1
|
Wu X, Hou S, Ye Y, Gao Z. CXCR2P1 enhances the response of gastric cancer to PD-1 inhibitors through increasing the immune infiltration of tumors. Front Immunol 2025; 16:1545605. [PMID: 40176817 PMCID: PMC11961440 DOI: 10.3389/fimmu.2025.1545605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/03/2025] [Indexed: 04/04/2025] Open
Abstract
Background Recent years, immunotherapy has emerged as a pivotal approach in cancer treatment. However, the response of gastric cancer to immunotherapy exhibits significant heterogeneity. Therefore, the early identification of gastric cancer patients who are likely to benefit from immunotherapy and the discovery of novel therapeutic targets are of critical importance. Materials and methods We collected data from European Nucleotide Archive (ENA) and Gene Expression Omnibus (GEO) databases. In project PRJEB25780, we performed WGCNA analysis and Lasso regression and chose CXCR2P1 for the subsequent analysis. Then, we compared the expression difference of CXCR2P1 among different groups. Kaplan-Meier curve was used to analyze the prognostic value of CXCR2P1, which was validated by project IMvigor210 and GEO datasets. ESTIMATE and CIBERSORT algorithm were used to evaluate the reshaping effect of CXCR2P1 to immune microenvironment of tumor. Differentially expressed genes (DEG) analysis, enrichGO analysis, Gene Set Enrichment Analysis (GSEA) and co-expression analysis were used to explore the cell biological function and signaling pathway involved in CXCR2P1. Results WGCNA identified CXCR2P1 as a hub gene significantly associated with immune response to PD-1 inhibitors in gastric cancer. CXCR2P1 expression was elevated in responders and correlated with better prognosis. Functional analysis revealed its role in reshaping the tumor immune microenvironment by promoting immune cell infiltration, including M1 macrophages, activated CD4+ T cells, and follicular helper T cells. CXCR2P1 enhanced antigen presentation via the MHC-II complex, influenced key immune pathways, such as Toll-like receptor signaling and T-cell activation, which led to the up-regulation of expression of PD-L1. GSEA showed CXCR2P1 were correlated with microRNAs. Through DEG analysis and expression analysis, MIR215 was identified as a potential direct target of CXCR2P1. Conclusion High expression of CXCR2P1 is correlated with better response to PD-1 inhibitor. It reshapes the immune microenvironment by increasing immune infiltration and changing the fraction of immune cells. In tumor immune microenvironment, CXCR2P1 can promote inflammation, enhance antigen presentation and activate the PD-1/PD-L1-related signaling pathway, which might be achieved by CXCR2P1-MIR215 axis.
Collapse
Affiliation(s)
- Xinchun Wu
- Department of Gastrointestinal Surgery, Peking University People`s Hospital, Beijing, China
- Laboratory of Surgical Oncology, Peking University People`s Hospital, Beijing, China
| | - Sen Hou
- Department of Gastrointestinal Surgery, Peking University People`s Hospital, Beijing, China
- Laboratory of Surgical Oncology, Peking University People`s Hospital, Beijing, China
| | - Yingjiang Ye
- Department of Gastrointestinal Surgery, Peking University People`s Hospital, Beijing, China
- Laboratory of Surgical Oncology, Peking University People`s Hospital, Beijing, China
- Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, Beijing, China
| | - Zhidong Gao
- Department of Gastrointestinal Surgery, Peking University People`s Hospital, Beijing, China
- Laboratory of Surgical Oncology, Peking University People`s Hospital, Beijing, China
- Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
2
|
Andrysik Z, Espinosa JM. Harnessing p53 for targeted cancer therapy: new advances and future directions. Transcription 2025; 16:3-46. [PMID: 40031988 PMCID: PMC11970777 DOI: 10.1080/21541264.2025.2452711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 03/05/2025] Open
Abstract
The transcription factor p53 is the most frequently impaired tumor suppressor in human cancers. In response to various stress stimuli, p53 activates transcription of genes that mediate its tumor-suppressive functions. Distinctive characteristics of p53 outlined here enable a well-defined program of genes involved in cell cycle arrest, apoptosis, senescence, differentiation, metabolism, autophagy, DNA repair, anti-viral response, and anti-metastatic functions, as well as facilitating autoregulation within the p53 network. This versatile, anti-cancer network governed chiefly by a single protein represents an immense opportunity for targeted cancer treatment, since about half of human tumors retain unmutated p53. During the last two decades, numerous compounds have been developed to block the interaction of p53 with the main negative regulator MDM2. However, small molecule inhibitors of MDM2 only induce a therapeutically desirable apoptotic response in a limited number of cancer types. Moreover, clinical trials of the MDM2 inhibitors as monotherapies have not met expectations and have revealed hematological toxicity as a characteristic adverse effect across this drug class. Currently, combination treatments are the leading strategy for enhancing efficacy and reducing adverse effects of MDM2 inhibitors. This review summarizes efforts to identify and test therapeutics that work synergistically with MDM2 inhibitors. Two main types of drugs have emerged among compounds used in the following combination treatments: first, modulators of the p53-regulated transcriptome (including chromatin modifiers), translatome, and proteome, and second, drugs targeting the downstream pathways such as apoptosis, cell cycle arrest, DNA repair, metabolic stress response, immune response, ferroptosis, and growth factor signaling. Here, we review the current literature in this field, while also highlighting overarching principles that could guide target selection in future combination treatments.
Collapse
Affiliation(s)
- Zdenek Andrysik
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joaquin M. Espinosa
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
3
|
Ye G, Ye M, Jin X. Roles of clinical application of lenvatinib and its resistance mechanism in advanced hepatocellular carcinoma (Review). Am J Cancer Res 2024; 14:4113-4171. [PMID: 39417171 PMCID: PMC11477829 DOI: 10.62347/ujvp4361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Lenvatinib (LEN) is a multi-target TKI, which plays a pivotal role in the treatment of advanced hepatocellular carcinoma (HCC). The inevitable occurrence of drug resistance still prevents curative potential and is deleterious for the prognosis, and a growing body of studies is accumulating, which have devoted themselves to unveiling its underlying resistance mechanism and made some progress. The dysregulation of crucial signaling pathways, non-coding RNA and RNA modifications were proven to be associated with LEN resistance. A range of drugs were found to influence LEN therapeutic efficacy. In addition, the superiority of LEN combination therapy has been shown to potentially overcome the limitations of LEN monotherapy in a series of research, and a range of promising indicators for predicting treatment response and prognosis have been discovered in recent years. In this review, we summarize the latest developments in LEN resistance, the efficacy and safety of LEN combination therapy as well as associated indicators, which may provide new insight into its resistance as well as ideas in the treatment of advanced HCC.
