yanru Xie
- Department of OncologyLishui Municipal Central HospitalLishuiChina
| | - Xinqing Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease; Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical University (The First Affiliated Hospital of Guangzhou Medical University)GuangzhouChina
| | - Jing Cai
- Department of OncologySecond Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Yang Xia
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Cancer CenterZhejiang UniversityHangzhouChina
| | - Huijing Feng
- Department of Thoracic Oncology, Shanxi Academy of Medical SciencesShanxi Bethune HospitalTaiyuanChina
| | - Lin Wang
- Department of Pathology, Shanxi Academy of Medical SciencesShanxi Bethune HospitalTaiyuanChina
| | - Yingying Du
- Department of OncologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Wang Yao
- Department of Interventional Oncology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Xuefei Shi
- Department of Respiratory Medicine, Huzhou HospitalZhejiang University School of MedicineHuzhouChina
| | - Xiaomin Niu
- Department of Shanghai Lung Cancer Center, Shanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Dongmei Yuan
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Yanwen Yao
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Jing Kang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesSchool of MedicineGuangzhouChina
| | - Jiatao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesSchool of MedicineGuangzhouChina
| | - Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesSchool of MedicineGuangzhouChina
| | - Wenbin Gao
- Department of OncologyThe Third Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Jianhui Huang
- Department of OncologyLishui Municipal Central HospitalLishuiChina
| | - Yinbin Zhang
- Department of Oncology, the Second Affiliated Hospital of Medical CollegeXi'an Jiaotong UniversityXi'anChina
| | - Pingli Sun
- Department of PathologyThe Second Hospital of Jilin UniversityChangchunChina
| | - Hong Wang
- Senior Department of OncologyThe 5th Medical Center of PLA General HospitalBeijingChina
| | - Mingxiang Ye
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Dong Wang
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Zhaofeng Wang
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Bing Wan
- Department of Respiratory MedicineThe Affiliated Jiangning Hospital of Nanjing Medical UniversityNanjingChina
| | - Donglai Lv
- Department of Clinical OncologyThe 901 Hospital of Joint Logistics Support Force of People Liberation ArmyHefeiChina
| | - Genhua Yu
- Department of Radiation OncologyZhebei Mingzhou HospitalHuzhouChina
| | - Lin Shi
- Department of Respiratory Medicine, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Yuanli Xia
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun HospitalThe Third Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Feng Gao
- Department of Thoracic SurgeryThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Xiaochen Zhang
- Department of Oncology, The First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Tao Xu
- Department of Pulmonary and Critical Care MedicineThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Wei Zhou
- Institute of Cancer and Basic Medicine (ICBM)Chinese Academy of SciencesHangzhouChina
| | - Haixia Wang
- Institute of Cancer and Basic Medicine (ICBM)Chinese Academy of SciencesHangzhouChina
| | - Zhefeng Liu
- Senior Department of OncologyThe 5th Medical Center of PLA General HospitalBeijingChina
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Lin Wu
- Department of Medical Oncology, Lung Cancer and Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Qiming Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou UniversityHenan Cancer HospitalZhengzhouChina
| | - Guansong Wang
- Institute of Respiratory Diseases, Xinqiao HospitalThird Military Medical UniversityChongqingChina
| | - Zhuan Hong
- Department of Medical Oncology, Jiangsu Cancer HospitalNanjing Medical University Affiliated Cancer HospitalNanjingChina
| | - Jiandong Wang
- Department of Pathology, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Meiyu Fang
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouChina
| | - Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw HospitalZhejiang UniversityHangzhouChina
| | - Yiping Zhang
- Department of ChemotherapyChinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital)HangzhouChina
| | - Yong Song
- Department of Respiratory Medicine, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Shenglin Ma
- Department of Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Cancer CenterZhejiang University School of MedicineHangzhouChina
| | - Wenfeng Fang
- Department of Medical Oncology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Yuanzhi Lu
- Department of Clinical PathologyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| |
Collapse
|
12
|
Gandullo-Sánchez L, Ocaña A, Pandiella A. HER3 in cancer: from the bench to the bedside. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:310. [PMID: 36271429 PMCID: PMC9585794 DOI: 10.1186/s13046-022-02515-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/07/2022] [Indexed: 11/15/2022]
Abstract
The HER3 protein, that belongs to the ErbB/HER receptor tyrosine kinase (RTK) family, is expressed in several types of tumors. That fact, together with the role of HER3 in promoting cell proliferation, implicate that targeting HER3 may have therapeutic relevance. Furthermore, expression and activation of HER3 has been linked to resistance to drugs that target other HER receptors such as agents that act on EGFR or HER2. In addition, HER3 has been associated to resistance to some chemotherapeutic drugs. Because of those circumstances, efforts to develop and test agents targeting HER3 have been carried out. Two types of agents targeting HER3 have been developed. The most abundant are antibodies or engineered antibody derivatives that specifically recognize the extracellular region of HER3. In addition, the use of aptamers specifically interacting with HER3, vaccines or HER3-targeting siRNAs have also been developed. Here we discuss the state of the art of the preclinical and clinical development of drugs aimed at targeting HER3 with therapeutic purposes.