Collapse
Affiliation(s)
- Ganghui Ye
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
- Department of Oncology, The First Hospital of Ningbo UniversityNingbo 315020, Zhejiang, P. R. China
- Department of Radiation Oncology, Taizhou Central Hospital (Taizhou University Hospital)Taizhou 318000, Zhejiang, P. R. China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
- Department of Oncology, The First Hospital of Ningbo UniversityNingbo 315020, Zhejiang, P. R. China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
- Department of Oncology, The First Hospital of Ningbo UniversityNingbo 315020, Zhejiang, P. R. China
| |
Collapse
|
4
|
Jiao Z, Xie T, Wang X, Guo D, Lin S, An L, Lin J, Zhang L. Novel Circular RNA CircSLC2A13 Regulates Chicken Muscle Development by Sponging MiR-34a-3p. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15530-15540. [PMID: 38963795 DOI: 10.1021/acs.jafc.4c01550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The skeletal muscle is the major muscle tissue in animals, and its production is subject to a complex and strict regulation. The proliferation and differentiation of myoblasts are important factors determining chicken muscle development. Circular RNAs (circRNAs) are endogenous RNAs that are widely present in various tissues of organisms. Recent studies have shown that circRNA plays key roles in the development of skeletal muscles. The solute carrier (SLC) family functions in the transport of metabolites such as amino acids, glucose, nucleotides, and essential nutrients and is widely involved in various basic physiological metabolic processes within the body. In this study, we have cloned a novel chicken circular RNA circSLC2A13 generated from the solute carrier family 2 member 13 gene (SLC2A13). Also, circSLC2A1 was confirmed by sequencing verification, RNase R treatment, and reverse transcription analysis. Currently, our results show that circSLC2A13 promoted the proliferation and differentiation of chicken myoblasts. The double luciferase reporter system revealed that circSLC2A13 regulated the proliferation and differentiation of myoblasts by competitive binding with miR-34a-3p. In addition, results indicated that circSLC2A13 acts as a miR-34a-3p sponge to relieve its inhibitory effect on the target SMAD3 gene. In summary, this study found that chicken circSLC2A13 can bind to miR-34a-3p and weaken its inhibitory effect on the SMAD family member 3 gene (SMAD3), thereby promoting the proliferation and differentiation of myoblasts. This study laid foundations for broiler industry and muscle development research.
Collapse
Affiliation(s)
- Zhenhai Jiao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Tingting Xie
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Xiaotong Wang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Dongxue Guo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Shudai Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Lilong An
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Junyuan Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | - Li Zhang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation in Zhanjiang, Guangdong Ocean University, 524088 Zhanjiang, Guangdong, P. R. China
| |
Collapse
|
5
|
Yu M, Du H, Zhang C, Shi Y. miR-192 family in breast cancer: Regulatory mechanisms and diagnostic value. Biomed Pharmacother 2024; 175:116620. [PMID: 38653113 DOI: 10.1016/j.biopha.2024.116620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
There is a growing interest in the role of the miRNA family in human cancer. The miRNA-192 family is a group of conserved small RNAs, including miR-192, miR-194, and miR-215. Recent studies have shown that the incidence and mortality of breast cancer have been increasing epidemiologically year by year, and it is urgent to clarify the pathogenesis of breast cancer and seek new diagnostic and therapeutic methods. There is increasing evidence that miR-192 family members may be involved in the occurrence and development of breast cancer. This review describes the regulatory mechanism of the miRNA-192 family affecting the malignant behavior of breast cancer cells and evaluates the value of the miRNA-192 family as a diagnostic and prognostic biomarker for breast cancer. It is expected that summarizing and discussing the relationship between miRNA-192 family members and breast cancer, it will provide a new direction for the clinical diagnosis and treatment of breast cancer and basic medical research.
Collapse
Affiliation(s)
- Mingxuan Yu
- Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolia Medical University, PR China.
| | - Hua Du
- College of Basic Medicine, Inner Mongolia Medical University, PR China; Department of Pathology, Affiliated Hospital of Inner Mongolia Medical University, PR China.
| | - Caihong Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolia Medical University, PR China.
| | - Yingxu Shi
- Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolia Medical University, PR China.
| |
Collapse
|
6
|
Chen X, Yang F, Luo G. Identification of key regulatory genes in the pathogenesis of COVID-19 and sepsis: An observational study. Medicine (Baltimore) 2024; 103:e38378. [PMID: 39259097 PMCID: PMC11142772 DOI: 10.1097/md.0000000000038378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/05/2024] [Accepted: 05/06/2024] [Indexed: 09/12/2024] Open
Abstract
Patients with severe COVID-19 and those with sepsis have similar clinical manifestations. We used bioinformatics methods to identify the common hub genes in these 2 diseases. Two RNA-seq datasets from the Gene Expression Omnibus were used to identify common differentially expressed genes (DEGs) in COVID-19 and sepsis. These common genes were used for analysis of functional enrichment; pathway analysis; identification of associated transcription factors, metabolites, and miRNAs; and mapping of protein-protein interaction networks. The major hub genes of COVID-19 and sepsis were identified, and validation datasets were used to assess the value of these hub genes using receiver operating characteristic (ROC) curves. Analysis of the 800 common DEGs for COVID-19 and sepsis, as well as common transcription factors, miRNAs, and metabolites, demonstrated that the immune response had a key role in both diseases. DLGAP5, BUB1, CDK1, CCNB1, and BUB1B were the most important common hub genes. Analysis of a validation cohort indicated these 5 genes had significantly higher expression in COVID-19 patients and sepsis patients than in corresponding controls, and the area under the ROC curves ranged from 0.832 to 0.981 for COVID-19 and 0.840 to 0.930 for sepsis. We used bioinformatics tools to identify common DEGs, miRNAs, and transcription factors for COVID-19 and sepsis. The 5 identified hub genes had higher expression in validation cohorts of COVID-19 and sepsis. These genes had good or excellent diagnostic performance based on ROC analysis, and therefore have potential use as novel markers or therapeutic targets.
Collapse
Affiliation(s)
- Xing Chen
- Department of Infection, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Fengbo Yang
- Department of Otolaryngology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Guoping Luo
- Department of Infection, Nanchong Central Hospital, Nanchong, Sichuan, China
| |
Collapse
|
7
|
Long T, Li J, Yin T, Liu K, Wang Y, Long J, Wang J, Cheng L. A genetic variant in gene NDUFAF4 confers the risk of non-small cell lung cancer by perturbing hsa-miR-215 binding. Mol Carcinog 2024; 63:145-159. [PMID: 37787384 DOI: 10.1002/mc.23642] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023]
Abstract
Hsa-microRNA-215 (hsa-miR-215) plays multiple roles in carcinogenesis through regulating its target genes. Genetic variants in hsa-miR-215 target sites thus may affect hsa-miR-215-mRNA interactions, result in altered expression of target genes and even influence cancer susceptibility. This study aimed to investigate the associations of genetic variants which located in the binding sites of hsa-miR-215 with non-small cell lung cancer (NSCLC) susceptibility in the Chinese population and reveal the potential regulatory mechanism of functional variants in NSCLC development. The candidate genetic variants were predicted and screened through bioinformatics analysis based on the degree of complementarity of hsa-miR-215 sequences. The potential effects of genetic variants on the binding ability of hsa-miR-215 and target genes were also predicted. A case-control study with 932 NSCLC patients and 1036 healthy controls was conducted to evaluate the association of candidate genetic variants with NSCLC susceptibility, and an independent case-control study with 552 NSCLC cases and 571 controls were used to further validate the promising associations. Dual luciferase reporter gene assay was applied to explore the regulation of the genetic variants on transcription activity of target gene. Cell phenotyping experiments in vitro and RNA sequencing (RNA-seq) were then carried out to preliminarily explore the potential regulatory mechanisms of the target genes in NSCLC. A total of five candidate genetic variants located in the binding sites of hsa-miR-215 were screened. The two-stage case-control study showed that a variant rs1854268 A > T, which located in the 3' untranslated (3'UTR) region of NDUFAF4 gene, was associated with decreased risk of NSCLC (additive model, odds ratio [OR] = 0.83, 95% confidence interval [CI]: 0.75-0.92, p < 0.001). Functional annotation displayed that rs1854268 A > T might downregulate the expression of NDUFAF4 by enhancing the binding affinity of hsa-miR-215-5p to NDUFAF4 mRNA. Additionally, transient knockdown of the NDUFAF4 could inhibit lung cancer cell migration and promote lung cancer cell apoptosis. Further RNA-seq analysis revealed that the knockdown of NDUFAF4 may affect NSCLC development by downregulating the nuclear factor kappa B (NF-κB) and phosphoinositide 3 kinase-AKT (PI3K-AKT) signaling pathways. Moreover, the overexpression of CCND1 could partially attenuate the effects of NDUFAF4 knock down on lung cancer cell migration and apoptosis, indicating that CCND1 may be involved in the tumor-promoting effects of NDUFAF4 as a downstream molecule of NDUFAF4 gene. In conclusion, the genetic variant rs1854268 (A > T) on NDUFAF4 confers NSCLC susceptibility by altering the binding affinity of hsa-miR-215-5p, thus regulating the expression of NDUFAF4 and subsequently influencing downstream tumor molecules and pathways such as CCND1, NF kappa B, and PI3K-AKT signaling pathways.
Collapse
Affiliation(s)
- Tingting Long
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaoyuan Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tongxin Yin
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Liu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jieyi Long
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianing Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Wierzbicka A, Pawlina-Tyszko K, Świątkiewicz M, Szmatoła T, Oczkowicz M. Changes in miRNA expression in the lungs of pigs supplemented with different levels and forms of vitamin D. Mol Biol Rep 2023; 51:8. [PMID: 38085380 PMCID: PMC10716066 DOI: 10.1007/s11033-023-08940-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Vitamin D is an immunomodulator, and its effects have been linked to many diseases, including the pathogenesis of cancer. However, the effect of vitamin D supplementation on the regulation of gene expression of the lungs is not fully understood. This study aims to determine the effect of the increased dose of cholecalciferol and a combination of cholecalciferol + calcidiol, as well as the replacement of cholecalciferol with calcidiol, on the miRNA profile of healthy swine lungs. METHODS AND RESULTS The swine were long-term (88 days) supplemented with a standard dose (2000IU/kg) of cholecalciferol and calcidiol, the increased dose (3000 IU/kg) of cholecalciferol, and the cholecalciferol + calcidiol combination: grower: 3000 IU/Kg of vitamin D (67% of cholecalciferol and 33% of calcidiol), finisher 2500 IU/Kg of vitamin D (60% of cholecalciferol and 40% of calcidiol). Swine lung tissue was used for Next Generation Sequencing (NGS) of miRNA. Long-term supplementation with the cholecalciferol + calcidiol combination caused significant changes in the miRNA profile. They embraced altered levels of the expression of miR-150, miR-193, miR-145, miR-574, miR-340, miR-381, miR-148 and miR-96 (q-value < 0.05). In contrast, raising the dose of cholecalciferol only changed the expression of miR-215, and the total replacement of cholecalciferol with calcidiol did not significantly affect the miRNAome profile. CONCLUSIONS The functional analysis of differentially expressed miRNAs suggests that the use of the increased dose of the cholecalciferol + calcidiol combination may affect tumorigenesis processes through, inter alia, modulation of gene regulation of the TGF- β pathway and pathways related to metabolism and synthesis of glycan.
Collapse
Affiliation(s)
- Alicja Wierzbicka
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Ul. Krakowska 1, Balice, 32-083, Poland
| | - Klaudia Pawlina-Tyszko
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Ul. Krakowska 1, Balice, 32-083, Poland
| | - Małgorzata Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Ul. Krakowska 1, Balice, 32-083, Poland
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Ul. Krakowska 1, Balice, 32-083, Poland
- Center for Experimental and Innovative Medicine, University of Agriculture in Kraków, Rędzina 1c, Kraków, 30 248, Poland
| | - Maria Oczkowicz
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Ul. Krakowska 1, Balice, 32-083, Poland.
| |
Collapse
|
9
|
Groven RVM, Greven J, Mert Ü, Horst K, Zhao Q, Blokhuis TJ, Huber-Lang M, Hildebrand F, van Griensven M. Circulating miRNA expression in extracellular vesicles is associated with specific injuries after multiple trauma and surgical invasiveness. Front Immunol 2023; 14:1273612. [PMID: 37936707 PMCID: PMC10626999 DOI: 10.3389/fimmu.2023.1273612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/04/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Two trauma treatment principles are Early Total Care (ETC), and Damage Control Orthopedics (DCO). Cellular mechanisms that underlie the connection between treatment type, its systemic effects, and tissue regeneration are not fully known. Therefore, this study aimed to: 1) profile microRNA (miRNA) expression in plasma derived Extracellular Vesicles (EVs) from a porcine multiple trauma model at different timepoints, comparing two surgical treatments; and 2) determine and validate the miRNA's messengerRNA (mRNA) targets. Methods The porcine multiple trauma model consisted of blunt chest trauma, liver laceration, bilateral femur fractures, and controlled haemorrhagic shock. Two treatment groups were defined, ETC (n=8), and DCO (n=8). Animals were monitored under Intensive Care Unit-standards, blood was sampled at 1.5, 2.5, 24, and 72 hours after trauma, and EVs were harvested from plasma. MiRNAs were analysed using quantitative Polymerase Chain Reaction arrays. MRNA targets were identified in silico and validated in vivo in lung and liver tissue. Results The arrays showed distinct treatment specific miRNA expression patterns throughout all timepoints, and miRNAs related to the multiple trauma and its individual injuries. EV-packed miRNA expression in the ETC group was more pro-inflammatory, indicating potentially decreased tissue regenerative capacities in the acute post-traumatic phase. In silico target prediction revealed several overlapping mRNA targets among the identified miRNAs, related to inflammation, (pulmonary) fibrosis, and Wnt-signalling. These were, among others, A Disintegrin and Metalloproteinase domain-containing protein 10, Collagen Type 1 Alpha 1 Chain, Catenin Beta Interacting Protein 1, and Signal Transducers and Activators of Transcription 3. Validation of these mRNA targets in the lung showed significant, treatment specific deregulations which matched the expression of their upstream miRNAs. No significant mRNA deregulations were observed in the liver. Discussion This study showed treatment specific, EV-packed miRNA expression patterns after trauma that correlated with mRNA expressions in the lungs, target organs over distance. A systemic response to the increased surgical trauma in the ETC group was identified, with various miRNAs associated with injuries from the trauma model, and involved in (systemic) inflammation, tissue regeneration. EV-transported miRNAs demonstrated a clear role in multiple trauma, warranting further research into tissue-tissue talk and therapeutic applications of EVs after trauma.