Collapse
Affiliation(s)
- Lucía Gandullo-Sánchez
- grid.428472.f0000 0004 1794 2467Instituto de Biología Molecular y Celular del Cáncer, CSIC, IBSAL and CIBERONC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Alberto Ocaña
- grid.411068.a0000 0001 0671 5785Hospital Clínico San Carlos and CIBERONC, 28040 Madrid, Spain
| | - Atanasio Pandiella
- grid.428472.f0000 0004 1794 2467Instituto de Biología Molecular y Celular del Cáncer, CSIC, IBSAL and CIBERONC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
13
|
Iida M, McDaniel NK, Kostecki KL, Welke NB, Kranjac CA, Liu P, Longhurst C, Bruce JY, Hong S, Salgia R, Wheeler DL. AXL regulates neuregulin1 expression leading to cetuximab resistance in head and neck cancer. BMC Cancer 2022; 22:447. [PMID: 35461210 PMCID: PMC9035247 DOI: 10.1186/s12885-022-09511-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The receptor tyrosine kinase (RTK) epidermal growth factor receptor (EGFR) is overexpressed and an important therapeutic target in Head and Neck cancer (HNC). Cetuximab is currently the only EGFR-targeting agent approved by the FDA for treatment of HNC; however, intrinsic and acquired resistance to cetuximab is a major problem in the clinic. Our lab previously reported that AXL leads to cetuximab resistance via activation of HER3. In this study, we investigate the connection between AXL, HER3, and neuregulin1 (NRG1) gene expression with a focus on understanding how their interdependent signaling promotes resistance to cetuximab in HNC. METHODS Plasmid or siRNA transfections and cell-based assays were conducted to test cetuximab sensitivity. Quantitative PCR and immunoblot analysis were used to analyze gene and protein expression levels. Seven HNC patient-derived xenografts (PDXs) were evaluated for protein expression levels. RESULTS We found that HER3 expression was necessary but not sufficient for cetuximab resistance without AXL expression. Our results demonstrated that addition of the HER3 ligand NRG1 to cetuximab-sensitive HNC cells leads to cetuximab resistance. Further, AXL-overexpressing cells regulate NRG1 at the level of transcription, thereby promoting cetuximab resistance. Immunoblot analysis revealed that NRG1 expression was relatively high in cetuximab-resistant HNC PDXs compared to cetuximab-sensitive HNC PDXs. Finally, genetic inhibition of NRG1 resensitized AXL-overexpressing cells to cetuximab. CONCLUSIONS The results of this study indicate that AXL may signal through HER3 via NRG1 to promote cetuximab resistance and that targeting of NRG1 could have significant clinical implications for HNC therapeutic approaches.
Collapse
Affiliation(s)
- Mari Iida
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, 1111 highland Ave, WIMR 3159, Madison, WI, 53705, USA
| | - Nellie K McDaniel
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, 1111 highland Ave, WIMR 3159, Madison, WI, 53705, USA
| | - Kourtney L Kostecki
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, 1111 highland Ave, WIMR 3159, Madison, WI, 53705, USA
| | - Noah B Welke
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, 1111 highland Ave, WIMR 3159, Madison, WI, 53705, USA
| | - Carlene A Kranjac
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, 1111 highland Ave, WIMR 3159, Madison, WI, 53705, USA
| | - Peng Liu
- School of Medicine and Public Health, University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Colin Longhurst
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Justine Y Bruce
- School of Medicine and Public Health, University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, University of Wisconsin School of Pharmacy, Madison, WI, USA
- Wisconsin Center for NanoBioSystems, University of Wisconsin, Madison, WI, USA
- Yonsei Frontier Lab, Department of Pharmacy, Yonsei University, Seoul, Korea
| | - Ravi Salgia
- Department of Medical Oncology and Experimental Therapeutics, Comprehensive Cancer Center, City of Hope, Duarte, CA, USA
| | - Deric L Wheeler
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, 1111 highland Ave, WIMR 3159, Madison, WI, 53705, USA.