Collapse
Affiliation(s)
- Rald Victor Maria Groven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
- Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Johannes Greven
- Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Ümit Mert
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Klemens Horst
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Qun Zhao
- Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Taco Johan Blokhuis
- Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Frank Hildebrand
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Martijn van Griensven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
10
|
Toro AU, Shukla SK, Bansal P. Emerging role of MicroRNA-Based theranostics in Hepatocellular Carcinoma. Mol Biol Rep 2023; 50:7681-7691. [PMID: 37418086 DOI: 10.1007/s11033-023-08586-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023]
Abstract
Hepatocellular carcinoma (HCC), with its high mortality and short survival rate, continues to be one of the deadliest malignancies despite relentless efforts and several technological advances. The poor prognosis of HCC and the few available treatments are to blame for the low survival rate, which emphasizes the importance of creating new, effective diagnostic markers and innovative therapy strategies. In-depth research is being done on the potent biomarker miRNAs, a special class of non-coding RNA and has shown encouraging results in the early identification and treatment of HCC in order to find more viable and successful therapeutics for the disease. It is beyond dispute that miRNAs control cell differentiation, proliferation, and survival and, depending on the genes they target, can either promote tumorigenesis or suppress it. Given the vital role miRNAs play in the biological system and their potential to serve as ground-breaking treatments for HCC, more study is required to fully examine their theranostic potential.
Collapse
Affiliation(s)
- Abdulhakim Umar Toro
- Department of Biomedical Engineering, Shobhit institute of Engineering and Technology (Deemed to-be-University), Modipuram, Meerut, 250110, India
| | - Sudheesh K Shukla
- Department of Biomedical Engineering, Shobhit institute of Engineering and Technology (Deemed to-be-University), Modipuram, Meerut, 250110, India.
| | - Parveen Bansal
- University Centre of Excellence in Research, Baba Farid University of Health Sciences, Faridkot, 151203, India.
| |
Collapse
|
11
|
Farc O, Budisan L, Berindan-Neagoe I, Braicu C, Zanoaga O, Zaharie F, Cristea V. A Group of Tumor-Suppressive micro-RNAs Changes Expression Coordinately in Colon Cancer. Curr Issues Mol Biol 2023; 45:975-989. [PMID: 36826008 PMCID: PMC9955927 DOI: 10.3390/cimb45020063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
MicroRNAs (miRNAs) are molecules with a role in the post-transcriptional regulation of messenger RNA, being involved in a wide range of biological and pathological processes. In the present study, we aim to characterize the behavior of a few miRNAs with roles in the cell cycle and differentiation of colon cancer (CC) cells. The present work considers miRNAs as reflections of the complex cellular processes in which they are generated, their observed variations being used to characterize the molecular networks in which they are part and through which cell proliferation is achieved. Tumoral and adjacent normal tissue samples were obtained from 40 CC patients, and the expression of miR-29a, miR-146a, miR-215 and miR-449 were determined by qRT-PCR analysis. Subsequent bioinformatic analysis was performed to highlight the transcription factors (TFs) network that regulate the miRNAs and functionally characterizes this network. There was a significant decrease in the expression of all miRNAs in tumor tissue. All miRNAs were positively correlated with each other. The analysis of the TF network showed tightly connected functional modules related to the cell cycle and associated processes. The four miRNAs are downregulated in CC; they are strongly correlated, showing coherence within the cellular network that regulates them and highlighting possible approach strategies.
Collapse
Affiliation(s)
- Ovidiu Farc
- Immunology Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Liviuta Budisan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Oana Zanoaga
- Research Center for Functional Genomics, Biomedicine and Translational Medicine “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Florin Zaharie
- Surgical Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Victor Cristea
- Immunology Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| |
Collapse
|
12
|
Pulik Ł, Mierzejewski B, Sibilska A, Grabowska I, Ciemerych MA, Łęgosz P, Brzóska E. The role of miRNA and lncRNA in heterotopic ossification pathogenesis. Stem Cell Res Ther 2022; 13:523. [PMID: 36522666 PMCID: PMC9753082 DOI: 10.1186/s13287-022-03213-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Heterotopic ossification (HO) is the formation of bone in non-osseous tissues, such as skeletal muscles. The HO could have a genetic or a non-genetic (acquired) background, that is, it could be caused by musculoskeletal trauma, such as burns, fractures, joint arthroplasty (traumatic HO), or cerebral or spinal insult (neurogenetic HO). HO formation is caused by the differentiation of stem or progenitor cells induced by local or systemic imbalances. The main factors described so far in HO induction are TGFβ1, BMPs, activin A, oncostatin M, substance P, neurotrophin-3, and WNT. In addition, dysregulation of noncoding RNAs, such as microRNA or long noncoding RNA, homeostasis may play an important role in the development of HO. For example, decreased expression of miRNA-630, which is responsible for the endothelial-mesenchymal transition, was observed in HO patients. The reduced level of miRNA-421 in patients with humeral fracture was shown to be associated with overexpression of BMP2 and a higher rate of HO occurrence. Down-regulation of miRNA-203 increased the expression of runt-related transcription factor 2 (RUNX2), a crucial regulator of osteoblast differentiation. Thus, understanding the various functions of noncoding RNAs can reveal potential targets for the prevention or treatment of HO.
Collapse
Affiliation(s)
- Łukasz Pulik
- Department of Orthopaedics and Traumatology, Medical University of Warsaw, Lindley 4 St, 02-005, Warsaw, Poland.
| | - Bartosz Mierzejewski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Aleksandra Sibilska
- Department of Orthopaedics and Traumatology, Medical University of Warsaw, Lindley 4 St, 02-005, Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Maria Anna Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Paweł Łęgosz
- Department of Orthopaedics and Traumatology, Medical University of Warsaw, Lindley 4 St, 02-005, Warsaw, Poland
| | - Edyta Brzóska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| |
Collapse
|
13
|
Zhou Z, Cao Q, Diao Y, Wang Y, Long L, Wang S, Li P. Non-coding RNA-related antitumor mechanisms of marine-derived agents. Front Pharmacol 2022; 13:1053556. [PMID: 36532760 PMCID: PMC9752855 DOI: 10.3389/fphar.2022.1053556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/21/2022] [Indexed: 09/26/2023] Open
Abstract
In the last two decades, natural active substances have attracted great attention in developing new antitumor drugs, especially in the marine environment. A series of marine-derived compounds or derivatives with potential antitumor effects have been discovered and developed, but their mechanisms of action are not well understood. Emerging studies have found that several tumor-related signaling pathways and molecules are involved in the antitumor mechanisms of marine-derived agents, including noncoding RNAs (ncRNAs). In this review, we provide an update on the regulation of marine-derived agents associated with ncRNAs on tumor cell proliferation, apoptosis, cell cycle, invasion, migration, drug sensitivity and resistance. Herein, we also describe recent advances in marine food-derived ncRNAs as antitumor agents that modulate cross-species gene expression. A better understanding of the antitumor mechanisms of marine-derived agents mediated, regulated, or sourced by ncRNAs will provide new biomarkers or targets for potential antitumor drugs from preclinical discovery and development to clinical application.
Collapse
Affiliation(s)
- Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Qianqian Cao
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yujing Diao
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Linhai Long
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Shoushi Wang
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
14
|
Matuszyk J. MALAT1-miRNAs network regulate thymidylate synthase and affect 5FU-based chemotherapy. Mol Med 2022; 28:89. [PMID: 35922756 PMCID: PMC9351108 DOI: 10.1186/s10020-022-00516-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022] Open
Abstract
Background The active metabolite of 5-Fluorouracil (5FU), used in the treatment of several types of cancer, acts by inhibiting the thymidylate synthase encoded by the TYMS gene, which catalyzes the rate-limiting step in DNA replication. The major failure of 5FU-based cancer therapy is the development of drug resistance. High levels of TYMS-encoded protein in cancerous tissues are predictive of poor response to 5FU treatment. Expression of TYMS is regulated by various mechanisms, including involving non-coding RNAs, both miRNAs and long non-coding RNAs (lncRNAs). Aim To delineate the miRNAs and lncRNAs network regulating the level of TYMS-encoded protein. Main body Several miRNAs targeting TYMS mRNA have been identified in colon cancers, the levels of which can be regulated to varying degrees by lncRNAs. Due to their regulation by the MALAT1 lncRNA, these miRNAs can be divided into three groups: (1) miR-197-3p, miR-203a-3p, miR-375-3p which are downregulated by MALAT1 as confirmed experimentally and the levels of these miRNAs are actually reduced in colon and gastric cancers; (2) miR-140-3p, miR-330-3p that could potentially interact with MALAT1, but not yet supported by experimental results; (3) miR-192-5p, miR-215-5p whose seed sequences do not recognize complementary response elements within MALAT1. Considering the putative MALAT1-miRNAs interaction network, attention is drawn to the potential positive feedback loop causing increased expression of MALAT1 in colon cancer and hepatocellular carcinoma, where YAP1 acts as a transcriptional co-factor which, by binding to the TCF4 transcription factor/ β-catenin complex, may increase the activation of the MALAT1 gene whereas the MALAT1 lncRNA can inhibit miR-375-3p which in turn targets YAP1 mRNA. Conclusion The network of non-coding RNAs may reduce the sensitivity of cancer cells to 5FU treatment by upregulating the level of thymidylate synthase.
Collapse
Affiliation(s)
- Janusz Matuszyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigla Street, 53-114, Wroclaw, Poland.
| |
Collapse
|
15
|
LncRNA SOX2OT facilitates LPS-induced inflammatory injury by regulating intercellular adhesion molecule 1 (ICAM1) via sponging miR-215-5p. Clin Immunol 2022; 238:109006. [DOI: 10.1016/j.clim.2022.109006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/07/2022] [Accepted: 04/06/2022] [Indexed: 11/20/2022]
|
16
|
Pareek S, Sanchenkova X, Sakaguchi T, Murakami M, Okumura R, Kayama H, Kawauchi S, Motooka D, Nakamura S, Okuzaki D, Kishimoto T, Takeda K. Epithelial miR‐215 negatively modulates Th17‐dominant inflammation by inhibiting CXCL12 production in the small intestine. Genes Cells 2022; 27:243-253. [DOI: 10.1111/gtc.12922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Siddhika Pareek
- Regenerative Medicine Institute Cedars‐Sinai Medical Center Los Angeles CA 90048 USA
| | - Xenia Sanchenkova
- WPI Immunology Frontier Research Center Osaka University Osaka 5650871 Japan
| | - Taiki Sakaguchi
- WPI Immunology Frontier Research Center Osaka University Osaka 5650871 Japan
- Laboratory of Immune Regulation Department of Microbiology and Immunology Graduate School of Medicine Osaka University Osaka 5650871 Japan
| | - Mari Murakami
- WPI Immunology Frontier Research Center Osaka University Osaka 5650871 Japan
- Laboratory of Immune Regulation Department of Microbiology and Immunology Graduate School of Medicine Osaka University Osaka 5650871 Japan
| | - Ryu Okumura
- WPI Immunology Frontier Research Center Osaka University Osaka 5650871 Japan
- Laboratory of Immune Regulation Department of Microbiology and Immunology Graduate School of Medicine Osaka University Osaka 5650871 Japan
| | - Hisako Kayama
- WPI Immunology Frontier Research Center Osaka University Osaka 5650871 Japan
- Laboratory of Immune Regulation Department of Microbiology and Immunology Graduate School of Medicine Osaka University Osaka 5650871 Japan
- Institute for Advanced Co‐Creation Studies Osaka University Osaka 5650871 Japan
| | - Saya Kawauchi
- WPI Immunology Frontier Research Center Osaka University Osaka 5650871 Japan
- Laboratory of Immune Regulation Department of Microbiology and Immunology Graduate School of Medicine Osaka University Osaka 5650871 Japan
| | - Daisuke Motooka
- WPI Immunology Frontier Research Center Osaka University Osaka 5650871 Japan
- Genome Information Research Center Research Institute for Microbial Diseases Osaka University Osaka 5650871 Japan
| | - Shota Nakamura
- WPI Immunology Frontier Research Center Osaka University Osaka 5650871 Japan
- Genome Information Research Center Research Institute for Microbial Diseases Osaka University Osaka 5650871 Japan
| | - Daisuke Okuzaki
- WPI Immunology Frontier Research Center Osaka University Osaka 5650871 Japan
- Genome Information Research Center Research Institute for Microbial Diseases Osaka University Osaka 5650871 Japan
| | - Tadamitsu Kishimoto
- WPI Immunology Frontier Research Center Osaka University Osaka 5650871 Japan
| | - Kiyoshi Takeda
- WPI Immunology Frontier Research Center Osaka University Osaka 5650871 Japan
- Laboratory of Immune Regulation Department of Microbiology and Immunology Graduate School of Medicine Osaka University Osaka 5650871 Japan
| |
Collapse
|
17
|
Zhao M, Tang Z, Wang Y, Ding J, Guo Y, Zhang N, Gao T. MIR-4507 Targets TP53 to Facilitate the Malignant Progression of Non-small-cell Lung Cancer. J Cancer 2021; 12:6600-6609. [PMID: 34659550 PMCID: PMC8518012 DOI: 10.7150/jca.60724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/15/2021] [Indexed: 11/05/2022] Open
Abstract
Lung cancer is a serious threat to human health due to its high morbidity and mortality. microRNAs (miRNAs) are involved in the tumorigenesis and progression of lung cancer. In this study, we elucidated the role of miRNA-4507 (miR-4507) in the pathogenesis of non-small-cell lung cancer (NSCLC). miR-4507 is found to be upregulated in NSCLC cells (A549, H460). MTT, 5-ethynyl-2'-deoxyuridine (EdU), wound healing, and transwell assays were performed to evaluate NSCLC cell proliferation and migration. The results demonstrated that miR-4507 inhibition significantly decrease the proliferation and migration of NSCLC cells. Subsequently, a luciferase activity assay was conducted to verify the regulation of the predicted gene target of miR-4507, namely, TP53. Mechanism experiments show that miR-4507 activates the PI3K/AKT signal. Further, we co-transfected miR-4507 mimics and TP53 plasmids and found that TP53 overexpression could recover the effects of miR-4507 mimics on proliferation, migration, and the PI3K/AKT signal activation. These results suggested that miR-4507 targets TP53 to facilitate the proliferation and migration of lung cancer cells through PI3K/AKT signal and that miR-4507 could serve as a potential target for NSCLC treatment.