- School of Medicine and Public Health, University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.
- Wisconsin Center for NanoBioSystems, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
14
|
Consensus for HER2 alterations testing in non-small-cell lung cancer. ESMO Open 2022; 7:100395. [PMID: 35149428 PMCID: PMC8844658 DOI: 10.1016/j.esmoop.2022.100395] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/27/2021] [Accepted: 01/06/2022] [Indexed: 02/08/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is a transmembrane glycoprotein receptor with intracellular tyrosine kinase activity. Its alterations, including mutation, amplification and overexpression, could result in oncogenic potential and have been detected in many cancers such as non-small-cell lung cancer (NSCLC). Such alterations are, in general, considered markers of poor prognosis. Anti-HER2 antibody-drug conjugates, e.g. trastuzumab deruxtecan (T-DXd, DS-8201) and disitamab vedotin (RC48), were recently approved for HER2-positive breast and gastric cancers. Meanwhile, several HER2-targeted drugs, such as T-DXd, neratinib, afatinib, poziotinib and pyrotinib, have been evaluated in patients with advanced NSCLC, with several of them demonstrating clinical benefit. Therefore, identifying HER2 alterations is pivotal for NSCLC patients to benefit from these targeted therapies. Recent guidelines on HER2 testing were developed for breast and gastric cancer, however, and have not been fully established for NSCLC. The expert group here reached a consensus on HER2 alteration testing in NSCLC with the focus on clinicopathologic characteristics, therapies, detection methods and diagnostic criteria for HER2-altered NSCLC patients. We hope this consensus could improve the clinical management of NSCLC patients with HER2 alterations. Human epidermal growth factor receptor 2 (HER2) alterations lead to poor prognosis in non-small-cell lung cancer (NSCLC). Identifying HER2 alterations is pivotal to guide the anti-HER2-targeted therapies in NSCLC. The requirements for HER2 mutation, amplification or expression testing are distinct in NSCLC. This consensus fills the gap in the criteria for HER2 alteration testing in NSCLC.
Collapse
|
15
|
Glycosylation promotes the cancer regulator EGFR-ErbB2 heterodimer formation - molecular dynamics study. J Mol Model 2021; 27:361. [PMID: 34817689 DOI: 10.1007/s00894-021-04986-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
ErbB family of receptor tyrosine kinases play significant roles in cellular differentiation and proliferation. Mutation or overexpression of these receptors leads to several cancers in humans. The family has four homologous members including EGFR, ErbB2, ErbB3, and ErbB4. From which all except the ErbB2 bind to growth factors via the extracellular domain to send signals to the cell. However, dimerization of the ErbB receptor occurs in extracellular, transmembrane, and intracellular domains. The ErbB receptors are known to form homodimers and heterodimers in the active form. Heterodimerization increases the variety of identified ligands and signaling pathways that can be activated by these receptors. Furthermore, glycosylation of the ErbB receptors has shown to be critical for their stability, ligand binding, and dimerization. Here, atomistic molecular dynamics simulations on the glycosylated and unglycosylated heterodimer showed that the EGFR-ErbB2 heterodimer is more stable in its dynamical pattern compared to the EGFR-EGFR homodimer. This increased stability is regulated by maintaining the dimeric interface by the attached glycans. It was also shown that the presence of various glycosylation sites within the ErbB2 growth factor binding site leads to occlusion of this site by the glycans that inhibit ligand binding to ErbB2 and participate in further stabilization of the heterodimer construct. Putting together, glycosylation seems to promote the heterodimer formation within the ErbB family members as the dominant molecular mechanism of activation for these receptors.
Collapse
|
16
|
Abstract
The epidermal growth factor receptor (EGFR) is an important therapeutic target in head and neck squamous cell carcinomas (HNSCCs). EGFR-targeted agents including monoclonal antibodies and tyrosine kinase inhibitors have shown mixed results in clinical trials. To date, only cetuximab, an anti-EGFR monoclonal antibody, is approved for use in local/regional advanced and recurrent or metastatic HNSCC. This article reviews the mechanism of action of cetuximab and its antitumor immune effects and the data to support its use in HNSCC. It additionally provides an overview of other EGFR monoclonal antibodies and small molecule tyrosine kinase inhibitors that have been studied.
Collapse
|
17
|
Weinberg A, Tugizov S, Pandiyan P, Jin G, Rakshit S, Vyakarnam A, Naglik JR. Innate immune mechanisms to oral pathogens in oral mucosa of HIV-infected individuals. Oral Dis 2020; 26 Suppl 1:69-79. [PMID: 32862519 PMCID: PMC7570967 DOI: 10.1111/odi.13470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A crucial aspect of mucosal HIV transmission is the interaction between HIV, the local environmental milieu and immune cells. The oral mucosa comprises many host cell types including epithelial cells, CD4 + T cells, dendritic cells and monocytes/macrophages, as well as a diverse microbiome predominantly comprising bacterial species. While the oral epithelium is one of the first sites exposed to HIV through oral-genital contact and nursing infants, it is largely thought to be resistant to HIV transmission via mechanisms that are still unclear. HIV-1 infection is also associated with predisposition to secondary infections, such as tuberculosis, and other diseases including cancer. This review addresses the following questions that were discussed at the 8th World Workshop on Oral Health and Disease in AIDS held in Bali, Indonesia, 13 September –15 September 2019: (a) How does HIV infection affect epithelial cell signalling? (b) How does HIV infection affect the production of cytokines and other innate antimicrobial factors, (c) How is the mucosal distribution and function of immune cells altered in HIV infection? (d) How do T cells affect HIV (oral) pathogenesis and cancer? (e) How does HIV infection lead to susceptibility to TB infections?
Collapse
Affiliation(s)
- Aaron Weinberg
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sharof Tugizov
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ge Jin
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Srabanti Rakshit
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Annapurna Vyakarnam
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
18
|
Ostróżka-Cieślik A, Dolińska B. The Role of Hormones and Trophic Factors as Components of Preservation Solutions in Protection of Renal Function before Transplantation: A Review of the Literature. Molecules 2020; 25:E2185. [PMID: 32392782 PMCID: PMC7248710 DOI: 10.3390/molecules25092185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
Transplantation is currently a routine method for treating end-stage organ failure. In recent years, there has been some progress in the development of an optimal composition of organ preservation solutions, improving the vital functions of the organ and allowing to extend its storage period until implantation into the recipient. Optimizations are mostly based on commercial solutions, routinely used to store grafts intended for transplantation. The paper reviews hormones with a potential nephroprotective effect, which were used to modify the composition of renal perfusion and preservation solutions. Their effectiveness as ingredients of preservation solutions was analysed based on a literature review. Hormones and trophic factors are innovative preservation solution supplements. They have a pleiotropic effect and affect normal renal function. The expression of receptors for melatonin, prolactin, thyrotropin, corticotropin, prostaglandin E1 and trophic factors was confirmed in the kidneys, which suggests that they are a promising therapeutic target for renal IR (ischemia-reperfusion) injury. They can have anti-inflammatory, antioxidant and anti-apoptotic effects, limiting IR injury.