Collapse
Affiliation(s)
- MengYang Zhao
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - ZiBo Tang
- Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen 518020, China.,Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - YiJun Wang
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - JiaoJiao Ding
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Ying Guo
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Ning Zhang
- Department of Medical Imaging, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - TianHui Gao
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| |
Collapse
|
18
|
Wu C, Liu X, Li B, Sun G, Peng C, Xiang D. miR‑451 suppresses the malignant characteristics of colorectal cancer via targeting SAMD4B. Mol Med Rep 2021; 24:557. [PMID: 34109425 PMCID: PMC8188639 DOI: 10.3892/mmr.2021.12196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer metastasis and recurrence are major causes of poor survival in patients with colorectal cancer (CRC). Therefore, the biological behavior of microRNA (miR)‑451 in CRC deserves further investigation. Reverse transcription‑quantitative PCR was applied to measure the relative expression of miR‑451 in blood serum specimens from patients with CRC and CRC cells. In vitro, HCT116 cells were transfected with miR‑451 mimics, a miR‑451 inhibitor, or SAMD4B plasmids. Proliferation, migration and apoptosis were measured using CCK‑8, Transwell assays and flow cytometry, respectively. Luciferase reporter assay was used to identify targets of miR‑451 and western blotting performed to explore the internal mechanisms of miR‑451 regulation. In vivo, the effect of miR‑451 and SAMD4B plasmids on tumor growth was analyzed using a nude mouse xenograft model. Results indicated that serum miR‑451 expression was lower in patients with CRC compared with healthy controls. Patients with elevated expression of miR‑451 had longer survival times compared with those with low expression. Overexpression of miR‑451 inhibited proliferation and migration, promoted apoptosis and enhanced the sensitivity of CRC cells to chemotherapy. SAMD4B was identified as a direct target of miR‑451 using miRNA target prediction programs and dual luciferase reporter assay validated the binding site of miR‑451 in the 3‑'UTR region of SAMD4B. Further studies confirmed that miR‑451 inhibited CRC progression via targeting SAMD4B. Results indicated that miR‑451 is essential for blocking tumor growth via targeting SAMD4B in vivo and in vitro. The miR‑451/SAMD4B axis may serve as a novel therapeutic target in patients with CRC.
Collapse
Affiliation(s)
- Chunrong Wu
- Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, P.R. China
| | - Xiaohu Liu
- Department of Gastrointestinal Surgery, Jiangjin Central Hospital of Chongqing, Chongqing 402260, P.R. China
| | - Bo Li
- Department of Cardiology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, P.R. China
| | - Guiyin Sun
- Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, P.R. China
| | - Chunfang Peng
- Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, P.R. China
| | - Debing Xiang
- Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, P.R. China
| |
Collapse
|
19
|
MiR-466 Inhibits the Progression of Severe Hepatocellular Carcinoma via Regulating FMNL2-Mediated Activation of NF- κB and Wnt/ β-Catenin Pathways. JOURNAL OF ONCOLOGY 2021; 2021:3554219. [PMID: 34257650 PMCID: PMC8249156 DOI: 10.1155/2021/3554219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma (HCC) has threatened the health of humans, and some evidence has indicated that miR-466 involves the progressions of some cancers. This study focused on the role of miR-466 in the formation and development of HCC. The expression levels of miR-466 in the tissues of patients and HCC cell lines were measured by qRT-PCR, and CCK-8, transwell assay, and flow cytometry assay were used to observe the functions of miR-466 on the HCC cells. Moreover, the miRNA databases, dual-luciferase reporter assay, and Western blot were used for the investigation of the regulation mechanism of miR-466 on HCC cells. The results showed that miR-466 was significantly downregulated in HCC tissues and cell lines, and inhibited proliferation, invasion, and high apoptosis were found in HCC cells when miR-466 was overexpressed. The results confirmed that FMNL2 was a target of miR-466, and increased FMNL2 could reverse the effects of miR-466 on the phenotype of HCC cells. Besides, it was also found that miR-466 was involved in the regulation of NF-κB and Wnt/β-catenin pathways in HCC cells via targeting FMNL2. In conclusion, the results of this study suggest that miR-466 regulates the activities of NF-κB and Wnt/β-catenin pathways to inhibit the progression of HCC cells via targeting FMNL2.
Collapse
|
20
|
Krishnan S, Queiroz ATL, Gupta A, Gupte N, Bisson GP, Kumwenda J, Naidoo K, Mohapi L, Mave V, Mngqibisa R, Lama JR, Hosseinipour MC, Andrade BB, Karakousis PC. Integrative Multi-Omics Reveals Serum Markers of Tuberculosis in Advanced HIV. Front Immunol 2021; 12:676980. [PMID: 34168648 PMCID: PMC8217878 DOI: 10.3389/fimmu.2021.676980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/13/2021] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB) accounts for disproportionate morbidity and mortality among persons living with HIV (PLWH). Conventional methods of TB diagnosis, including smear microscopy and Xpert MTB/RIF, have lower sensitivity in PLWH. Novel high-throughput approaches, such as miRNAomics and metabolomics, may advance our ability to recognize subclinical and difficult-to-diagnose TB, especially in very advanced HIV. We conducted a case-control study leveraging REMEMBER, a multi-country, open-label randomized controlled trial comparing 4-drug empiric standard TB treatment with isoniazid preventive therapy in PLWH initiating antiretroviral therapy (ART) with CD4 cell counts <50 cells/μL. Twenty-three cases of incident TB were site-matched with 32 controls to identify microRNAs (miRNAs), metabolites, and cytokines/chemokines, associated with the development of newly diagnosed TB in PLWH. Differentially expressed miRNA analysis revealed 11 altered miRNAs with a fold change higher than 1.4 or lower than -1.4 in cases relative to controls (p<0.05). Our analysis revealed no differentially abundant metabolites between cases and controls. We found higher TNFα and IP-10/CXCL10 in cases (p=0.011, p=0.0005), and higher MDC/CCL22 in controls (p=0.0072). A decision-tree algorithm identified gamma-glutamylthreonine and hsa-miR-215-5p as the optimal variables to classify incident TB cases (AUC 0.965; 95% CI 0.925-1.000). hsa-miR-215-5p, which targets genes in the TGF-β signaling pathway, was downregulated in cases. Gamma-glutamylthreonine, a breakdown product of protein catabolism, was less abundant in cases. To our knowledge, this is one of the first uses of a multi-omics approach to identify incident TB in severely immunosuppressed PLWH.