Collapse
Affiliation(s)
- Aneta Ostróżka-Cieślik
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa 3, 41-200 Sosnowiec, Poland;
| | - Barbara Dolińska
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa 3, 41-200 Sosnowiec, Poland;
- “Biochefa” Pharmaceutical Research and Production Plant, Kasztanowa 3, 41-200 Sosnowiec, Poland
| |
Collapse
|
19
|
Human Immunodeficiency Virus-Associated Exosomes Promote Kaposi's Sarcoma-Associated Herpesvirus Infection via the Epidermal Growth Factor Receptor. J Virol 2020; 94:JVI.01782-19. [PMID: 32051269 PMCID: PMC7163124 DOI: 10.1128/jvi.01782-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the causal agent for Kaposi’s sarcoma (KS), the most common malignancy in HIV/AIDS patients. Oral transmission through saliva is considered the most common route for spreading the virus among HIV/AIDS patients. However, the role of HIV-specific components in the cotransfection of KSHV is unclear. We demonstrate that exosomes purified from the saliva of HIV-positive patients and secreted by HIV-infected T-cell lines promote KSHV infectivity in immortalized and primary oral epithelial cells. HIV-associated exosomes promote KSHV infection, which depends on HIV trans-activation response element (TAR) RNA and EGFR of oral epithelial cells, which can be targeted for reducing KSHV infection. These results reveal that HIV-associated exosomes are a risk factor for KSHV infection in the HIV-infected population. Kaposi’s sarcoma-associated herpesvirus (KSHV) is the causal agent for Kaposi’s sarcoma (KS), the most common malignancy in people living with human immunodeficiency virus (HIV)/AIDS. The oral cavity is a major route for KSHV infection and transmission. However, how KSHV breaches the oral epithelial barrier for spreading to the body is not clear. Here, we show that exosomes purified from either the saliva of HIV-positive individuals or the culture supernatants of HIV-1-infected T-cell lines promote KSHV infectivity in immortalized and primary human oral epithelial cells. HIV-associated saliva exosomes contain the HIV trans-activation response element (TAR), Tat, and Nef RNAs but do not express Tat and Nef proteins. The TAR RNA in HIV-associated exosomes contributes to enhancing KSHV infectivity through the epidermal growth factor receptor (EGFR). An inhibitory aptamer against TAR RNA reduces KSHV infection facilitated by the synthetic TAR RNA in oral epithelial cells. Cetuximab, a monoclonal neutralizing antibody against EGFR, blocks HIV-associated exosome-enhanced KSHV infection. Our findings reveal that saliva containing HIV-associated exosomes is a risk factor for the enhancement of KSHV infection and that the inhibition of EGFR serves as a novel strategy for preventing KSHV infection and transmission in the oral cavity. IMPORTANCE Kaposi’s sarcoma-associated herpesvirus (KSHV) is the causal agent for Kaposi’s sarcoma (KS), the most common malignancy in HIV/AIDS patients. Oral transmission through saliva is considered the most common route for spreading the virus among HIV/AIDS patients. However, the role of HIV-specific components in the cotransfection of KSHV is unclear. We demonstrate that exosomes purified from the saliva of HIV-positive patients and secreted by HIV-infected T-cell lines promote KSHV infectivity in immortalized and primary oral epithelial cells. HIV-associated exosomes promote KSHV infection, which depends on HIV trans-activation response element (TAR) RNA and EGFR of oral epithelial cells, which can be targeted for reducing KSHV infection. These results reveal that HIV-associated exosomes are a risk factor for KSHV infection in the HIV-infected population.
Collapse
|
20
|
Wu ZH, Yun-Tang, Cheng Q. Data Mining Identifies Six Proteins that Can Act as Prognostic Markers for Head and Neck Squamous Cell Carcinoma. Cell Transplant 2020; 29:963689720929308. [PMID: 32452220 PMCID: PMC7563932 DOI: 10.1177/0963689720929308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a malignant tumor of the upper aerodigestive tract affecting the oral cavity, lips, paranasal sinuses, larynx, and nasopharynx. Proteogenomics combines proteomics and genomics and employs mass spectrometry and high-throughput sequencing technologies to identify novel peptides. The aim of this study was to identify potential protein biomarkers for clinical treatment of HNSCC. To achieve this, we utilized two sets of data, one on proteins from The Cancer Proteome Atlas (TCPA) and the other on gene expression from The Cancer Genome Atlas (TCGA) database, to evaluate dysfunctional proteogenomics microenvironment. Univariate Cox regression analysis was performed to examine the relationship between protein signatures and prognosis. A total of 19 proteins were significantly associated with overall survival (OS) of patients, of which E2F transcription factor 1 (E2F1; HR = 4.557, 95% CI = 1.810 to 11.469) and enhancer of zeste homolog 2 (EZH2; HR = 0.430, 95% CI = 0.187 to 0.984) were the most differentially expressed between patients with longer and shorter OS, respectively. Furthermore, multivariate Cox regression analysis on six proteins (ERALPHA, HER3, BRAF, P27, RAPTOR, and E2F1) was performed to build the prognostic model. The receiver operating characteristic curves were used to determine whether the expression pattern of survival-related proteins could provide an early prediction of the occurrence of HNSCC. Herein, we found an AUC of 0.720. Based on an online database, we identified novel protein markers for the prognosis of HNSCC. The findings of the present study may provide new insights into the development of new and reliable tools for precise cancer intervention.