Collapse
Affiliation(s)
- Sonya Krishnan
- Center for Clinical Global Health Education and Center for Tuberculosis Research, Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Artur T. L. Queiroz
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
| | - Amita Gupta
- Center for Clinical Global Health Education and Center for Tuberculosis Research, Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Byramjee Jeejeebhoy Government Medical College-Johns Hopkins University Clinical Research Site, Pune, India
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Nikhil Gupte
- Center for Clinical Global Health Education and Center for Tuberculosis Research, Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Byramjee Jeejeebhoy Government Medical College-Johns Hopkins University Clinical Research Site, Pune, India
| | - Gregory P. Bisson
- Department of Medicine, Division of Infectious Diseases, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | | | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa, Nelson R Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Lerato Mohapi
- Soweto ACTG CRS, Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Vidya Mave
- Byramjee Jeejeebhoy Government Medical College-Johns Hopkins University Clinical Research Site, Pune, India
| | - Rosie Mngqibisa
- Durban International Clinical Research Site, Enhancing Care Foundation, Durban, South Africa
| | | | - Mina C. Hosseinipour
- University of North Carolina Project-Malawi, Lilongwe, Malawi
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Bruno B. Andrade
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil
- Curso de Medicina, Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Brazil
| | - Petros C. Karakousis
- Center for Clinical Global Health Education and Center for Tuberculosis Research, Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
21
|
Yang X, Chen C, Li L, Xiao T, Zou YD, Zheng D. Current research advances in microRNA-mediated regulation of Krüppel-like factor 4 in cancer: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:948. [PMID: 34350263 PMCID: PMC8263881 DOI: 10.21037/atm-21-2347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/28/2021] [Indexed: 11/06/2022]
Abstract
Objective The purpose of this study was to investigate the miRNAs and related mechanisms that regulates KLF4 in different cancers. Furthermore, we summarized the potential targets of miRNAs regulating the KLF4 pathway in cancer research. Background MiRNAs are single-stranded, endogenous non-coding small RNAs, some of which are related to human cancers. miRNAs carry out post-transcriptional gene regulation through translation inhibition and degradation of target messenger RNAs (mRNAs) via complementarily pairing with their 3' untranslated regions. KLF4 is an important transcription factor with complex involvement in cancer. Increasing evidence shows that miRNAs are dysregulated in cancer and can regulate cancer-related signaling pathways, thereby affecting tumor progression. Methods Systematic scientific literature searches were undertaken on PubMed using the following terms: "miRNAs and KLF4", "KLF4 and cancer", "miRNAs and cancer", and "miRNAs, KLF4 and cancer". Relevant papers were retrieved and further results were found by reviewing related papers and the references of the retrieved papers. We then conducted a narrative overview of the literature to summarize the results of the papers. Conclusions The role of KLF4 in cancer varies in a context-dependent manner. KLF4-regulating miRNAs in different tumors include miR-124, miR-9-5p, miR-10b, miR-18a, miR-25-3p, miR-10b, miR-92a, miR-103, miR-155, miR-135b-5p, miR-32-5p, miR-148-3p, miR-152-3p, miR-10b, miR-25, miR-3120-5p, miR-7, miR-1233-3p, miR-10b, miR-145, miR-139-5p, miR-16, miR-152, miR-375, and miR-145.
Collapse
Affiliation(s)
- Xi Yang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China.,Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Cheng Chen
- Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Li Li
- Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Tian Xiao
- Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yong-Dong Zou
- Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Duo Zheng
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China.,Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
22
|
Machackova T, Vychytilova-Faltejskova P, Souckova K, Trachtova K, Brchnelova D, Svoboda M, Kiss I, Prochazka V, Kala Z, Slaby O. MiR-215-5p Reduces Liver Metastasis in an Experimental Model of Colorectal Cancer through Regulation of ECM-Receptor Interactions and Focal Adhesion. Cancers (Basel) 2020; 12:cancers12123518. [PMID: 33255928 PMCID: PMC7760708 DOI: 10.3390/cancers12123518] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Decreased expression of miR-215-5-p was found in tumor tissue of patients with colorectal cancer (CRC) in comparison to healthy colon tissue. Moreover, expression levels of miR-215-5p were further decreased in metastatic lesions compared to primary tumor tissue. Overall, CRC patients with lower expression of miR-215-5p in tumors had significantly shorter overall survival and a higher chance of metastasis. This study aimed to examine the effects of miR-215-5p supplementation on the metastatic potential of CRC. MiR-215-5p was found to decrease invasiveness, migratory capacity, tumorigenicity, and metastasis formation. Finally, transcriptome analysis identified signaling pathways involved in the process, and subsequent RT-qPCR validation indicates CTNNBIP1 to be a direct target of this microRNA. These results bring new insight into miR-215-5p biology, a molecule that could potentially serve as a promising target for CRC patients’ future therapeutic strategies. Abstract Background: Growing evidence suggests that miR-215-5p is a tumor suppressor in colorectal cancer (CRC); however, its role in metastasis remains unclear. This study evaluates the effects of miR-215 overexpression on the metastatic potential of CRC. Methods: CRC cell lines were stably transfected with miR-215-5p and used for in vitro and in vivo functional analyses. Next-generation sequencing and RT-qPCR were performed to study changes on the mRNA level. Results: Overexpression of miR-215-5p significantly reduced the clonogenic potential, migration, and invasiveness of CRC cells in vitro and tumor weight and volume, and liver metastasis in vivo. Transcriptome analysis revealed mRNAs regulated by miR-215-5p and RT-qPCR confirmed results for seven selected genes. Significantly elevated levels of CTNNBIP1 were also observed in patients’ primary tumors and liver metastases compared to adjacent tissues, indicating its direct regulation by miR-215-5p. Gene Ontology and KEGG pathway analysis identified cellular processes and pathways associated with miR-215-5p deregulation. Conclusions: MiR-215-5p suppresses the metastatic potential of CRC cells through the regulation of divergent molecular pathways, including extracellular-matrix-receptor interaction and focal adhesion. Although the specific targets of miR-215-5p contributing to the formation of distant metastases must be further elucidated, this miRNA could serve as a promising target for CRC patients’ future therapeutic strategies.