Collapse
Affiliation(s)
- Zeng-hong Wu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun-Tang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Cheng
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
21
|
Pharmacological Benefits and Risk of Using Hormones in Organ Perfusion and Preservation Solutions in the Aspect of Minimizing Hepatic Ischemia-Reperfusion Injury during Storage. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6467134. [PMID: 31828112 PMCID: PMC6881579 DOI: 10.1155/2019/6467134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/31/2019] [Accepted: 10/23/2019] [Indexed: 01/11/2023]
Abstract
For several years, research has been carried out on the effectiveness of solutions for perfusion and preservation of organs, including the liver. There is a search for an optimal pharmacological composition of these solutions, allowing to preserve or improve vital functions of the organ for as long as possible until it is transplanted into a recipient. Hormones due to their properties, often resulting from their pleiotropic effects, may be a valuable component for optimizing the composition of liver perfusion and preservation solutions. The paper presents the current state of knowledge on liver perfusion and preservation solutions modified with hormones. It also shows the characteristics of the hormones evaluated, taking into account their physiological functions in the body.
Collapse
|
22
|
Jarczewska M, Trojan A, Gągała M, Malinowska E. Studies on the Affinity‐based Biosensors for Electrochemical Detection of HER2 Cancer Biomarker. ELECTROANAL 2019. [DOI: 10.1002/elan.201900041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Marta Jarczewska
- The Chair of Medical BiotechnologyFaculty of ChemistryWarsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Anita Trojan
- The Chair of Medical BiotechnologyFaculty of ChemistryWarsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Małgorzata Gągała
- The Chair of Medical BiotechnologyFaculty of ChemistryWarsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Elżbieta Malinowska
- The Chair of Medical BiotechnologyFaculty of ChemistryWarsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
- Centre for Advanced Materials and Technologies CEZAMAT Poleczki 19 02-822 Warsaw Poland
| |
Collapse
|
23
|
Byeon HK, Ku M, Yang J. Beyond EGFR inhibition: multilateral combat strategies to stop the progression of head and neck cancer. Exp Mol Med 2019; 51:1-14. [PMID: 30700700 PMCID: PMC6353966 DOI: 10.1038/s12276-018-0202-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/03/2018] [Accepted: 10/09/2018] [Indexed: 02/08/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) overexpression is common in head and neck squamous cell carcinoma. Targeted therapy specifically directed towards EGFR has been an area of keen interest in head and neck cancer research, as EGFR is potentially an integration point for convergent signaling. Despite the latest advancements in cancer diagnostics and therapeutics against EGFR, the survival rates of patients with advanced head and neck cancer remain disappointing due to anti-EGFR resistance. This review article will discuss recent multilateral efforts to discover and validate actionable strategies that involve signaling pathways in heterogenous head and neck cancer and to overcome anti-EGFR resistance in the era of precision medicine. Particularly, this review will discuss in detail the issue of cancer metabolism, which has recently emerged as a novel mechanism by which head and neck cancer may be successfully controlled according to different perspectives. South Korean researchers propose novel combination strategies for overcoming drug resistance and halting the progression of head and neck cancer (HNC). Although high levels of epidermal growth factor receptor (EGFR) protein in HNC correlate with reduced survival, patients’ response to the EGFR inhibitor cetuximab often declines rapidly after a short period of effectiveness. Hyung Kwon Byeon at Korea University College of Medicine in Seoul and colleagues review current knowledge of the mechanisms underlying cetuximab resistance. They suggest that evaluating a patient’s genetic profile and combining cetuximab with drugs that enhance the effects of inhibiting EGFR signaling pathways (with inhibitors of other EGFR family members or proteins that mediate EGFR entry to the cell nucleus, for example) as well as with agents that inhibit cancer cell metabolism could be a more effective approach for treating HNC.
Collapse
Affiliation(s)
- Hyung Kwon Byeon
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University College of Medicine, Seoul, Republic of Korea. .,Systems Molecular Oncology for Head and Neck Cancer, Seoul, Republic of Korea. .,Systems Molecular Radiology at Yonsei, Seoul, Republic of Korea.
| | - Minhee Ku
- Systems Molecular Radiology at Yonsei, Seoul, Republic of Korea.,Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Research Institute of Radiological Science, Yonsei University, Seoul, Republic of Korea
| | - Jaemoon Yang
- Systems Molecular Radiology at Yonsei, Seoul, Republic of Korea. .,Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Research Institute of Radiological Science, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Chen L, Feng Z, Yue H, Bazdar D, Mbonye U, Zender C, Harding CV, Bruggeman L, Karn J, Sieg SF, Wang B, Jin G. Exosomes derived from HIV-1-infected cells promote growth and progression of cancer via HIV TAR RNA. Nat Commun 2018; 9:4585. [PMID: 30389917 PMCID: PMC6214989 DOI: 10.1038/s41467-018-07006-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 10/08/2018] [Indexed: 12/17/2022] Open
Abstract
People living with HIV/AIDS on antiretroviral therapy have increased risk of non-AIDS-defining cancers (NADCs). However, the underlying mechanism for development and progression of certain NADCs remains obscure. Here we show that exosomes released from HIV-infected T cells and those purified from blood of HIV-positive patients stimulate proliferation, migration and invasion of oral/oropharyngeal and lung cancer cells. The HIV transactivation response (TAR) element RNA in HIV-infected T-cell exosomes is responsible for promoting cancer cell proliferation and inducing expression of proto-oncogenes and Toll-like receptor 3 (TLR3)-inducible genes. These effects depend on the loop/bulge region of the molecule. HIV-infected T-cell exosomes rapidly enter recipient cells through epidermal growth factor receptor (EGFR) and stimulate ERK1/2 phosphorylation via the EGFR/TLR3 axis. Thus, our findings indicate that TAR RNA-containing exosomes from HIV-infected T cells promote growth and progression of particular NADCs through activation of the ERK cascade in an EGFR/TLR3-dependent manner. HIV patients have an increased risk of developing non-AIDS-defining cancers but the molecular mechanisms underlying this predisposition are unclear. Here the authors show that exosomes secreted by HIV-infected T cells or isolated from the blood of HIV-positive patients, stimulate oncogenic properties of cancer cells through the activation of ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Lechuang Chen
- Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, OH, 44106, USA
| | - Zhimin Feng
- Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, OH, 44106, USA
| | - Hong Yue
- Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, OH, 44106, USA.,Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25701, USA
| | - Douglas Bazdar
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Uri Mbonye
- Department of Molecular Biology & Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Chad Zender
- Department of Otolaryngology/ENT Institute, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Clifford V Harding
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.,Department of Pathology, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA.,Center for AIDS Research, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH, 44106, USA
| | - Leslie Bruggeman
- Center for AIDS Research, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH, 44106, USA.,Department of Inflammation and Immunity, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Jonathan Karn
- Department of Molecular Biology & Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.,Center for AIDS Research, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH, 44106, USA
| | - Scott F Sieg
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.,Center for AIDS Research, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH, 44106, USA
| | - Bingcheng Wang
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.,Department of Medicine, Pharmacology and Oncology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Ge Jin
- Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, OH, 44106, USA. .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA. .,Center for AIDS Research, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH, 44106, USA.