Collapse
Affiliation(s)
- Tana Machackova
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (T.M.); (P.V.-F.); (K.S.); (K.T.); (D.B.)
| | - Petra Vychytilova-Faltejskova
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (T.M.); (P.V.-F.); (K.S.); (K.T.); (D.B.)
| | - Kamila Souckova
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (T.M.); (P.V.-F.); (K.S.); (K.T.); (D.B.)
| | - Karolina Trachtova
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (T.M.); (P.V.-F.); (K.S.); (K.T.); (D.B.)
| | - Dominika Brchnelova
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (T.M.); (P.V.-F.); (K.S.); (K.T.); (D.B.)
| | - Marek Svoboda
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Masaryk University, 602 00 Brno, Czech Republic; (M.S.); (I.K.)
| | - Igor Kiss
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Masaryk University, 602 00 Brno, Czech Republic; (M.S.); (I.K.)
| | - Vladimir Prochazka
- Department of Surgery, Faculty Hospital Brno and Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic; (V.P.); (Z.K.)
| | - Zdenek Kala
- Department of Surgery, Faculty Hospital Brno and Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic; (V.P.); (Z.K.)
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (T.M.); (P.V.-F.); (K.S.); (K.T.); (D.B.)
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
- Correspondence: ; Tel.: +420-549-496-876
| |
Collapse
|
23
|
Niu S, Ni Y, Niu T, Gao J. Knockdown PEG10 deteriorates H2O2-injury of PC-12 cells by targeting miR-34a-5p/TLX. Mol Immunol 2020; 118:1-8. [DOI: 10.1016/j.molimm.2019.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/16/2019] [Accepted: 11/27/2019] [Indexed: 12/25/2022]
|
24
|
Tang H, Long Q, Zhuang K, Yan Y, Han K, Guo H, Lu X. miR-665 promotes the progression of gastric adenocarcinoma via elevating FAK activation through targeting SOCS3 and is negatively regulated by lncRNA MEG3. J Cell Physiol 2019; 235:4709-4719. [PMID: 31650535 DOI: 10.1002/jcp.29349] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022]
Abstract
Studies have found that miR-665 acted as a tumor suppressor or an oncogene in different malignancies. miR-665 expression was elevated in gastric adenocarcinoma tissues; however, its role and mechanism in this disease are not fully clarified. The expression of miR-665 and its target gene was detected in human gastric adenocarcinoma tissues and cells. Moreover, we analyzed the effects of miR-665 on the proliferation, migration, and epithelial-mesenchymal transition (EMT) of gastric adenocarcinoma cells as well as tumor growth in vivo. The mechanisms of miR-665 in gastric adenocarcinoma were investigated by using molecular biology techniques. We found miR-665 was upregulated and suppressor of cytokine signaling 3 (SOCS3) was downregulated in gastric adenocarcinoma tissues and cells. Elevated miR-665 was positively correlated with tumor size, lymph node metastasis, invasion depth, TNM stage, and poor differentiation in gastric adenocarcinoma patients. Overexpression of miR-665 promoted, whereas knockdown of miR-665 suppressed the proliferation, migration, and EMT of gastric adenocarcinoma cells. Furthermore, we demonstrated that miR-665 functioned through targeting SOCS3, followed by activation of the FAK/Src signaling pathway in gastric adenocarcinoma cells. miR-665 antagomir inhibited tumor growth as well as the activation of the FAK/Src pathway but increased SOCS3 expression in nude mice. In addition, miR-665 expression was negatively regulated by long noncoding RNA maternally expressed gene 3 (MEG3). In conclusion, miR-665 acted as an oncogene in gastric adenocarcinoma by inhibiting SOCS3 followed by activation of the FAK/Src pathway and it was negatively modulated by MEG3. miR-665 may be a promising therapeutic target for the treatment of gastric adenocarcinoma.
Collapse
Affiliation(s)
- Hailing Tang
- Division of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Division of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Qianfa Long
- Division of Neurosurgery, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Kun Zhuang
- Division of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Yuan Yan
- Division of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Kun Han
- Division of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Hanqing Guo
- Division of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Xiaolan Lu
- Division of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
25
|
Smolle MA, Prinz F, Calin GA, Pichler M. Current concepts of non-coding RNA regulation of immune checkpoints in cancer. Mol Aspects Med 2019; 70:117-126. [PMID: 31582259 DOI: 10.1016/j.mam.2019.09.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023]
Abstract
The discovery of immune checkpoint molecules as important regulators of immune responses in healthy individuals as well as immune escape of malignant tumours has led to profound changes in understanding, research and treatment of human cancer. Especially the introduction of immune checkpoint inhibitors in cancer therapy has set anti-cancer therapy on a novel level. With increasing experience of approved CTLA-4 and PD1/PD-L1 inhibitors and the evolution of novel immune checkpoint molecules from pre-clinical models to clinical trials, mechanisms of the regulation of these immune system guiding factors, are of paramount importance to overcome mechanisms of resistance. Non-protein coding RNAs (i.e. non-coding RNAs) such as short microRNAs and long non-coding RNAs are involved in regulating of various cellular processes and have attracted attention of cancer researchers and immunologists over the last years. In the present review, interactions between non coding RNAs and immune checkpoint molecules, within the framework of human cancer, will be discussed and current and developing concepts between the immunological and non-coding RNA world, will be elucidated.
Collapse
Affiliation(s)
- Maria Anna Smolle
- Department for Orthopaedics & Trauma, Medical University of Graz, Graz, Auenbruggerplatz 5, 8036, Graz, Austria.
| | - Felix Prinz
- Research Unit for Non-Coding RNA and Genome Editing in Cancer, Division of Oncology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
| | - George Adrian Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Unit 1950, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| | - Martin Pichler
- Research Unit for Non-Coding RNA and Genome Editing in Cancer, Division of Oncology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria; Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Unit 1950, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| |
Collapse
|
26
|
Fan X, Zhao Y. miR-451a inhibits cancer growth, epithelial-mesenchymal transition and induces apoptosis in papillary thyroid cancer by targeting PSMB8. J Cell Mol Med 2019; 23:8067-8075. [PMID: 31559672 PMCID: PMC6850967 DOI: 10.1111/jcmm.14673] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/30/2019] [Accepted: 08/18/2019] [Indexed: 12/18/2022] Open
Abstract
Despite the increasing incidence of papillary thyroid cancer in the past decade, the molecular mechanism underlying its progression remains unknown. Several studies have reported down-regulation of miR-451a or circular miR-451a in papillary thyroid cancer cell lines or patients. However, the underlying molecular mechanism remains unknown. In this study, we found that overexpression of miR-451a could inhibit proliferation, epithelial-mesenchymal transition and induce apoptosis in papillary thyroid cancer cells. Proteasome subunit beta type-8 was predicted to be a direct target of miR-451a and was validated with a luciferase reporter assay. Further functional assays showed that miR-451a could inhibit thyroid cancer progression by targeting proteasome subunit beta type-8.
Collapse
Affiliation(s)
- Xinlong Fan
- Second Ward of Head & Neck Surgery, Liaoning Cancer Hospital & Institute (Cancer Hospital of China Medical University), Shenyang, China
| | - Yuejiao Zhao
- Second Ward of Head & Neck Surgery, Liaoning Cancer Hospital & Institute (Cancer Hospital of China Medical University), Shenyang, China
| |
Collapse
|