| |
Collapse
|
25
|
Wang D, Qian G, Zhang H, Magliocca KR, Nannapaneni S, Amin ARMR, Rossi M, Patel M, El-Deiry M, Wadsworth JT, Chen Z, Khuri FR, Shin DM, Saba NF, Chen ZG. HER3 Targeting Sensitizes HNSCC to Cetuximab by Reducing HER3 Activity and HER2/HER3 Dimerization: Evidence from Cell Line and Patient-Derived Xenograft Models. Clin Cancer Res 2016; 23:677-686. [PMID: 27358485 DOI: 10.1158/1078-0432.ccr-16-0558] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/30/2016] [Accepted: 06/21/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Our previous work suggested that HER3 inhibition sensitizes head and neck squamous cell carcinoma (HNSCC) to EGFR inhibition with cetuximab. This study aimed to define the role of HER3 in cetuximab resistance and the antitumor mechanisms of EGFR/HER3 dual targeting in HNSCC. EXPERIMENTAL DESIGN We treated cetuximab-resistant HNSCC UMSCC1-C and parental UMSCC1-P cell lines with anti-EGFR antibody cetuximab, anti-HER3 antibody MM-121, and their combination. We assessed activities of HER2, HER3, and downstream signaling pathways by Western blotting and cell growth by sulforhodamine B (SRB) and colony formation assays. HER3-specific shRNA was used to confirm the role of HER3 in cetuximab response. The combined efficacy and alterations in biomarkers were evaluated in UMSCC1-C xenograft and patient-derived xenograft (PDX) models. RESULTS Cetuximab treatment induced HER3 activation and HER2/HER3 dimerization in HNSCC cell lines. Combined treatment with cetuximab and MM-121 blocked EGFR and HER3 activities and inhibited the PI3K/AKT and ERK signaling pathways and HNSCC cell growth more effectively than each antibody alone. HER3 knockdown reduced HER2 activation and resensitized cells to cetuximab. Cetuximab-resistant xenografts and PDX models revealed greater efficacy of dual EGFR and HER3 inhibition compared with single antibodies. In PDX tissue samples, cetuximab induced HER3 expression and MM-121 reduced AKT activity. CONCLUSIONS Clinically relevant PDX models demonstrate that dual targeting of EGFR and HER3 is superior to EGFR targeting alone in HNSCC. Our study illustrates the upregulation of HER3 by cetuximab as one mechanism underlying resistance to EGFR inhibition in HNSCC, supporting further clinical investigations using multiple targeting strategies in patients who have failed cetuximab-based therapy. Clin Cancer Res; 23(3); 677-86. ©2016 AACR.
Collapse
Affiliation(s)
- Dongsheng Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory, University School of Medicine, Atlanta, Georgia
| | - Guoqing Qian
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory, University School of Medicine, Atlanta, Georgia
| | - Hongzheng Zhang
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory, University School of Medicine, Atlanta, Georgia
| | | | - Sreenivas Nannapaneni
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory, University School of Medicine, Atlanta, Georgia
| | - A R M Ruhul Amin
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory, University School of Medicine, Atlanta, Georgia
| | - Michael Rossi
- Department of Radiation Oncology Emory University, Atlanta, Georgia
| | - Mihir Patel
- Department of Otolaryngology Emory University, Atlanta, Georgia
| | - Mark El-Deiry
- Department of Otolaryngology Emory University, Atlanta, Georgia
| | | | - Zhengjia Chen
- Department of Biostatistics and Bioinformatics, Emory School of Public Health, Emory, University, Atlanta, Georgia
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory, University School of Medicine, Atlanta, Georgia
| | - Dong M Shin
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory, University School of Medicine, Atlanta, Georgia
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory, University School of Medicine, Atlanta, Georgia.
| | - Zhuo G Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory, University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
26
|
Saba NF, Wong SJ. Dual Epidermal Growth Factor Receptor and Human Epidermal Growth Factor Receptor 2 Inhibition in Squamous Cell Carcinoma of the Head and Neck; Is the Jury Still Out? J Clin Oncol 2016; 34:2072-3. [PMID: 27069073 DOI: 10.1200/jco.2016.66.9085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Nabil F Saba
- Winship Cancer Institute, Emory University, Atlanta, GA
| | | |
Collapse
|
27
|
Chapman CH, Saba NF, Yom SS. Targeting epidermal growth factor receptor for head and neck squamous cell carcinoma: still lost in translation? ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:80. [PMID: 27004227 DOI: 10.3978/j.issn.2305-5839.2016.01.01] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The epidermal growth factor receptor (EGFR) is preferentially expressed in head and neck squamous cell carcinoma (HNSCC), and is a promising therapeutic target. Yet other than cetuximab, no agent targeting EGFR has been approved for this disease, and none has shown benefit over the standard of care. Several randomized trials of antibody and small molecule agents have found no new indication for these agents, despite their initial promise. In this review, we examine the major clinical evidence and discuss potential future developments of translational science in this area, including use of these agents in risk-stratified subgroups, inhibition of downstream/parallel targets, and combination with immunotherapy.
Collapse
Affiliation(s)
- Christopher H Chapman
- 1 Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA ; 2 Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nabil F Saba
- 1 Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA ; 2 Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sue S Yom
- 1 Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA ; 2 Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|